Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Sensors (Basel) ; 22(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35458825

RESUMEN

Accurate and reliable stride length estimation modules play a significant role in Pedestrian Dead Reckoning (PDR) systems, but the accuracy of stride length calculation suffers from individual differences. This paper presents a stride length prediction strategy for PDR systems that can be adapted across individuals and broad walking velocity fields. It consists of a multi-gait division algorithm, which can divide a full stride into push-off, swing, heel-strike, and stance based on multi-axis IMU data. Additionally, based on the acquired gait phases, the correlation between multiple features of distinct gait phases and the stride length is analyzed, and multi regression models are merged to output the stride length value. In experimental tests, the gait segmentation algorithm provided gait phases division with the F-score of 0.811, 0.748, 0.805, and 0.819 for stance, push-off, swing, heel-strike, respectively, and IoU of 0.482, 0.69, 0.509 for push-off, swing, heel-strike, respectively. The root means square error (RMSE) of our proposed stride length estimation was 151.933, and the relative error for total distance in varying walking speed tests was less than 2%. The experimental results validated that our proposed gait phase segmentation algorithm can accurately recognize gait phases for individuals with wide walking speed ranges. With no need for parameter modification, the stride length method based on the fusion of multiple predictions from different gait phases can provide better accuracy than the estimations based on the full stride.


Asunto(s)
Marcha , Peatones , Talón , Humanos , Caminata , Velocidad al Caminar
2.
Sensors (Basel) ; 22(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35214579

RESUMEN

Stride length estimation is one of the most crucial aspects of Pedestrian Dead Reckoning (PDR). Due to the measurement noise of inertial sensors, individual variances of pedestrians, and the uncertainty in pedestrians walking, there is a substantial error in the assessment of stride length, which causes the accumulated deviation of Pedestrian Dead Reckoning (PDR). With the help of multi-gait analysis, which decomposes strides in time and space with greater detail and accuracy, a novel and revolutionary stride estimating model or scheme could improve the performance of PDR on different users. This paper presents a diverse stride gait dataset by using inertial sensors that collect foot movement data from people of different genders, heights, and walking speeds. The dataset contains 4690 walking strides data and 19,083 gait labels. Based on the dataset, we propose a threshold-independent stride segmentation algorithm called SDATW and achieve an F-measure of 0.835. We also provide the detailed results of recognizing four gaits under different walking speeds, demonstrating the utility of our dataset for helping train stride segmentation algorithms and gait detection algorithms.


Asunto(s)
Peatones , Algoritmos , Femenino , Marcha , Análisis de la Marcha , Humanos , Masculino , Caminata , Velocidad al Caminar
3.
Sensors (Basel) ; 22(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35336541

RESUMEN

Slip-resistant footwear can prevent fall-related injuries on icy surfaces. Winter footwear slip resistance can be measured by the Maximum Achievable Angle (MAA) test, which measures the steepest ice-covered incline that participants can walk up and down without experiencing a slip. However, the MAA test requires the use of a human observer to detect slips, which increases the variability of the test. The objective of this study was to develop and evaluate an automated slip detection algorithm for walking on level and inclined ice surfaces to be used with the MAA test to replace the need for human observers. Kinematic data were collected from nine healthy young adults walking up and down on ice surfaces in a range from 0° to 12° using an optical motion capture system. Our algorithm segmented these data into steps and extracted features as inputs to two linear support vector machine classifiers. The two classifiers were trained, optimized, and validated to classify toe slips and heel slips, respectively. A total of approximately 11,000 steps from 9 healthy participants were collected, which included approximately 4700 slips. Our algorithm was able to detect slips with an overall F1 score of 90.1%. In addition, the algorithm was able to accurately classify backward toe slips, forward toe slips, backward heel slips, and forward heel slips with F1 scores of 97.3%, 54.5%, 80.9%, and 86.5%, respectively.


Asunto(s)
Hielo , Zapatos , Accidentes por Caídas/prevención & control , Algoritmos , Humanos , Caminata , Adulto Joven
4.
Sensors (Basel) ; 20(10)2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32466104

RESUMEN

The development of on-board sensors, such as inertial measurement units (IMU), has made it possible to develop new methods for analyzing horse locomotion to detect lameness. The detection of spatiotemporal events is one of the keystones in the analysis of horse locomotion. This study assesses the performance of four methods for detecting Foot on and Foot off events. They were developed from an IMU positioned on the canon bone of eight horses during trotting recording on a treadmill and compared to a standard gold method based on motion capture. These methods are based on accelerometer and gyroscope data and use either thresholding or wavelets to detect stride events. The two methods developed from gyroscopic data showed more precision than those developed from accelerometric data with a bias less than 0.6% of stride duration for Foot on and 0.1% of stride duration for Foot off. The gyroscope is less impacted by the different patterns of strides, specific to each horse. To conclude, methods using the gyroscope present the potential of further developments to investigate the effects of different gait paces and ground types in the analysis of horse locomotion.


Asunto(s)
Marcha , Locomoción , Trastornos del Movimiento , Acelerometría , Animales , Fenómenos Biomecánicos , Femenino , Pie , Caballos , Masculino
5.
Sensors (Basel) ; 20(3)2020 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-31991597

RESUMEN

The evaluation of trajectory reconstruction of the human body obtained by foot-mounted Inertial Pedestrian Dead-Reckoning (IPDR) methods has usually been carried out in controlled environments, with very few participants and limited to walking. In this study, a pipeline for trajectory reconstruction using a foot-mounted IPDR system is proposed and evaluated in two large datasets containing activities that involve walking, jogging, and running, as well as movements such as side and backward strides, sitting, and standing. First, stride segmentation is addressed using a multi-subsequence Dynamic Time Warping method. Then, detection of Toe-Off and Mid-Stance is performed by using two new algorithms. Finally, stride length and orientation estimation are performed using a Zero Velocity Update algorithm empowered by a complementary Kalman filter. As a result, the Toe-Off detection algorithm reached an F-score between 90% and 100% for activities that do not involve stopping, and between 71% and 78% otherwise. Resulting return position errors were in the range of 0.5% to 8.8% for non-stopping activities and 8.8% to 27.4% otherwise. The proposed pipeline is able to reconstruct indoor trajectories of people performing activities that involve walking, jogging, running, side and backward walking, sitting, and standing.


Asunto(s)
Trote , Carrera , Caminata , Dispositivos Electrónicos Vestibles , Adulto , Algoritmos , Arquitectura y Construcción de Instituciones de Salud , Pie , Humanos
6.
Sensors (Basel) ; 18(4)2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29617340

RESUMEN

A novel approach for stride segmentation, gait sequence extraction, and gait event detection for inertial signals is presented. The approach operates by combining different local cyclicity estimators and sensor channels, and can additionally employ a priori knowledge on the fiducial points of gait events. The approach is universal as it can work on signals acquired by different inertial measurement unit (IMU) sensor types, is template-free, and operates unsupervised. A thorough evaluation was performed with two datasets: our own collected FRIgait dataset available for open use, containing long-term inertial measurements collected from 57 subjects using smartphones within the span of more than one year, and an FAU eGait dataset containing inertial data from shoe-mounted sensors collected from three cohorts of subjects: healthy, geriatric, and Parkinson’s disease patients. The evaluation was performed in controlled and uncontrolled conditions. When compared to the ground truth of the labelled FRIgait and eGait datasets, the results of our evaluation revealed the high robustness, efficiency (F-measure of about 98%), and accuracy (mean absolute error MAE in about the range of one sample) of the proposed approach. Based on these results, we conclude that the proposed approach shows great potential for its applicability in procedures and algorithms for movement analysis.

7.
Sensors (Basel) ; 18(1)2018 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-29316636

RESUMEN

Robust gait segmentation is the basis for mobile gait analysis. A range of methods have been applied and evaluated for gait segmentation of healthy and pathological gait bouts. However, a unified evaluation of gait segmentation methods in Parkinson's disease (PD) is missing. In this paper, we compare four prevalent gait segmentation methods in order to reveal their strengths and drawbacks in gait processing. We considered peak detection from event-based methods, two variations of dynamic time warping from template matching methods, and hierarchical hidden Markov models (hHMMs) from machine learning methods. To evaluate the methods, we included two supervised and instrumented gait tests that are widely used in the examination of Parkinsonian gait. In the first experiment, a sequence of strides from instructed straight walks was measured from 10 PD patients. In the second experiment, a more heterogeneous assessment paradigm was used from an additional 34 PD patients, including straight walks and turning strides as well as non-stride movements. The goal of the latter experiment was to evaluate the methods in challenging situations including turning strides and non-stride movements. Results showed no significant difference between the methods for the first scenario, in which all methods achieved an almost 100% accuracy in terms of F-score. Hence, we concluded that in the case of a predefined and homogeneous sequence of strides, all methods can be applied equally. However, in the second experiment the difference between methods became evident, with the hHMM obtaining a 96% F-score and significantly outperforming the other methods. The hHMM also proved promising in distinguishing between strides and non-stride movements, which is critical for clinical gait analysis. Our results indicate that both the instrumented test procedure and the required stride segmentation algorithm have to be selected adequately in order to support and complement classical clinical examination by sensor-based movement assessment.


Asunto(s)
Marcha , Algoritmos , Trastornos Neurológicos de la Marcha , Humanos , Enfermedad de Parkinson
8.
Sensors (Basel) ; 18(9)2018 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-30200595

RESUMEN

Individuals with mobility impairments related to age, injury, or disease, often require the help of an assistive device (AD) such as a cane to ambulate, increase safety, and improve overall stability. Instrumenting these devices has been proposed as a non-invasive way to proactively monitor an individual's reliance on the AD while also obtaining information about behaviors and changes in gait. A critical first step in the analysis of these data, however, is the accurate processing and segmentation of the sensor data to extract relevant gait information. In this paper, we present a highly accurate multi-sensor-based gait segmentation algorithm that is robust to a variety of walking conditions using an AD. A matched filtering approach based on loading information is used in conjunction with an angular rate reversal and peak detection technique, to identify important gait events. The algorithm is tested over a variety of terrains using a hybrid sensorized cane, capable of measuring loading, mobility, and stability information. The reliability and accuracy of the proposed multi-sensor matched filter (MSMF) algorithm is compared with variations of the commonly employed gyroscope peak detection (GPD) algorithm. Results of an experiment with a group of 30 healthy participants walking over various terrains demonstrated the ability of the proposed segmentation algorithm to reliably and accurately segment gait events.


Asunto(s)
Algoritmos , Marcha , Adolescente , Adulto , Femenino , Voluntarios Sanos , Humanos , Masculino , Reproducibilidad de los Resultados , Adulto Joven
9.
J Exp Biol ; 220(Pt 3): 341-346, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27811292

RESUMEN

Changes in stride frequency and length with speed are key parameters in animal locomotion research. They are commonly measured in a laboratory on a treadmill or by filming trained captive animals. Here, we show that a clustering approach can be used to extract these variables from data collected by a tracking collar containing a GPS module and tri-axis accelerometers and gyroscopes. The method enables stride parameters to be measured during free-ranging locomotion in natural habitats. As it does not require labelled data, it is particularly suitable for use with difficult to observe animals. The method was tested on large data sets collected from collars on free-ranging lions and African wild dogs and validated using a domestic dog.


Asunto(s)
Animales Salvajes/fisiología , Perros/fisiología , Leones/fisiología , Locomoción , Acelerometría , Animales , Análisis por Conglomerados , Ecosistema , Femenino , Marcha , Sistemas de Información Geográfica , Aprendizaje Automático , Masculino
10.
Sensors (Basel) ; 17(2)2017 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-28208707

RESUMEN

It is understood gait has the potential to be used as a window into neurodegenerative disorders, identify markers of subclinical pathology, inform diagnostic algorithms of disease progression and measure the efficacy of interventions. Dogs' gaits are frequently assessed in a veterinary setting to detect signs of lameness. Despite this, a reliable, affordable and objective method to assess lameness in dogs is lacking. Most described canine lameness assessments are subjective, unvalidated and at high risk of bias. This means reliable, early detection of canine gait abnormalities is challenging, which may have detrimental implications for dogs' welfare. In this paper, we draw from approaches and technologies used in human movement science and describe a system for objectively measuring temporal gait characteristics in dogs (step-time, swing-time, stance-time). Asymmetries and variabilities in these characteristics are of known clinical significance when assessing lameness but presently may only be assessed on coarse scales or under highly instrumented environments. The system consists an inertial measurement unit, containing a 3-axis accelerometer and gyroscope coupled with a standardized walking course. The measurement unit is attached to each leg of the dog under assessment before it is walked around the course. The data by the measurement unit is then processed to identify steps and subsequently, micro-gait characteristics. This method has been tested on a cohort of 19 healthy dogs of various breeds ranging in height from 34.2 cm to 84.9 cm. We report the system as capable of making precise step delineations with detections of initial and final contact times of foot-to-floor to a mean precision of 0.011 s and 0.048 s, respectively. Results are based on analysis of 12,678 foot falls and we report a sensitivity, positive predictive value and F-score of 0.81, 0.83 and 0.82 respectively. To investigate the effect of gait on system performance, the approach was tested in both walking and trotting with no significant performance deviation with 7249 steps reported for a walking gait and 4977 for a trotting gait. The number of steps reported for each leg were approximately equal and this consistency was true in both walking and trotting gaits. In the walking gait 1965, 1790, 1726 and 1768 steps were reported for the front left, front right, hind left and hind right legs respectively. 1361, 1250, 1176 and 1190 steps were reported for each of the four legs in the trotting gait. The proposed system is a pragmatic and precise solution for obtaining objective measurements of canine gait. With further development, it promises potential for a wide range of applications in both research and clinical practice.


Asunto(s)
Marcha , Accidentes por Caídas , Animales , Fenómenos Biomecánicos , Perros , Pisos y Cubiertas de Piso , Pie , Humanos
11.
Animals (Basel) ; 14(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612325

RESUMEN

BACKGROUND: Racehorses commonly train and race in one direction, which may result in gait asymmetries. This study quantified gait symmetry in two cohorts of Thoroughbreds differing in their predominant exercising direction; we hypothesized that there would be significant differences in the direction of asymmetry between cohorts. METHODS: 307 Thoroughbreds (156 from Singapore Turf Club (STC)-anticlockwise; 151 from Hong Kong Jockey Club (HKJC)-clockwise) were assessed during a straight-line, in-hand trot on firm ground with inertial sensors on their head and pelvis quantifying differences between the minima, maxima, upward movement amplitudes (MinDiff, MaxDiff, UpDiff), and hip hike (HHD). The presence of asymmetry (≥5 mm) was assessed for each variable. Chi-Squared tests identified differences in the number of horses with left/right-sided movement asymmetry between cohorts and mixed model analyses evaluated differences in the movement symmetry values. RESULTS: HKJC had significantly more left forelimb asymmetrical horses (Head: MinDiff p < 0.0001, MaxDiff p < 0.03, UpDiff p < 0.01) than STC. Pelvis MinDiff (p = 0.010) and UpDiff (p = 0.021), and head MinDiff (p = 0.006) and UpDiff (p = 0.017) values were significantly different between cohorts; HKJC mean values indicated left fore- and hindlimb asymmetry, and STC mean values indicated right fore- and hindlimb asymmetry. CONCLUSION: the asymmetry differences between cohorts suggest that horses may adapt their gait to their racing direction, with kinematics reflecting reduced 'outside' fore- and hindlimb loading.

12.
Sensors (Basel) ; 12(6): 8145-56, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22969392

RESUMEN

The increased variations of temporal gait events when pathology is present are good candidate features for objective diagnostic tests. We hypothesised that the gait events hoof-on/off and stance can be detected accurately and precisely using features from trunk and distal limb-mounted Inertial Measurement Units (IMUs). Four IMUs were mounted on the distal limb and five IMUs were attached to the skin over the dorsal spinous processes at the withers, fourth lumbar vertebrae and sacrum as well as left and right tuber coxae. IMU data were synchronised to a force plate array and a motion capture system. Accuracy (bias) and precision (SD of bias) was calculated to compare force plate and IMU timings for gait events. Data were collected from seven horses. One hundred and twenty three (123) front limb steps were analysed; hoof-on was detected with a bias (SD) of -7 (23) ms, hoof-off with 0.7 (37) ms and front limb stance with -0.02 (37) ms. A total of 119 hind limb steps were analysed; hoof-on was found with a bias (SD) of -4 (25) ms, hoof-off with 6 (21) ms and hind limb stance with 0.2 (28) ms. IMUs mounted on the distal limbs and sacrum can detect gait events accurately and precisely.


Asunto(s)
Técnicas Biosensibles/instrumentación , Miembro Anterior/fisiología , Marcha/fisiología , Miembro Posterior/fisiología , Caballos/fisiología , Torso/fisiología , Caminata/fisiología , Algoritmos , Animales , Femenino , Masculino
13.
PeerJ ; 3: e783, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26157641

RESUMEN

The study of animal movement commonly requires the segmentation of continuous data streams into individual strides. The use of forceplates and foot-mounted accelerometers readily allows the detection of the foot-on and foot-off events that define a stride. However, when relying on optical methods such as motion capture, there is lack of validated robust, universally applicable stride event detection methods. To date, no method has been validated for movement on a circle, while algorithms are commonly specific to front/hind limbs or gait. In this study, we aimed to develop and validate kinematic stride segmentation methods applicable to movement on straight line and circle at walk and trot, which exclusively rely on a single, dorsal hoof marker. The advantage of such marker placement is the robustness to marker loss and occlusion. Eight horses walked and trotted on a straight line and in a circle over an array of multiple forceplates. Kinetic events were detected based on the vertical force profile and used as the reference values. Kinematic events were detected based on displacement, velocity or acceleration signals of the dorsal hoof marker depending on the algorithm using (i) defined thresholds associated with derived movement signals and (ii) specific events in the derived movement signals. Method comparison was performed by calculating limits of agreement, accuracy, between-horse precision and within-horse precision based on differences between kinetic and kinematic event. In addition, we examined the effect of force thresholds ranging from 50 to 150 N on the timings of kinetic events. The two approaches resulted in very good and comparable performance: of the 3,074 processed footfall events, 95% of individual foot on and foot off events differed by no more than 26 ms from the kinetic event, with average accuracy between -11 and 10 ms and average within- and between horse precision ≤8 ms. While the event-based method may be less likely to suffer from scaling effects, on soft ground the threshold-based method may prove more valuable. While we found that use of velocity thresholds for foot on detection results in biased event estimates for the foot on the inside of the circle at trot, adjusting thresholds for this condition negated the effect. For the final four algorithms, we found no noteworthy bias between conditions or between front- and hind-foot timings. Different force thresholds in the range of 50 to 150 N had the greatest systematic effect on foot-off estimates in the hind limbs (up to on average 16 ms per condition), being greater than the effect on foot-on estimates or foot-off estimates in the forelimbs (up to on average ±7 ms per condition).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA