Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.736
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(52): e2211406119, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36534806

RESUMEN

Surface-enhanced Raman spectroscopy (SERS) holds exceptional promise as a streamlined chemical detection strategy for biological and environmental contaminants compared with current laboratory methods. Priority pollutants such as polycyclic aromatic hydrocarbons (PAHs), detectable in water and soil worldwide and known to induce multiple adverse health effects upon human exposure, are typically found in multicomponent mixtures. By combining the molecular fingerprinting capabilities of SERS with the signal separation and detection capabilities of machine learning (ML), we examine whether individual PAHs can be identified through an analysis of the SERS spectra of multicomponent PAH mixtures. We have developed an unsupervised ML method we call Characteristic Peak Extraction, a dimensionality reduction algorithm that extracts characteristic SERS peaks based on counts of detected peaks of the mixture. By analyzing the SERS spectra of two-component and four-component PAH mixtures where the concentration ratios of the various components vary, this algorithm is able to extract the spectra of each unknown component in the mixture of unknowns, which is then subsequently identified against a SERS spectral library of PAHs. Combining the molecular fingerprinting capabilities of SERS with the signal separation and detection capabilities of ML, this effort is a step toward the computational demixing of unknown chemical components occurring in complex multicomponent mixtures.


Asunto(s)
Contaminantes Ambientales , Hidrocarburos Policíclicos Aromáticos , Humanos , Hidrocarburos Policíclicos Aromáticos/análisis , Espectrometría Raman/métodos , Agua , Contaminantes Ambientales/análisis , Mezclas Complejas , Aprendizaje Automático
2.
Nano Lett ; 24(37): 11648-11653, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39225486

RESUMEN

Energetic carriers generated by localized surface plasmon resonance (LSPR) provide an efficient way to drive chemical reactions. However, their dynamics and impact on surface reactions remain unknown due to the challenge in observing hot holes. This makes it difficult to correlate the reduction and oxidation half-reactions involving hot electrons and holes, respectively. Here we detect hot holes in their chemical form, Ag(I), on a Ag surface using surface-enhanced Raman scattering (SERS) of SO32- as a hole-specific label. It allows us to determine the dynamic correlations of hot electrons and holes. We find that the equilibrium of holes is the key factor of the surface chemistry, and the wavelength-dependent plasmonic chemical anode refilling (PCAR) effect plays an important role, in addition to the LSPR, in promoting the electron transfer. This method paves the way for visualizing hot holes with nanoscale spatial resolution toward the rational design of a plasmonic catalytic platform.

3.
Nano Lett ; 24(37): 11520-11528, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39234992

RESUMEN

Small-molecule biomarkers are ubiquitous in biological fluids with pathological implications, but major challenges persist in their quantitative analysis directly in complex clinical samples. Herein, a molecular-sieving label-free surface-enhanced Raman spectroscopy (SERS) biosensor is reported for selective quantitative analysis of trace small-molecule trimetazidine (TMZ) in clinical samples. Our biosensor is fabricated by decorating a superhydrophobic monolayer of microporous metal-organic frameworks (MOF) shell-coated Au nanostar nanoparticles on a silicon substrate. The design strategy principally combines the hydrophobic surface-enabled physical confinement and preconcentration, MOF-assisted molecular enrichment and sieving of small molecules, and sensitive SERS detection. Our biosensor utilizes such a "molecular confinement-and-sieving" strategy to achieve a five orders-of-magnitude dynamic detection range and a limit of detection of ≈0.5 nM for TMZ detection in either urine or whole blood. We further demonstrate the applicability of our biosensing platform for longitudinal label-free SERS detection of the TMZ level directly in clinical samples in a mouse model.


Asunto(s)
Técnicas Biosensibles , Oro , Nanopartículas del Metal , Estructuras Metalorgánicas , Espectrometría Raman , Espectrometría Raman/métodos , Animales , Ratones , Oro/química , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , Humanos , Estructuras Metalorgánicas/química , Biomarcadores/orina , Biomarcadores/análisis , Propiedades de Superficie , Límite de Detección
4.
Nano Lett ; 24(35): 11082-11089, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39171663

RESUMEN

Nanoparticle superlattices are beneficial in terms of providing strong and uniform signals in analysis owing to their closely packed uniform structures. However, nanoparticle superlattices are prone to cracking during physical activities because of stress concentrations, which hinders their detection performance and limits their analytical applications. In this work, template printing methods were used in this study to prepare a patterned gold nanoparticle (AuNP) superlattice film. By adjustment of the size of the AuNP superlattice domain below the critical size of fracture, the mechanical stability of the AuNP superlattice domain is improved. Thus, long-term sustainable high-performance signal output is achieved. The patterned AuNP superlattice film was used to construct a wearable sweat sensor based on surface-enhanced Raman scattering (SERS). The designed sensor showed promise for long-term reliable use in actual scenarios in terms of recommending water replenishment, monitoring hydration states, and tracking the intensity of activity.


Asunto(s)
Oro , Nanopartículas del Metal , Espectrometría Raman , Sudor , Dispositivos Electrónicos Vestibles , Oro/química , Nanopartículas del Metal/química , Sudor/química , Humanos , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Propiedades de Superficie
5.
Adv Funct Mater ; 34(30)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39131199

RESUMEN

Plasmonic nanomaterials bearing targeting ligands are of great interest for surface-enhanced Raman scattering (SERS)-based bioimaging applications. However, the practical utility of SERS-based imaging strategies has been hindered by the lack of a straightforward method to synthesize highly sensitive SERS-active nanostructures with high yield and efficiency. In this work, leveraging DNA origami principles, we report the first-in-class design of a SERS-based plasmonically coupled nanoprobe for targeted cancer imaging (SPECTRA). The nanoprobe harnesses a cancer cell targeting DNA aptamer sequence and vibrational tag with stretching frequency in the cell-silent Raman window. Through the integration of aptamer sequence specific for DU145 cells, we show the unique capabilities of SPECTRA for targeted imaging of DU145 cells. Our results demonstrate that the scalability, cost-effectiveness, and reproducibility of this method of fabrication of SERS nanoprobes can serve as a versatile platform for creating nanoprobes with broad applications in the fields of cancer biology and biomedical imaging.

6.
Small ; 20(6): e2305110, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37752776

RESUMEN

Functional disorders of the thyroid remain a global challenge and have profound impacts on human health. Serving as the barometer for thyroid function, thyroid-stimulating hormone (TSH) is considered the single most useful test of thyroid function. However, the prevailing TSH immunoassays rely on two types of antibodies in a sandwich format. The requirement of repeated incubation and washing further complicates the issue, making it unable to meet the requirements of the shifting public health landscape that demands rapid, sensitive, and low-cost TSH tests. Herein, a systematic study is performed to investigate the clinical translational potential of a single antibody-based biosensing platform for the TSH test. The biosensing platform leverages Raman spectral variations induced by the interaction between a TSH antigen and a Raman molecule-conjugated TSH antibody. In conjunction with machine learning, it allows TSH concentrations in various patient samples to be predicted with high accuracy and precision, which is robust against substrate-to-substrate, intra-substrate, and day-to-day variations. It is envisioned that the simplicity and generalizability of this single-antibody immunoassay coupled with the demonstrated performance in patient samples pave the way for it to be widely applied in clinical settings for low-cost detection of hormones, other molecular biomarkers, DNA, RNA, and pathogens.


Asunto(s)
Anticuerpos , Tirotropina , Humanos , Inmunoensayo
7.
Small ; 20(8): e2304999, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37821412

RESUMEN

Rapid and precise acute myocardial infarction (AMI) diagnosis is essential for preventing patient death. In addition, the complementary roles of creatine kinase muscle brain (CK-MB) and cardiac troponin I (cTnI) cardiac biomarkers in the early and late stages of AMI demand their simultaneous detection, which is difficult to implement using conventional fluorescence and electrochemical technologies. Here, a nanotechnology-based one-stop immuno-surface-enhanced Raman scattering (SERS) detection platform is reported for multiple cardiac indicators for the rapid screening and progressive tracing of AMI events. Optimal SERS is achieved using optical property-based, excitation wavelength-optimized, and high-yield anisotropic plasmonic gold nanocubes. Optimal immunoassay reaction efficiencies are achieved by increasing immobilized antibodies. Multiple simultaneous detection strategies are implemented by incorporating two different Raman reports with narrow wavenumbers corresponding to two indicators and by establishing a computational SERS mapping process to accurately detect their concentrations, irrespective of multiple enzymes in the human serum. The SERS platform precisely estimated AMI onset and progressive timing in human serum and made rapid AMI identification feasible using a portable Raman spectrometer. This integrated platform is hypothesized to significantly contribute to emergency medicine and forensic science by providing timely treatment and observation.


Asunto(s)
Infarto del Miocardio , Humanos , Forma MB de la Creatina-Quinasa , Infarto del Miocardio/diagnóstico , Troponina I , Biomarcadores , Inmunoensayo
8.
Small ; 20(19): e2309484, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38287738

RESUMEN

The fabrication of a highly controlled gold (Au) nanohole (NH) array via tip-based lithography is improved by incorporating a sacrificial layer-a tip-crash buffer layer. This inclusion mitigates scratches during the nano-indentation process by employing a 300 nm thick poly(methyl methacrylate) layer as a sacrificial layer on top of the Au film. Such a precaution ensures minimal scratches on the Au film, facilitating the creation of sub-50 nm Au NHs with a 15 nm gap between the Au NHs. The precision of this method exceeds that of fabricating Au NHs without a sacrificial layer. Demonstrating its versatility, this Au NH array is utilized in two distinct applications: as a dry etching mask to form a molybdenum disulfide hole array and as a catalyst in metal-assisted chemical etching, resulting in conical-shaped silicon nanostructures. Additionally, a significant electric field is generated when Au nanoparticles (NPs) are placed within the Au NHs. This effect arises from coupling electromagnetic waves, concentrated by the Au NHs and amplified by the Au NPs. A notable result of this configuration is the enhancement factor of surface-enhanced Raman scattering, which is an order of magnitude greater than that observed with just Au NHs and Au NPs alone.

9.
Small ; 20(40): e2402235, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38845530

RESUMEN

The field of second near-infrared (NIR-II) surface-enhanced Raman scattering (SERS) nanoprobes has made commendable progress in biomedicine. This article reviews recent advances and future development of NIR-II SERS nanoprobes. It introduces the fundamental principles of SERS nanoprobes and highlights key advances in the NIR-II window, including reduced tissue attenuation, deep penetration, maximized allowable exposure, and improved photostability. The discussion of future directions includes the refinement of nanoprobe substrates, emphasizing the tailoring of optical properties of metallic SERS-active nanoprobes, and exploring non-metallic alternatives. The intricacies of designing Raman reporters for the NIR-II resonance and the potential of these reporters to advance the field are also discussed. The integration of artificial intelligence (AI) into nanoprobe design represents a cutting-edge approach to overcome current challenges. This article also examines the emergence of deep Raman techniques for through-tissue SERS detection, toward NIR-II SERS tomography. It acknowledges instrumental advancements like improved charge-coupled device sensitivity and accelerated imaging speeds. The article concludes by addressing the critical aspects of biosafety, ease of functionalization, compatibility, and the path to clinical translation. With a comprehensive overview of current achievements and future prospects, this review aims to illuminate the path for NIR-II SERS nanoprobes to innovate diagnostic and therapeutic approaches in biomedicine.


Asunto(s)
Espectrometría Raman , Espectrometría Raman/métodos , Humanos , Animales
10.
Small ; 20(31): e2308690, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38470201

RESUMEN

Traditional surface-enhanced Raman scattering (SERS) sensors rely heavily on the use of plasmonic noble metals, which have limitations due to their high cost and lack of physical and chemical stability. Hence, it is imperative to explore new materials as SERS platforms that can withstand high temperatures and harsh conditions. In this study, the SERS effect of molybdenum boride ceramic powders is presented with an enhancement factor of 5 orders, which is comparable to conventional noble metal substrates. The molybdenum boride powders synthesized through liquid-phase precursor and carbothermal reduction have ß-MoB, MoB2, and Mo2B5 phases. Among these phases, ß-MoB demonstrates the most significant SERS activity, with a detection limit for rhodamine 6G (R6G) molecules of 10-9 m. The impressive SERS enhancement can be attributed to strong molecule interactions and prominent charge interactions between R6G and the various phases of molybdenum boride, as supported by theoretical calculations. Additionally, Raman measurements show that the SERS activity remains intact after exposure to high temperature, strong acids, and alkalis. This research introduces a novel molybdenum boride all-ceramic SERS platform capable of functioning in harsh conditions, thereby showing the promising of boride ultrahigh-temperature ceramics for detection applications in extreme environments.

11.
Small ; 20(27): e2309502, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38282176

RESUMEN

Accurate detection of trace tetracyclines (TCs) in complex matrices is of great significance for food and environmental safety monitoring. However, traditional recognition and amplification tools exhibit poor specificity and sensitivity. Herein, a novel dual-machine linkage nanodevice (DMLD) is proposed for the first time to achieve high-performance analysis of TC, with a padlock aptamer component as the initiation command center, nucleic acid-encoded multispike virus-like Au nanoparticles (nMVANs) as the signal indicator, and cascade walkers circuit as the processor. The existence of spike vertices and interspike nanogaps in MVANs enables intense electromagnetic near-field focusing, allowing distinct surface-enhanced Raman scattering (SERS) activity. Moreover, through the sequential activation between multistage walker catalytic circuits, the DLMD system converts the limited TC recognition into massive engineering assemblies of SERS probes guided by DNA amplicons, resulting in synergistic enhancement of bulk plasmonic hotspot entities. The continuously guaranteed target recognition and progressively promoted signal enhancement ensure highly specific amplification analysis of TC, with a detection limit as low as 7.94 × 10-16 g mL-1. Furthermore, the reliable recoveries in real samples confirm the practicability of the proposed sensing platform, highlighting the enormous potential of intelligent nanomachines for analyzing the trace hazards in the environment and food.


Asunto(s)
Oro , Nanopartículas del Metal , Espectrometría Raman , Oro/química , Espectrometría Raman/métodos , Nanopartículas del Metal/química , Tetraciclina/análisis , Tetraciclina/química , Técnicas Biosensibles/métodos , Límite de Detección
12.
Small ; : e2403672, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970560

RESUMEN

Real-time polymerase chain reaction (RT-PCR) with fluorescence detection is the gold standard for diagnosing coronavirus disease 2019 (COVID-19) However, the fluorescence detection in RT-PCR requires multiple amplification steps when the initial deoxyribonucleic acid (DNA) concentration is low. Therefore, this study has developed a highly sensitive surface-enhanced Raman scattering-based PCR (SERS-PCR) assay platform using the gold nanoparticle (AuNP)-internalized gold nanodimpled substrate (AuNDS) plasmonic platform. By comparing different sizes of AuNPs, it is observed that using 30 nm AuNPs improves the detection limit by approximately ten times compared to 70 nm AuNPs. Finite-difference time-domain (FDTD) simulations show that multiple hotspots are formed between AuNPs and the cavity surface and between AuNPs when 30 nm AuNPs are internalized in the cavity, generating a strong electric field. With this 30 nm AuNPs-AuNDS SERS platform, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ribonucleic acid (RNA)-dependent RNA polymerase (RdRp) can be detected in only six amplification cycles, significantly improving over the 25 cycles required for RT-PCR. These findings pave the way for an amplification-free molecular diagnostic system based on SERS.

13.
Chem Rec ; : e202300303, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38314935

RESUMEN

Nanotechnology has emerged as a pivotal tool in biomedical research, particularly in developing advanced sensing platforms for disease diagnosis and therapeutic monitoring. Since gold nanoparticles are biocompatible and have special optical characteristics, they are excellent choices for surface-enhanced Raman scattering (SERS) sensing devices. Integrating fluorescence characteristics further enhances their utility in real-time imaging and tracking within biological systems. The synergistic combination of SERS and fluorescence enables sensitive and selective detection of biomolecules at trace levels, providing a versatile platform for early cancer diagnosis and drug monitoring. In cancer detection, AuNPs facilitate the specific targeting of cancer biomarkers, allowing for early-stage diagnosis and personalized treatment strategies. The enhanced sensitivity of SERS, coupled with the tunable fluorescence properties of AuNPs, offers a powerful tool for the identification of cancer cells and their microenvironment. This dual-mode detection not only improves diagnostic accuracy but also enables the monitoring of treatment response and disease progression. In drug detection, integrating AuNPs with SERS provides a robust platform for identifying and quantifying pharmaceutical compounds. The unique spectral fingerprints obtained through SERS enable the discrimination of drug molecules even in complex biological matrices. Furthermore, the fluorescence property of AuNPs makes it easier to track medication distribution in real-time, maximizing therapeutic effectiveness and reducing adverse effects. Furthermore, the review explores the role of gold fluorescence nanoparticles in photodynamic therapy (PDT). By using the complementary effects of targeted drug release and light-induced cytotoxicity, SERS-guided drug delivery and photodynamic therapy (PDT) can increase the effectiveness of treatment against cancer cells. In conclusion, the utilization of gold fluorescence nanoparticles in conjunction with SERS holds tremendous potential for revolutionizing cancer detection, drug analysis, and photodynamic therapy. The dual-mode capabilities of these nanomaterials provide a multifaceted approach to address the challenges in early diagnosis, treatment monitoring, and personalized medicine, thereby advancing the landscape of biomedical applications.

14.
Nanotechnology ; 35(28)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38522104

RESUMEN

Surface enhanced Raman spectroscopy (SERS) is a powerful analytical technique that has found application in the trace detection of a wide range of contaminants. In this paper, we report on the fabrication of 2D silver nanodendrites, on silicon chips, synthesized by electrochemical reduction of AgNO3at microelectrodes. The formation of nanodendrites is tentatively explained in terms of electromigration and diffusion of silver ions. Electrochemical characterization suggests that the nanodendrites do not stay electrically connected to the microelectrode. The substrates show SERS activity with an enhancement factor on the order of 106. Density functional theory simulations were carried out to investigate the suitability of the fabricated substrate for pesticide monitoring. These substrates can be functionalized with cyclodextrin macro molecules to help with the detection of molecules with low affinity with silver surfaces. A proof of concept is demonstrated with the detection of the herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA).

15.
Nanotechnology ; 35(19)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38330462

RESUMEN

A surface enhanced Raman scattering (SERS) substrate of porous rod-shaped ferric oxide (Fe2O3) combined with silver nanoparticles (Ag NPs) and black phosphorus (Fe2O3/Ag/BP) was fabricated to detect the persistent organic pollutants (POPs) at low concentration. The organic pollutant Rhodamine 6G (R6G) was used as the probe molecule to study the performances of Fe2O3/Ag/BP, and 4-chlorobiphenyl (PCB-3) was the target of detection. The limit of detection (LOD) of R6G based on this novel SERS substrate Fe2O3/Ag/BP was as low as 1.0 × 10-15M, which was five orders of magnitude lower than that of Fe2O3/Ag (10-10M). The enhancement factor (EF) of Fe2O3/Ag/BP was 6.44 × 108, which was 3.1 times higher than that of porous rod-shaped Fe2O3/Ag (2.08 × 108). The Raman signal of R6G based on Fe2O3/Ag/BP had a good homogeneity, and the relative standard deviation (RSD) of Raman signal intensities of R6G at 1643 cm-1was only 5.97%. Furthermore, the Fe2O3/Ag/BP substrate exhibited a recyclability through the photocatalytic degradation of R6G. The LOD of PCB-3 based on Fe2O3/Ag/BP was 10-9M. Besides, Fe2O3/Ag/BP had a high SERS activity even it was kept in a centrifuge tube without requiring complicated treatment. These results highlight the potential application of Fe2O3/Ag/BP for ultra-trace detection of POPs in the environment.

16.
Nanotechnology ; 35(15)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38176065

RESUMEN

Optical nanoantennas possess broad applications in the fields of photodetection, environmental science, biosensing and nonlinear optics, owing to their remarkable ability to enhance and confine the optical field at the nanoscale. In this article, we present a theoretical investigation of surface-enhanced photoluminescence spectroscopy for single molecules confined within novel Au bowtie nanoantenna, covering a wavelength range from the visible to near-infrared spectral regions. We employ the finite element method to quantitatively study the optical enhancement properties of the plasmonic field, quantum yield, Raman scattering and fluorescence. Additionally, we systematically examine the contribution of nonlocal dielectric response in the gap mode to the quantum yield, aiming to gain a better understanding of the fluorescence enhancement mechanism. Our results demonstrate that altering the configuration of the nanoantenna has a significant impact on plasmonic sensitivity. The nonlocal dielectric response plays a crucial role in reducing the quantum yield and corresponding fluorescence intensity when the gap distance is less than 3 nm. However, a substantial excitation field can effectively overcome fluorescence quenching and enhance the fluorescence intensity. By optimizing nanoantenna configuration, the maximum enhancement of surface-enhanced Raman can be turned to 9 and 10 magnitude orders in the visible and near-infrared regions, and 3 and 4 magnitude orders for fluorescence enhancement, respectively. The maximum spatial resolutions of 0.8 nm and 1.5 nm for Raman and fluorescence are also achieved, respectively. Our calculated results not only provide theoretical guidance for the design and application of new nanoantennas, but also contribute to expanding the range of surface-enhanced Raman and fluorescence technology from the visible to the near-infrared region.

17.
Nanotechnology ; 35(32)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38688241

RESUMEN

Nanoporous silver (NPS), characterized by its three-dimensional bi-continuous interpenetrating ligament channel structure, is a good candidate for surface enhanced Raman scattering (SERS), attributed to its exceptional surface-to-volume ratio and significant SERS enhancement capabilities. Here, we have successfully fabricated NPS through the dealloying ofα-terpineol (α-TPN) coated Ag55Al45alloy. The resultingα-NPS exhibits uniform ligaments and nanopore sizes, maintaining high SERS performance even after being exposed to air for more than one month. The pretreatment of precusor alloy withα-TPN is crucial not only for the formation of nanoporous structure but also for ensuring the long term stability ofα-NPS. Specifically,α-TPN functions as a surfactant, facilitating atomic diffusion to achieve a superior interconnected NPS. Furthermore, during the dealloying process, the carbonization ofα-TPN serves as a protective layer, effectively inhibiting the oxidation of silver.

18.
Anal Bioanal Chem ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39354157

RESUMEN

Tuberculosis is a highly infectious disease caused by the bacterium Mycobacterium tuberculosis, and the spread of this agent has caused serious health problems worldwide. The rapid and accurate detection of M. tuberculosis is essential for controlling the spread of infection and for preventing the emergence of multidrug-resistant strains. In this study, the powerful trans-cleavage ability of CRISPR-Cas12a for ssDNA was combined with a surface-enhanced Raman spectroscopy (SERS)-based strategy to establish a CRISPR-SERS sensor for the hypersensitive detection of M. tuberculosis DNA. We observed a linear relationship between the concentration of M. tuberculosis DNA and the output signal over the range of 5 to 100 pM. The equation describing the standard curve was y = 24.10x + 1594, with R2 = 0.9914. The limit of detection was as low as 4.42 pM for genomic DNA, and a plasmid containing an M. tuberculosis-specific sequence was detected at 5 copy/µL. A detection accuracy of 100% was achieved in the analysis of DNA isolated from the sputum of hospitalized patients with tuberculosis. The entire detection process is simple to deploy and only takes 50 min and results in the sensitive and specific detection of M. tuberculosis DNA. This study provides a new method for the detection of tuberculosis. The tool is stable and can be utilized on-site, and it thus broadens the diagnostic application of CRISPR-Cas12a-based sensor technology.

19.
Methods ; 216: 11-20, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37295579

RESUMEN

The implementation of early cancer detection benefits the treatment outcomes with remarkably improved survival rate through the detection of rare circulating biomarkers in body fluids. Spectroscopic technologies play a crucial role in sensitive biomarker measurements by outputting extremely strong signals. In particular, the aggregation enhanced fluorescence and Raman technologies feature the detection of targets down to single-molecule level, thereby demonstrating the great promise of early cancer detection. In this review, we focus on the aggregation-induced emission (AIE) and aggregation-related surface-enhanced Raman scattering (SERS) spectroscopic strategies for detecting cancer biomarkers. We discuss the AIE and SERS based biomarker detection using target-driven aggregation as well as the aggregated nanoprobes. Furthermore, we deliberate on the progress of developing AIE and SERS integrated platforms. Ultimately, we put forth the potential challenges and perspectives on the way to use these two spectroscopic technologies in clinical settings. It is expected this review can inspire the design of AIE and SERS integrated platform for highly sensitive and accurate cancer detection.


Asunto(s)
Nanopartículas del Metal , Neoplasias , Humanos , Biomarcadores de Tumor , Espectrometría Raman/métodos , Nanotecnología , Neoplasias/diagnóstico , Nanopartículas del Metal/química
20.
Anal Bioanal Chem ; 416(10): 2515-2525, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38436691

RESUMEN

The ultrasensitive detection of hepatitis C virus (HCV) nucleic acid is crucial for the early diagnosis of hepatitis C. In this study, by combining Ag@Au core/shell nanoparticle (Ag@AuNP)-based surface-enhanced Raman scattering (SERS) tag with hybridization chain reaction (HCR), a novel SERS-sensing method was developed for the ultrasensitive detection of HCV nucleic acid. This SERS-sensing system comprised two different SERS tags, which were constructed by modifying Ag@AuNP with a Raman reporter molecule of 4-ethynylbezaldehyde, two different hairpin-structured HCR sequences (H1 or H2), and a detection plate prepared by immobilizing a capture DNA sequence onto the Ag@AuNP layer surface of the detection wells. When the target nucleic acid was present, the two SERS tags were captured on the surface of the Ag@AuNP-coated detection well to generate many "hot spots" through HCR, forming a strong SERS signal and realizing the ultrasensitive detection of the target HCV nucleic acid. The limit of detection of the SERS-sensing method for HCV nucleic acid was 0.47 fM, and the linear range was from 1 to 105 fM.


Asunto(s)
Hepatitis C , Nanopartículas del Metal , Nanopartículas , Ácidos Nucleicos , Humanos , Hepacivirus/genética , Espectrometría Raman/métodos , Oro
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA