Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.254
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 181(3): 621-636.e22, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32259487

RESUMEN

Long noncoding RNAs (lncRNAs) evolve more rapidly than mRNAs. Whether conserved lncRNAs undergo conserved processing, localization, and function remains unexplored. We report differing subcellular localization of lncRNAs in human and mouse embryonic stem cells (ESCs). A significantly higher fraction of lncRNAs is localized in the cytoplasm of hESCs than in mESCs. This turns out to be important for hESC pluripotency. FAST is a positionally conserved lncRNA but is not conserved in its processing and localization. In hESCs, cytoplasm-localized hFAST binds to the WD40 domain of the E3 ubiquitin ligase ß-TrCP and blocks its interaction with phosphorylated ß-catenin to prevent degradation, leading to activated WNT signaling, required for pluripotency. In contrast, mFast is nuclear retained in mESCs, and its processing is suppressed by the splicing factor PPIE, which is highly expressed in mESCs but not hESCs. These findings reveal that lncRNA processing and localization are previously under-appreciated contributors to the rapid evolution of function.


Asunto(s)
Espacio Intracelular/genética , ARN Largo no Codificante/metabolismo , Células Madre/metabolismo , Animales , Diferenciación Celular/genética , Línea Celular , Células Cultivadas , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Humanos , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Empalme del ARN/genética , ARN Largo no Codificante/genética , ARN Mensajero/metabolismo , Transducción de Señal/genética , Células Madre/patología
2.
Mol Cell ; 82(7): 1261-1277.e9, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35305311

RESUMEN

The product of hexokinase (HK) enzymes, glucose-6-phosphate, can be metabolized through glycolysis or directed to alternative metabolic routes, such as the pentose phosphate pathway (PPP) to generate anabolic intermediates. HK1 contains an N-terminal mitochondrial binding domain (MBD), but its physiologic significance remains unclear. To elucidate the effect of HK1 mitochondrial dissociation on cellular metabolism, we generated mice lacking the HK1 MBD (ΔE1HK1). These mice produced a hyper-inflammatory response when challenged with lipopolysaccharide. Additionally, there was decreased glucose flux below the level of GAPDH and increased upstream flux through the PPP. The glycolytic block below GAPDH is mediated by the binding of cytosolic HK1 with S100A8/A9, resulting in GAPDH nitrosylation through iNOS. Additionally, human and mouse macrophages from conditions of low-grade inflammation, such as aging and diabetes, displayed increased cytosolic HK1 and reduced GAPDH activity. Our data indicate that HK1 mitochondrial binding alters glucose metabolism through regulation of GAPDH.


Asunto(s)
Glucosa , Hexoquinasa/metabolismo , Animales , Glucosa/metabolismo , Glucólisis , Hexoquinasa/genética , Ratones , Mitocondrias/metabolismo , Vía de Pentosa Fosfato
3.
Trends Biochem Sci ; 49(3): 257-276, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38233282

RESUMEN

Histone lysine demethylases (KDMs) regulate eukaryotic gene transcription by catalysing the removal of methyl groups from histone proteins. These enzymes are intricately regulated by the kinase signalling system in response to internal and external stimuli. Here, we review the mechanisms by which kinase-mediated phosphorylation influence human histone KDM function. These include the changing of histone KDM subcellular localisation or chromatin binding, the altering of protein half-life, changes to histone KDM complex formation that result in histone demethylation, non-histone demethylation or demethylase-independent effects, and effects on histone KDM complex dissociation. We also explore the structural context of phospho-sites on histone KDMs and evaluate how this relates to function.


Asunto(s)
Histona Demetilasas , Histonas , Humanos , Histona Demetilasas/metabolismo , Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji/química , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Fosforilación , Desmetilación
4.
Mol Cell ; 75(4): 875-887.e5, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31442426

RESUMEN

Diverse ribonucleoprotein complexes control mRNA processing, translation, and decay. Transcripts in these complexes localize to specific regions of the cell and can condense into non-membrane-bound structures such as stress granules. It has proven challenging to map the RNA composition of these large and dynamic structures, however. We therefore developed an RNA proximity labeling technique, APEX-seq, which uses the ascorbate peroxidase APEX2 to probe the spatial organization of the transcriptome. We show that APEX-seq can resolve the localization of RNAs within the cell and determine their enrichment or depletion near key RNA-binding proteins. Matching the spatial transcriptome, as revealed by APEX-seq, with the spatial proteome determined by APEX-mass spectrometry (APEX-MS), obtained precisely in parallel, provides new insights into the organization of translation initiation complexes on active mRNAs and unanticipated complexity in stress granule composition. Our novel technique allows a powerful and general approach to explore the spatial environment of macromolecules.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Endonucleasas/metabolismo , Enzimas Multifuncionales/metabolismo , Iniciación de la Cadena Peptídica Traduccional , ARN/metabolismo , Coloración y Etiquetado , Transcriptoma , Gránulos Citoplasmáticos/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Endonucleasas/genética , Células HEK293 , Humanos , Enzimas Multifuncionales/genética , ARN/genética
5.
RNA ; 30(6): 597-608, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38448244

RESUMEN

The mammalian mitochondrial proteome comprises over 1000 proteins, with the majority translated from nuclear-encoded messenger RNAs (mRNAs). Mounting evidence suggests many of these mRNAs are localized to the outer mitochondrial membrane (OMM) in a pre- or cotranslational state. Upon reaching the mitochondrial surface, these mRNAs are locally translated to produce proteins that are cotranslationally imported into mitochondria. Here, we summarize various mechanisms cells use to localize RNAs, including transfer RNAs (tRNAs), to the OMM and recent technological advancements in the field to study these processes. While most early studies in the field were carried out in yeast, recent studies reveal RNA localization to the OMM and their regulation in higher organisms. Various factors regulate this localization process, including RNA sequence elements, RNA-binding proteins (RBPs), cytoskeletal motors, and translation machinery. In this review, we also highlight the role of RNA structures and modifications in mitochondrial RNA localization and discuss how these features can alter the binding properties of RNAs. Finally, in addition to RNAs related to mitochondrial function, RNAs involved in other cellular processes can also localize to the OMM, including those implicated in the innate immune response and piRNA biogenesis. As impairment of messenger RNA (mRNA) localization and regulation compromise mitochondrial function, future studies will undoubtedly expand our understanding of how RNAs localize to the OMM and investigate the consequences of their mislocalization in disorders, particularly neurodegenerative diseases, muscular dystrophies, and cancers.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , ARN Mitocondrial , Mitocondrias/metabolismo , Mitocondrias/genética , Humanos , Animales , Membranas Mitocondriales/metabolismo , ARN Mitocondrial/metabolismo , ARN Mitocondrial/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN/metabolismo , ARN/genética , Transporte de ARN , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Biosíntesis de Proteínas , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética
6.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38279650

RESUMEN

As the application of large language models (LLMs) has broadened into the realm of biological predictions, leveraging their capacity for self-supervised learning to create feature representations of amino acid sequences, these models have set a new benchmark in tackling downstream challenges, such as subcellular localization. However, previous studies have primarily focused on either the structural design of models or differing strategies for fine-tuning, largely overlooking investigations into the nature of the features derived from LLMs. In this research, we propose different ESM2 representation extraction strategies, considering both the character type and position within the ESM2 input sequence. Using model dimensionality reduction, predictive analysis and interpretability techniques, we have illuminated potential associations between diverse feature types and specific subcellular localizations. Particularly, the prediction of Mitochondrion and Golgi apparatus prefer segments feature closer to the N-terminal, and phosphorylation site-based features could mirror phosphorylation properties. We also evaluate the prediction performance and interpretability robustness of Random Forest and Deep Neural Networks with varied feature inputs. This work offers novel insights into maximizing LLMs' utility, understanding their mechanisms, and extracting biological domain knowledge. Furthermore, we have made the code, feature extraction API, and all relevant materials available at https://github.com/yujuan-zhang/feature-representation-for-LLMs.


Asunto(s)
Biología Computacional , Redes Neurales de la Computación , Biología Computacional/métodos , Secuencia de Aminoácidos , Transporte de Proteínas
7.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38426320

RESUMEN

Protein subcellular localization (PSL) is very important in order to understand its functions, and its movement between subcellular niches within cells plays fundamental roles in biological process regulation. Mass spectrometry-based spatio-temporal proteomics technologies can help provide new insights of protein translocation, but bring the challenge in identifying reliable protein translocation events due to the noise interference and insufficient data mining. We propose a semi-supervised graph convolution network (GCN)-based framework termed TransGCN that infers protein translocation events from spatio-temporal proteomics. Based on expanded multiple distance features and joint graph representations of proteins, TransGCN utilizes the semi-supervised GCN to enable effective knowledge transfer from proteins with known PSLs for predicting protein localization and translocation. Our results demonstrate that TransGCN outperforms current state-of-the-art methods in identifying protein translocations, especially in coping with batch effects. It also exhibited excellent predictive accuracy in PSL prediction. TransGCN is freely available on GitHub at https://github.com/XuejiangGuo/TransGCN.


Asunto(s)
Habilidades de Afrontamiento , Proteómica , Minería de Datos , Espectrometría de Masas , Transporte de Proteínas
8.
Brief Bioinform ; 25(5)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39154195

RESUMEN

The microRNAs (miRNAs) play crucial roles in several biological processes. It is essential for a deeper insight into their functions and mechanisms by detecting their subcellular localizations. The traditional methods for determining miRNAs subcellular localizations are expensive. The computational methods are alternative ways to quickly predict miRNAs subcellular localizations. Although several computational methods have been proposed in this regard, the incomplete representations of miRNAs in these methods left the room for improvement. In this study, a novel computational method for predicting miRNA subcellular localizations, named PMiSLocMF, was developed. As lots of miRNAs have multiple subcellular localizations, this method was a multi-label classifier. Several properties of miRNA, such as miRNA sequences, miRNA functional similarity, miRNA-disease, miRNA-drug, and miRNA-mRNA associations were adopted for generating informative miRNA features. To this end, powerful algorithms [node2vec and graph attention auto-encoder (GATE)] and one newly designed scheme were adopted to process above properties, producing five feature types. All features were poured into self-attention and fully connected layers to make predictions. The cross-validation results indicated the high performance of PMiSLocMF with accuracy higher than 0.83, average area under the receiver operating characteristic curve (AUC) and area under the precision-recall curve (AUPR) exceeding 0.90 and 0.77, respectively. Such performance was better than all previous methods based on the same dataset. Further tests proved that using all feature types can improve the performance of PMiSLocMF, and GATE and self-attention layer can help enhance the performance. Finally, we deeply analyzed the influence of miRNA associations with diseases, drugs, and mRNAs on PMiSLocMF. The dataset and codes are available at https://github.com/Gu20201017/PMiSLocMF.


Asunto(s)
Algoritmos , Biología Computacional , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Biología Computacional/métodos , Humanos , Programas Informáticos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Curva ROC
9.
Trends Immunol ; 44(1): 32-43, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36473794

RESUMEN

Biological discovery has been driven by advances in throughput and resolution of analysis technologies. They have also created an indelible bias for snapshot-based knowledge. Even though recent methods such as multi-omics single-cell assays have empowered immunological investigations, they still provide snapshots of cellular behaviors and thus, have inherent limitations in reconstructing unsynchronized dynamic events across individual cells. Here, we present a rationale for how NF-κB may convey specificity of contextual information through subtle quantitative features of its signaling dynamics. The next frontier of predictive understanding should involve functional characterization of NF-κB signaling dynamics and their immunological implications. This may help solve the apparent paradox that a ubiquitously activated transcription factor can shape accurate responses to different immune challenges.


Asunto(s)
FN-kappa B , Transducción de Señal , Humanos , FN-kappa B/metabolismo , Regulación de la Expresión Génica
10.
Trends Biochem Sci ; 46(12): 950-952, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34598839

RESUMEN

In a recent study, Go, Knight et al. combined a panel of protein markers with BioID proximity-dependent labeling to profile the composition of 20 distinct subcellular compartments. Comparison with similar global datasets acquired using imaging or fractionation-based approaches confirmed the consistency of the results while highlighting unique advantages.


Asunto(s)
Mapeo de Interacción de Proteínas , Proteínas , Biotinilación , Orgánulos/metabolismo , Mapeo de Interacción de Proteínas/métodos , Proteínas/metabolismo
11.
J Biol Chem ; 300(5): 107276, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588805

RESUMEN

Sphingolipids are produced by nearly all eukaryotes where they play significant roles in cellular processes such as cell growth, division, programmed cell death, angiogenesis, and inflammation. While it was previously believed that sphingolipids were quite rare among bacteria, bioinformatic analysis of the recently identified bacterial sphingolipid synthesis genes suggests that these lipids are likely to be produced by a wide range of microbial species. The sphingolipid synthesis pathway consists of three critical enzymes. Serine palmitoyltransferase catalyzes the condensation of serine with palmitoyl-CoA (or palmitoyl-acyl carrier protein), ceramide synthase adds the second acyl chain, and a reductase reduces the ketone present on the long-chain base. While there is general agreement regarding the identity of these bacterial enzymes, the precise mechanism and order of chemical reactions for microbial sphingolipid synthesis is more ambiguous. Two mechanisms have been proposed. First, the synthesis pathway may follow the well characterized eukaryotic pathway in which the long-chain base is reduced prior to the addition of the second acyl chain. Alternatively, our previous work suggests that addition of the second acyl chain precedes the reduction of the long-chain base. To distinguish between these two models, we investigated the subcellular localization of these three key enzymes. We found that serine palmitoyltransferase and ceramide synthase are localized to the cytoplasm, whereas the ceramide reductase is in the periplasmic space. This is consistent with our previously proposed model wherein the second acyl chain is added in the cytoplasm prior to export to the periplasm where the lipid molecule is reduced.


Asunto(s)
Proteínas Bacterianas , Serina C-Palmitoiltransferasa , Esfingolípidos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Serina C-Palmitoiltransferasa/metabolismo , Serina C-Palmitoiltransferasa/genética , Esfingolípidos/biosíntesis , Oxidorreductasas/metabolismo , Transporte de Proteínas , Citoplasma/enzimología , Caulobacter crescentus/enzimología , Escherichia coli/enzimología
12.
J Biol Chem ; 300(6): 107333, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38820650

RESUMEN

The human Solute Carrier (SLC) family member, monocarboxylate transporter 1 (MCT1), transports lactic and pyruvic acid across biological membranes to regulate cellular pH and metabolism. Proper trafficking of MCT1 from the endoplasmic reticulum to the plasma membrane hinges on its interactions with the membrane-bound chaperone protein, CD147. Here, using AlphaFold2 modeling and copurification, we show how a conserved signature motif located in the flexible N-terminus of MCT1 is a crucial region of interaction between MCT1 and the C-terminus of CD147. Mutations to this motif-namely, the thymic cancer linked G19C and the highly conserved W20A-destabilize the MCT1-CD147 complex and lead to a loss of proper membrane localization and cellular substrate flux. Notably, the monomeric stability of MCT1 remains unaffected in mutants, thus supporting the role of CD147 in mediating the trafficking of the heterocomplex. Using the auxiliary chaperone, GP70, we demonstrated that W20A-MCT1 can be trafficked to the plasma membrane, while G19C-MCT1 remains internalized. Overall, our findings underscore the critical role of the MCT1 transmembrane one signature motif for engaging CD147 and identify altered chaperone binding mechanisms between the CD147 and GP70 glycoprotein chaperones.


Asunto(s)
Secuencias de Aminoácidos , Basigina , Transportadores de Ácidos Monocarboxílicos , Transporte de Proteínas , Simportadores , Basigina/metabolismo , Basigina/genética , Basigina/química , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/química , Humanos , Simportadores/metabolismo , Simportadores/química , Simportadores/genética , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Células HEK293 , Mutación Missense
13.
Plant J ; 117(3): 892-908, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37955978

RESUMEN

Tetraspanins (TETs) are small transmembrane scaffold proteins that distribute proteins into highly organized microdomains, consisting of adaptors and signaling proteins, which play important roles in various biological events. In plants, understanding of tetraspanin is limited to the Arabidopsis TET genes' expression pattern and their function in leaf and root growth. Here, we comprehensively analyzed all rice tetraspanin (OsTET) family members, including their gene expression pattern, protein topology, and subcellular localization. We found that the core domain of OsTETs is conserved and shares a similar topology of four membrane-spanning domains with animal and plant TETs. OsTET genes are partially overlapping expressed in diverse tissue domains in vegetative and reproductive organs. OsTET proteins preferentially targeted the endoplasmic reticulum. Mutation analysis showed that OsTET5, OsTET6, OsTET9, and OsTET10 regulated plant height and tillering, and that OsTET13 controlled root growth in association with the jasmonic acid pathway. In summary, our work provides systematic new insights into the function of OsTETs in rice growth and development, and the data provides valuable resources for future research.


Asunto(s)
Arabidopsis , Oryza , Animales , Oryza/genética , Oryza/metabolismo , Tetraspaninas/genética , Tetraspaninas/metabolismo , Proteínas de la Membrana/metabolismo , Plantas/metabolismo , Arabidopsis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
14.
Plant J ; 117(3): 747-765, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37926922

RESUMEN

Brassinazole Resistant 1 (BZR1) and bri1 EMS Suppressor 1 (BES1) are key transcription factors that mediate brassinosteroid (BR)-responsive gene expression in Arabidopsis. The BZR1/BES1 family is composed of BZR1, BES1, and four BES1/BZR1 homologs (BEH1-BEH4). However, little is known about whether BEHs are regulated by BR signaling in the same way as BZR1 and BES1. We comparatively analyzed the functional characteristics of six BZR1/BES1 family members and their regulatory mechanisms in BR signaling using genetic and biochemical analyses. We also compared their subcellular localizations regulated by the phosphorylation status, interaction with GSK3-like kinases, and heterodimeric combination. We found that all BZR1/BES1 family members restored the phenotypic defects of bri1-5 by their overexpression. Unexpectedly, BEH2-overexpressing plants showed the most distinct phenotype with enhanced BR responses. RNA-Seq analysis indicated that overexpression of both BZR1 and BEH2 regulates BR-responsive gene expression, but BEH2 has a much greater proportion of BR-independent gene expression than BZR1. Unlike BZR1 and BES1, the BR-regulated subcellular translocation of the four BEHs was not tightly correlated with their phosphorylation status. Notably, BEH1 and BEH2 are predominantly localized in the nucleus, which induces the nuclear accumulation of other BZR1/BES1 family proteins through heterodimerization. Altogether, our comparative analyses suggest that BEH1 and BEH2 play an important role in the functional interaction between BZR1/BES1 family transcription factors.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Triazoles , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucógeno Sintasa Quinasa 3/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Annu Rev Genomics Hum Genet ; 23: 153-172, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35395170

RESUMEN

Do long noncoding RNAs (lncRNAs) contribute little or substantively to human biology? To address how lncRNA loci and their transcripts, structures, interactions, and functions contribute to human traits and disease, we adopt a genome-wide perspective. We intend to provoke alternative interpretation of questionable evidence and thorough inquiry into unsubstantiated claims. We discuss pitfalls of lncRNA experimental and computational methods as well as opposing interpretations of their results. The majority of evidence, we argue, indicates that most lncRNA transcript models reflect transcriptional noise or provide minor regulatory roles, leaving relatively few human lncRNAs that contribute centrally to human development, physiology, or behavior. These important few tend to be spliced and better conserved but lack a simple syntax relating sequence to structure and mechanism, and so resist simple categorization. This genome-wide view should help investigators prioritize individual lncRNAs based on their likely contribution to human biology.


Asunto(s)
ARN Largo no Codificante , Genoma , Humanos , ARN Largo no Codificante/genética
16.
EMBO J ; 40(20): e107158, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34515347

RESUMEN

Nucleolin is a multifunctional RNA Binding Protein (RBP) with diverse subcellular localizations, including the nucleolus in all eukaryotic cells, the plasma membrane in tumor cells, and the axon in neurons. Here we show that the glycine arginine rich (GAR) domain of nucleolin drives subcellular localization via protein-protein interactions with a kinesin light chain. In addition, GAR sequences mediate plasma membrane interactions of nucleolin. Both these modalities are in addition to the already reported involvement of the GAR domain in liquid-liquid phase separation in the nucleolus. Nucleolin transport to axons requires the GAR domain, and heterozygous GAR deletion mice reveal reduced axonal localization of nucleolin cargo mRNAs and enhanced sensory neuron growth. Thus, the GAR domain governs axonal transport of a growth controlling RNA-RBP complex in neurons, and is a versatile localization determinant for different subcellular compartments. Localization determination by GAR domains may explain why GAR mutants in diverse RBPs are associated with neurodegenerative disease.


Asunto(s)
Nucléolo Celular/metabolismo , Ganglios Espinales/metabolismo , Cinesinas/metabolismo , Neuronas/metabolismo , Fosfoproteínas/química , Proteínas de Unión al ARN/química , Nervio Ciático/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Axonal/genética , Línea Celular Tumoral , Nucléolo Celular/ultraestructura , Ganglios Espinales/citología , Expresión Génica , Células HEK293 , Células HeLa , Humanos , Cinesinas/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mutación , Neuronas/citología , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Cultivo Primario de Células , Dominios Proteicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Nervio Ciático/citología , Nucleolina
17.
J Virol ; 98(9): e0099324, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39162432

RESUMEN

The cucumber mosaic virus (CMV) 2b protein is a potent counter-defense factor and symptom determinant that inhibits antiviral silencing by titrating short double-stranded RNAs. Expression of the CMV subgroup IA strain Fny-CMV 2b protein in transgenic Arabidopsis thaliana plants disrupts microRNA-mediated cleavage of host mRNAs by binding Argonaute 1 (AGO1), leading to symptom-like phenotypes. This also triggers AGO2-mediated antiviral resistance and resistance to CMV's aphid vectors. However, in authentic viral infections, the Fny-CMV 1a protein modulates 2b-AGO1 interactions, inhibiting induction of AGO2-mediated virus resistance and aphid resistance. Contrastingly, 2b proteins encoded by the subgroup II strain LS-CMV and the recently discovered subgroup IA strain Ho-CMV induce no symptoms. Confocal laser scanning microscopy, bimolecular fluorescence complementation, and co-immunoprecipitation showed that Fny-CMV and Ho-CMV 2b proteins interact with Fny-CMV and LS-CMV 1a proteins, while the CMV-LS 2b protein cannot. However, Fny-CMV, Ho-CMV, and LS-CMV 2b proteins, all interacted with AGO1, but while AGO1-Fny2b complexes occurred in the nucleus and cytoplasm, corresponding AGO1-2b complexes for LS-CMV and Ho-CMV accumulated almost exclusively in nuclei. AGO2 transcript accumulation was used to assess the inhibition of AGO1-mediated mRNA degradation. Fny-CMV 2b induced a fivefold increase in AGO2 accumulation, but LS-CMV and Ho-CMV 2b proteins induced only twofold increases. Thus, these 2b proteins bind AGO1 but are less effective at inhibiting AGO1 activity. We conclude that the intracellular localization of 2b-AGO1 complexes influences the degree to which a 2b protein inhibits microRNA-mediated host mRNA degradation and that cytoplasmic AGO1 has the strongest influence on miRNA-mediated cellular mRNA turnover. IMPORTANCE: The cucumber mosaic virus (CMV) 2b protein was among the first discovered viral suppressors of RNA silencing. It has additional pro-viral functions through effects on plant defensive signaling pathways mediated by salicylic acid and jasmonic acid, the abscisic acid pathway and virus-induced drought resistance, and on host plant interactions with insect vectors. Many of these effects occur due to interaction with the important host RNA silencing component Argonaute 1 (AGO1). It was thought that only 2b proteins of "severe" CMV strains interacted with AGO1 and inhibited its microRNA-mediated "slicing" of cellular mRNAs and that the lack of interaction with AGO1 explained the moderate symptoms typically seen in plants infected with mild CMV strains. Our work overthrows this paradigm by showing that mild strain CMV 2b proteins can interact with AGO1, but their in vivo localization prevents them from interacting with AGO1 molecules present in the infected cell cytoplasm.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Argonautas , Cucumovirus , Proteínas Virales , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Cucumovirus/metabolismo , Arabidopsis/virología , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Enfermedades de las Plantas/virología , Interacciones Huésped-Patógeno , Plantas Modificadas Genéticamente , MicroARNs/metabolismo , MicroARNs/genética , Metiltransferasas
18.
Brief Bioinform ; 24(1)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36577448

RESUMEN

With the improvement of single-cell measurement techniques, there is a growing awareness that individual differences exist among cells, and protein expression distribution can vary across cells in the same tissue or cell line. Pinpointing the protein subcellular locations in single cells is crucial for mapping functional specificity of proteins and studying related diseases. Currently, research about single-cell protein location is still in its infancy, and most studies and databases do not annotate proteins at the cell level. For example, in the human protein atlas database, an immunofluorescence image stained for a particular protein shows multiple cells, but the subcellular location annotation is for the whole image, ignoring intercellular difference. In this study, we used large-scale immunofluorescence images and image-level subcellular locations to develop a deep-learning-based pipeline that could accurately recognize protein localizations in single cells. The pipeline consisted of two deep learning models, i.e. an image-based model and a cell-based model. The former used a multi-instance learning framework to comprehensively model protein distribution in multiple cells in each image, and could give both image-level and cell-level predictions. The latter firstly used clustering and heuristics algorithms to assign pseudo-labels of subcellular locations to the segmented cell images, and then used the pseudo-labels to train a classification model. Finally, the image-based model was fused with the cell-based model at the decision level to obtain the final ensemble model for single-cell prediction. Our experimental results showed that the ensemble model could achieve higher accuracy and robustness on independent test sets than state-of-the-art methods.


Asunto(s)
Aprendizaje Profundo , Humanos , Proteínas/metabolismo , Algoritmos , Línea Celular , Técnica del Anticuerpo Fluorescente
19.
Brief Bioinform ; 24(4)2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37332057

RESUMEN

MicroRNAs (miRNAs) are human post-transcriptional regulators in humans, which are involved in regulating various physiological processes by regulating the gene expression. The subcellular localization of miRNAs plays a crucial role in the discovery of their biological functions. Although several computational methods based on miRNA functional similarity networks have been presented to identify the subcellular localization of miRNAs, it remains difficult for these approaches to effectively extract well-referenced miRNA functional representations due to insufficient miRNA-disease association representation and disease semantic representation. Currently, there has been a significant amount of research on miRNA-disease associations, making it possible to address the issue of insufficient miRNA functional representation. In this work, a novel model is established, named DAmiRLocGNet, based on graph convolutional network (GCN) and autoencoder (AE) for identifying the subcellular localizations of miRNA. The DAmiRLocGNet constructs the features based on miRNA sequence information, miRNA-disease association information and disease semantic information. GCN is utilized to gather the information of neighboring nodes and capture the implicit information of network structures from miRNA-disease association information and disease semantic information. AE is employed to capture sequence semantics from sequence similarity networks. The evaluation demonstrates that the performance of DAmiRLocGNet is superior to other competing computational approaches, benefiting from implicit features captured by using GCNs. The DAmiRLocGNet has the potential to be applied to the identification of subcellular localization of other non-coding RNAs. Moreover, it can facilitate further investigation into the functional mechanisms underlying miRNA localization. The source code and datasets are accessed at http://bliulab.net/DAmiRLocGNet.


Asunto(s)
MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Algoritmos , Biología Computacional/métodos , Programas Informáticos , Semántica
20.
Brief Bioinform ; 24(1)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36545797

RESUMEN

The subcellular localization of long non-coding RNAs (lncRNAs) is crucial for understanding lncRNA functions. Most of existing lncRNA subcellular localization prediction methods use k-mer frequency features to encode lncRNA sequences. However, k-mer frequency features lose sequence order information and fail to capture sequence patterns and motifs of different lengths. In this paper, we proposed GraphLncLoc, a graph convolutional network-based deep learning model, for predicting lncRNA subcellular localization. Unlike previous studies encoding lncRNA sequences by using k-mer frequency features, GraphLncLoc transforms lncRNA sequences into de Bruijn graphs, which transforms the sequence classification problem into a graph classification problem. To extract the high-level features from the de Bruijn graph, GraphLncLoc employs graph convolutional networks to learn latent representations. Then, the high-level feature vectors derived from de Bruijn graph are fed into a fully connected layer to perform the prediction task. Extensive experiments show that GraphLncLoc achieves better performance than traditional machine learning models and existing predictors. In addition, our analyses show that transforming sequences into graphs has more distinguishable features and is more robust than k-mer frequency features. The case study shows that GraphLncLoc can uncover important motifs for nucleus subcellular localization. GraphLncLoc web server is available at http://csuligroup.com:8000/GraphLncLoc/.


Asunto(s)
ARN Largo no Codificante , ARN Largo no Codificante/genética , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA