Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1396686, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39027107

RESUMEN

Ginsengs, widely acknowledged for their health-promoting properties, are predominantly grown for their roots, necessitating an extended cultivation period of a minimum of 4 to 6 years for maturation. The prolonged growth duration in a specific location makes ginseng plants susceptible to soil-borne ailments, such as root rot, leading to significant detrimental effects. Focusing on the crucial role of the plant microbial community in maintaining ginseng health, the study reveals that repeated and continuous cultivation leads to the collapse of the initial disease-suppressive rhizosphere community, resulting in severe root rot. The dominance of Pseudomonadaceae in the rhizosphere subsequently reinstates disease suppression, aligning with suppressive soil generation phenomena. The research investigates the applicability of identified patterns to field conditions and demonstrates that rhizosphere samples from the field closely resemble conditions observed in pot-based NH4Cl treatment experiments. These findings emphasize the critical role of the rhizosphere microbial community in ginseng health maintenance during extended cultivation, offering insights into disease prevention strategies. The study also suggests the potential of pot-based experiments in simulating field conditions and informs future approaches for sustainable ginseng cultivation.

2.
Microbiol Res ; 281: 127634, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38308902

RESUMEN

Nutrient deficiency, natural enemies and litter autotoxicity have been proposed as possible mechanisms to explain species-specific negative plant-soil feedback (PSF). Another potential contributor to negative PSF is the plant released extracellular self-DNA during litter decay. In this study, we sought to comprehensively investigate these hypotheses by using Arabidopsis thaliana (L.) Heynh as a model plant in a feedback experiment. The experiment comprised a conditioning phase and a response phase in which the conditioned soils underwent four treatments: (i) addition of activated carbon, (ii) washing with tap water, (iii) sterilization by autoclaving, and (iv) control without any treatment. We evaluated soil chemical properties, microbiota by shotgun sequencing and the amount of A. thaliana extracellular DNA in the differently treated soils. Our results showed that washing and sterilization treatments mitigated the negative PSF effect. While shifts in soil chemical properties were not pronounced, significant changes in soil microbiota were observed, especially after sterilization. Notably, plant biomass was inversely associated with the content of plant self-DNA in the soil. Our results suggest that the negative PSF observed in the conditioned soil was associated to increased amounts of soilborne pathogens and plant self-DNA. However, fungal pathogens were not limited to negative conditions, butalso found in soils enhancing A.thaliana growth. In-depth multivariate analysis highlights that the hypothesis of negative PSF driven solely by pathogens lacks consistency. Instead, we propose a multifactorial explanation for the negative PSF buildup, in which the accumulation of self-DNA weakens the plant's root system, making it more susceptible to pathogens.


Asunto(s)
Arabidopsis , Microbiota , Retroalimentación , Arabidopsis/genética , Suelo/química , Plantas/microbiología , Microbiología del Suelo , ADN de Plantas
3.
Front Plant Sci ; 15: 1360173, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751839

RESUMEN

Tobacco (Nicotiana tabacum L.) bacterial wilt, caused by Ralstonia solanacearum, is indeed a highly destructive plant disease, leading to substantial damage in tobacco production. While biological control is considered an effective measure for managing bacterial wilt, related research in this area has been relatively limited compared to other control methods. In order to discover new potential antagonistic bacteria with high biocontrol efficacy against tobacco bacterial wilt, we conducted an analysis of the microbial composition differences between disease-suppressive and disease-conducive soils using Illumina sequencing. As a result, we successfully isolated six strains from the disease-suppressive soil that exhibited antibacterial activity against Ralstonia solanacearum. Among these strains, B4-7 showed the strongest antibacterial activity, even at acidic conditions with a pH of 4.0. Based on genome analysis using Average Nucleotide Identity (ANI), B4-7 was identified as Bacillus velezensis. In greenhouse and field trials, strain B4-7 significantly reduced the disease index of tobacco bacterial wilt, with control efficiencies reaching 74.03% and 46.88% respectively. Additionally, B4-7 exhibited plant-promoting abilities that led to a 35.27% increase in tobacco production in field conditions. Quantitative real-time (qPCR) analysis demonstrated that strain B4-7 effectively reduced the abundance of R. solanacearum in the rhizosphere. Genome sequencing and Liquid Chromatography-Mass Spectrometry (LC-MS) analysis revealed that strain B4-7 potentially produces various lipopeptide metabolites, such as microlactin, bacillaene, difficidin, bacilysin, and surfactin. Furthermore, B4-7 influenced the structure of the rhizosphere soil microbial community, increasing bacterial abundance and fungal diversity, while also promoting the growth of different beneficial microorganisms. In addition, B4-7 enhanced tobacco's resistance to R. solanacearum by increasing the activities of defense enzymes, including superoxide dismutase (SOD), phenylalanine ammonia-lyase (PAL), peroxidase (POD), catalase (CAT), and polyphenol oxidase (PPO). Collectively, these findings suggest that B. velezensis B4-7 holds significant biocontrol potential and can be considered a promising candidate strain for eco-friendly management of tobacco bacterial wilt.

4.
Sci Rep ; 14(1): 11274, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760388

RESUMEN

Soil sickness a severe problem in tobacco production, leading to soil-borne diseases and reduce in tobacco yield. This occurs as a result of the interaction between root exudates and rhizosphere microorganisms, which is however, little studied until now. By combining the field investigation and pot experiment, we found the output yield consistently decreased during the first 10 years of continuous cropping in a tobacco field, but increased at the 15th year (15Y). The root exudate and rhizosphere bacterial community was further analyzed to reveal the underlying mechanism of the suppressive soil formation. Root exudate of 15Y tobacco enriched in amino acids and derivatives, while depleted in the typical autotoxins including phenolic acids and alkaloids. This was correlated to the low microbial diversity in 15Y, but also the changes in community composition and topological properties of the co-occurrence network. Especially, the reduced autotoxins were associated with low Actinobacteria abundance, low network complexity and high network modularity, which significantly correlated with the recovered output yield in 15Y. This study revealed the coevolution of rhizosphere microbiota and root exudate as the soil domesticated by continuous cropping of tobacco, and indicated a potential role of the autotoxins and theirs effect on the microbial community in the formation of suppressive soil.


Asunto(s)
Microbiota , Nicotiana , Raíces de Plantas , Rizosfera , Microbiología del Suelo , Nicotiana/microbiología , Nicotiana/crecimiento & desarrollo , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Exudados de Plantas/metabolismo , Suelo/química
5.
Microbiome ; 12(1): 125, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004755

RESUMEN

BACKGROUND: Soybean cyst nematodes (SCN) as animal parasites of plants are not usually interested in killing the host but are rather focused on completing their life cycle to increase population, resulting in substantial yield losses. Remarkably, some agricultural soils after long-term crop monoculture show a significant decline in SCN densities and suppress disease in a sustainable and viable manner. However, relatively little is known about the microbes and mechanisms operating against SCN in such disease-suppressive soils. RESULTS: Greenhouse experiments showed that suppressive soils (S) collected from two provinces of China and transplantation soils (CS, created by mixing 10% S with 90% conducive soils) suppressed SCN. However, SCN suppressiveness was partially lost or completely abolished when S soils were treated with heat (80 °C) and formalin. Bacterial community analysis revealed that the specific suppression in S and CS was mainly associated with the bacterial phylum Bacteroidetes, specifically due to the enrichment of Chitinophaga spp. and Dyadobacter sp., in the cysts. SCN cysts colonized by Chitinophaga spp. showed dramatically reduced egg hatching, with unrecognizable internal body organization of juveniles inside the eggshell due to chitinase activity. Whereas, Dyadobacter sp. cells attached to the surface coat of J2s increased soybean resistance against SCN by triggering the expression of defence-associated genes. The disease-suppressive potential of these bacteria was validated by inoculating them into conducive soil. The Dyadobacter strain alone or in combination with Chitinophaga strains significantly decreased egg densities after one growing cycle of soybeans. In contrast, Chitinophaga strains alone required more than one growing cycle to significantly reduce SCN egg hatching and population density. CONCLUSION: This study revealed how soybean monoculture for decades induced microbiota homeostasis, leading to the formation of SCN-suppressive soil. The high relative abundance of antagonistic bacteria in the cyst suppressed the SCN population both directly and indirectly. Because uncontrolled proliferation will likely lead to quick demise due to host population collapse, obligate parasites like SCN may have evolved to modulate virulence/proliferation to balance these conflicting needs. Video Abstract.


Asunto(s)
Glycine max , Microbiota , Enfermedades de las Plantas , Microbiología del Suelo , Tylenchoidea , Animales , Glycine max/parasitología , Glycine max/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Tylenchoidea/fisiología , Suelo/parasitología , China , Bacteroidetes/genética , Bacterias/clasificación , Bacterias/genética
6.
Front Microbiol ; 15: 1366690, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476947

RESUMEN

Trichoderma spp. are widely used to enhance crop growth and suppress diverse diseases. However, inconsistent field efficacy remains a major barrier to their use as a reliable alternative to synthetic pesticides. Various strategies have been investigated to enhance the robustness of their application. Here, we evaluated how T. virens application methods (pre-, at-, and post-transplant) affect the growth of two tomato varieties and their rhizosphere fungal and bacterial communities. Although the greatest rhizosphere abundance of T. virens was observed in the post-transplant application, the at-transplant application promoted tomato growth the most, indicating that greater rhizosphere abundance does not necessarily result in better tomato growth. None of the application methods significantly altered the global rhizosphere fungal and bacterial communities of the tested varieties. Changes in specific microbial genera and guilds may underpin the enhanced tomato growth. We also investigated whether the resulting microbiome changes affect the mycelial growth and conidial germination of Fusarium oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicis-lycopersici, soilborne fungal pathogens of tomato, upon exposure to volatile compounds emitted by culturable rhizosphere microbes and metabolites extracted from the rhizosphere soils after Trichoderma treatments. Volatile compounds produced by cultured rhizosphere microbes after the at-transplant application suppressed the mycelial growth of both pathogens better than those after the other treatments. Similarly, water-soluble metabolites extracted from the rhizosphere soil samples after the at-transplant application most effectively suppressed the germination rate of F. oxysporum spores. Overall, our results suggest that the at-transplant application is most advantageous for promoting the growth of the tested tomato varieties and building soil suppressiveness against the tested fusaria. However, further studies are needed before applying this method to support tomato production. We discuss critical future questions.

7.
Microorganisms ; 12(2)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38399808

RESUMEN

Fusarium root and crown rot (FRCR) negatively impact several economically important plant species. Cover crops host different soil and residue microbiomes, thereby potentially influencing pathogen load and disease severity. The carryover effect of cover crops on FRCR in barley and soybean was investigated. Field trials were conducted in Prince Edward Island, Canada. Two cover crops from each plant group, including forbs, brassicas, legumes, and grasses, were grown in a randomized complete block design with barley and soybean planted in split plots the following year. Barley and soybean roots were assessed for FRCR through visual disease rating and Fusarium spp. were isolated from diseased tissue. Fungal and bacterial communities in cover crop residues were quantified using amplicon sequencing. The disease-suppressive effects of soil were tested in greenhouse studies. The results indicated that sorghum-sudangrass-associated microbiomes suppress Fusarium spp., leading to reduced FRCR in both barley and soybean. The oilseed radish microbiome had the opposite effect, consequently increasing FRCR incidence in barley and soybean. The results from this study indicate that cover crop residue and the associated soil microbiome influence the incidence and severity of FRCR in subsequent crops. This information can be used to determine cover cropping strategies in barley and soybean production systems.

8.
Microbiome ; 12(1): 127, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014485

RESUMEN

BACKGROUND: Since the 1980s, soils in a 22-km2 area near Lake Neuchâtel in Switzerland have been recognized for their innate ability to suppress the black root rot plant disease caused by the fungal pathogen Thielaviopsis basicola. However, the efficacy of natural disease suppressive soils against insect pests has not been studied. RESULTS: We demonstrate that natural soil suppressiveness also protects plants from the leaf-feeding pest insect Oulema melanopus. Plants grown in the most suppressive soil have a reduced stress response to Oulema feeding, reflected by dampened levels of herbivore defense-related phytohormones and benzoxazinoids. Enhanced salicylate levels in insect-free plants indicate defense-priming operating in this soil. The rhizosphere microbiome of suppressive soils contained a higher proportion of plant-beneficial bacteria, coinciding with their microbiome networks being highly tolerant to the destabilizing impact of insect exposure observed in the rhizosphere of plants grown in the conducive soils. We suggest that presence of plant-beneficial bacteria in the suppressive soils along with priming, conferred plant resistance to the insect pest, manifesting also in the onset of insect microbiome dysbiosis by the displacement of the insect endosymbionts. CONCLUSIONS: Our results show that an intricate soil-plant-insect feedback, relying on a stress tolerant microbiome network with the presence of plant-beneficial bacteria and plant priming, extends natural soil suppressiveness from soilborne diseases to insect pests. Video Abstract.


Asunto(s)
Microbiota , Enfermedades de las Plantas , Microbiología del Suelo , Animales , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Rizosfera , Suiza , Insectos , Bacterias/clasificación , Suelo/química , Ascomicetos/fisiología , Control de Insectos/métodos , Raíces de Plantas/microbiología , Herbivoria , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Simbiosis
9.
Front Microbiol ; 14: 1293360, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38260873

RESUMEN

Clubroot disease, caused by Plasmodiophora brassicae, is a serious soil-borne disease in Brassica crops worldwide. It seriously occurs in conducive soils of southern China, while never happens in some areas of northern China with suppressive soils. To understanding the differences, we measured the soil suppressiveness, chemical properties, and microbial communities in suppressive and conducive soils by bioassay and sequencing of 16S and 18S rRNA amplicons. The biological basis of clubroot suppressiveness was supported by the ability to remove it by pasteurization. The pH value and calcium content in the suppressive soils were higher than those in the conducive soils. Suppressive soils were associated with higher fungal diversity and bacterial abundance. The fungal phyla Chytridiomycota, Olpidiomycota, and Mucoromycota and the bacterial phyla Acidobacteriota and Gemmatimonadota were enriched in suppressive soils. More abundant beneficial microbes, including Chaetomium and Lysobacter, were found in the suppressive soils than in the conducive soils. Molecular ecological network analysis revealed that the fungal network of suppressive soils was more complex than that of conducive soils. Our results indicate that plant health is closely related to soil physicochemical and biological properties. This study is of great significance for developing strategies for clubtroot disease prevention and control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA