Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 316
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cancer Metastasis Rev ; 43(1): 457-479, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38227149

RESUMEN

Epithelial-mesenchymal transition (EMT) is a complicated molecular process that governs cellular shape and function changes throughout tissue development and embryogenesis. In addition, EMT contributes to the development and spread of tumors. Expanding and degrading the surrounding microenvironment, cells undergoing EMT move away from the main location. On the basis of the expression of fibroblast-specific protein-1 (FSP1), fibroblast growth factor (FGF), collagen, and smooth muscle actin (-SMA), the mesenchymal phenotype exhibited in fibroblasts is crucial for promoting EMT. While EMT is not entirely reliant on its regulators like ZEB1/2, Twist, and Snail proteins, investigation of upstream signaling (like EGF, TGF-ß, Wnt) is required to get a more thorough understanding of tumor EMT. Throughout numerous cancers, connections between tumor epithelial and fibroblast cells that influence tumor growth have been found. The significance of cellular crosstalk stems from the fact that these events affect therapeutic response and disease prognosis. This study examines how classical EMT signals emanating from various cancer cells interfere to tumor metastasis, treatment resistance, and tumor recurrence.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias , Humanos , Transición Epitelial-Mesenquimal/fisiología , Neoplasias/metabolismo , Transducción de Señal , Fenotipo , Resistencia a Medicamentos , Línea Celular Tumoral , Microambiente Tumoral
2.
Cancer Sci ; 115(4): 1296-1305, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38402853

RESUMEN

Tepotinib is a highly selective MET tyrosine kinase inhibitor (TKI) that has demonstrated robust and durable clinical activity in patients with MET exon 14 (METex14) skipping non-small-cell lung cancer (NSCLC). In the Phase II VISION study, patients received oral tepotinib 500 mg once daily. The primary endpoint was an objective response by an independent review committee (IRC) according to RECIST v1.1 criteria. The secondary endpoints included duration of response (DOR), progression-free survival (PFS), overall survival (OS), and safety. Here we report the analysis of the efficacy and safety of tepotinib in all Japanese patients with advanced METex14 skipping NSCLC from VISION (n = 38) with >18 months' follow-up. The median age of the Japanese patients was 73 years (range 63-88), 39.5% of patients were ≥75 years old, 68.4% were male, 55.3% had a history of smoking, 76.3% had adenocarcinoma, and 10.5% of patients had known brain metastases at baseline. Overall, the objective response rate (ORR) was 60.5% (95% confidence interval (CI): 43.4, 76.0) with a median DOR of 18.5 months (95% CI: 8.3, not estimable). ORR in treatment-naïve patients (n = 18) was 77.8% (95% CI: 52.4, 93.6), and in patients aged ≥75 years (n = 15), ORR was 73.3% (95% CI: 44.9, 92.2). The most common treatment-related adverse event (AE) with any grade was blood creatinine increase (65.8%), which resolved following tepotinib discontinuation. Other common treatment-related AEs were peripheral edema (60.5%), hypoalbuminemia (34.2%), diarrhea (28.9%), and nausea (15.8%). In summary, tepotinib demonstrated robust and durable clinical activity irrespective of age or therapy line, with a manageable safety profile in Japanese patients with METex14 skipping NSCLC enrolled in VISION.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Piperidinas , Piridazinas , Pirimidinas , Humanos , Masculino , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Femenino , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Japón , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Exones/genética , Inhibidores de Proteínas Quinasas/efectos adversos , Mutación
3.
Curr Atheroscler Rep ; 26(3): 75-82, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38252372

RESUMEN

PURPOSE OF REVIEW: This paper reviews the evidence why lipoprotein(a) (Lp(a)) is a causal risk factor for cardiovascular disease and how high Lp(a) concentrations should be managed now and with an outlook to the future. REVIEW FINDINGS: No optimal and widely available animal models exist to study the causality of the association between Lp(a) and cardiovascular disease. This has been a major handicap for the entire field. However, genetic studies turned the page. Already in the early 1990s, the principle of Mendelian randomization studies was applied for the first time ever (even if they were not named so at that time). Genetic variants of the LPA gene such as the apolipoprotein(a) isoform size, the number and sum of kringle IV repeats and later single nucleotide polymorphisms are strongly associated with life-long exposure to high Lp(a) concentrations as well as cardiovascular outcomes. This evidence provided a basis for the development of specific Lp(a)-lowering drugs that are currently in clinical testing phase. Lp(a) is one of the most important genetically determined risk factors for cardiovascular disease. With the specific Lp(a)-lowering therapies, we might get tools to fight this common risk factor in case the outcome trials will be positive.


Asunto(s)
Enfermedades Cardiovasculares , Lipoproteína(a) , Animales , Humanos , Lipoproteína(a)/genética , Enfermedades Cardiovasculares/genética , Factores de Riesgo , Polimorfismo de Nucleótido Simple
4.
Crit Rev Food Sci Nutr ; : 1-9, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38189668

RESUMEN

As a promising probiotic strain, Escherichia coli Nissle 1917 (EcN) has been demonstrated to confer beneficial effects on intestinal health, immune function, and pathogen prevention. Additionally, EcN has also been widely studied due to its clear genomic information, tractable gene regulation, and simple growth conditions. This review summarizes the various applications potential of EcN in food science and nutrition, including inflammation prevention, tumor-targeting therapy, antibacterial agents for food, and nutrient production with a focus on specific case studies. Moreover, we highlight the major challenges of employing EcN in food science and nutrition, including regulatory approval, stability during food processing, and consumer acceptance. Finally, we conclude with a discussion on perspectives related to employing EcN in food science and nutrition.

5.
J Nanobiotechnology ; 22(1): 2, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38169390

RESUMEN

BACKGROUND: Off-targeted distribution of chemotherapeutic drugs causes severe side effects, further leading to poor prognosis and patient compliance. Ligand/receptor-mediated targeted drug delivery can improve drug accumulation in the tumor but it always attenuated by protein corona barriers. RESULTS: To address these problems, a radically different strategy is proposed that can leave the off-targeted drugs inactive but activate the tumor-distributed drugs for cancer-targeting therapy in a tumor microenvironment-independent manner. The feasibility and effectiveness of this strategy is demonstrated by developing an ultrasound (US)-activated prodrug-loaded liposome (CPBSN38L) comprising the sonosensitizer chlorin e6 (Ce6)-modified lipids and the prodrug of pinacol boronic ester-conjugated SN38 (PBSN38). Once CPBSN38L is accumulated in the tumor and internalized into the cancer cells, under US irradiation, the sonosensitizer Ce6 rapidly induces extensive production of intracellular reactive oxygen species (ROS), thereby initiating a cascade amplified ROS-responsive activation of PBSN38 to release the active SN38 for inducing cell apoptosis. If some of the injected CPBSN38L is distributed into normal tissues, the inactive PBSN38 exerts no pharmacological activity on normal cells. CPBSN38L exhibited strong anticancer activity in multiple murine tumor models of colon adenocarcinoma and hepatocellular carcinoma with no chemotherapy-induced side effects, compared with the standard first-line anticancer drugs irinotecan and topotecan. CONCLUSIONS: This study established a side-effect-evitable, universal, and feasible strategy for cancer-targeting therapy.


Asunto(s)
Adenocarcinoma , Antineoplásicos , Neoplasias del Colon , Nanopartículas , Fotoquimioterapia , Profármacos , Humanos , Animales , Ratones , Liposomas , Profármacos/farmacología , Profármacos/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Adenocarcinoma/tratamiento farmacológico , Neoplasias del Colon/diagnóstico por imagen , Neoplasias del Colon/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Nanopartículas/metabolismo , Fármacos Fotosensibilizantes/uso terapéutico , Microambiente Tumoral
6.
Curr Pain Headache Rep ; 28(8): 743-751, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38683278

RESUMEN

PURPOSE OF REVIEW: Calcitonin gene-related peptide (CGRP)-targeting agents are potential candidates for disease-modifying migraine drugs. However, most studies on CGRP-targeting agents have assessed efficacy outcomes rather than long-term effects after discontinuation. This review aimed to synthesize and scrutinize the latest clinical data on the outcomes after the discontinuation of CGRP-targeting therapy in patients with episodic and chronic migraine, with a particular focus on chronic migraine. RECENT FINDINGS: Real-world studies involving patients with migraine have reported consistent findings of worsened headache frequency and quality of life after the discontinuation of CGRP monoclonal antibodies (CGRP mAbs). Although many patients maintain improvements for up to 4 months after discontinuation compared to baseline (before starting CGRP mAbs), no studies have evaluated the effects of stopping treatment for > 5 months, which is the five-half-life of CGRP mAbs. Several studies have suggested that patients treated with CGRP receptor mAbs experience more rapid deterioration than those treated with CGRP ligand mAbs after discontinuing CGRP mAbs. The results of real-world studies suggest that for many patients with migraine, the benefits of CGRP mAbs diminish months after discontinuation. Therefore, anti-CGRP therapies may not be considered disease-modifying. However, the comprehensive assessment of the disease-modifying potential of these drugs requires studies with extended treatment and cessation durations.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Trastornos Migrañosos , Humanos , Trastornos Migrañosos/tratamiento farmacológico , Péptido Relacionado con Gen de Calcitonina/antagonistas & inhibidores , Péptido Relacionado con Gen de Calcitonina/inmunología , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/uso terapéutico , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/administración & dosificación , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/administración & dosificación , Resultado del Tratamiento
7.
Tohoku J Exp Med ; 262(3): 163-171, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38220168

RESUMEN

As pancreatic ductal adenocarcinoma (PDAC) is extremely malignant and refractory, therapeutic options for this cancer are anticipated worldwide. We isolated vasohihibin-2 (VASH2) and observed its overexpression in various types of cancer. We then noticed that upregulated expression of VASH2 in patients with PDAC resulted in a conspicuous reduction in the postoperative survival period and further revealed that the abrogation of Vash2 expression in pancreatic cancer cells inhibited its growth and metastasis and augmented tumor infiltration of CD8+ cells in the mouse model. We developed VASH2-targeting therapies, 2',4'-BNA-based antisense oligonucleotide targeting VASH2 (VASH2-ASO) as a nucleotide-based therapy, and VASH2-peptide vaccine as an antibody-based therapy. We also showed that the VASH2-peptide vaccine inhibited PDAC metastasis in an orthotopic mouse model. Here, we expanded our analysis of the efficacy of VASH2-targeting therapies for PDAC. VASH2-ASO treatment inhibited the growth of primary tumors by reducing tumor angiogenesis, normalizing tumor vessels, preventing ascites accumulation and distant metastasis to the liver and lungs, and augmenting the infiltration of CD8+ cells in metastatic tumors. VASH2-peptide vaccine did not affect the infiltration of CD8+ cells into tumors. The present study revealed that VASH2-targeting therapies are promising options for the treatment of PDAC. VASH2-ASO therapy can be administered at any stage of PDAC. Because of the increase of CD8+ cell infiltration, the combination therapy with immune checkpoint inhibitors may be an attractive option. The VASH2-peptide vaccine therapy may be useful for preventing metastasis and/or recurrence after successful initial treatment.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ratones , Animales , Humanos , Línea Celular Tumoral , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/terapia , Neovascularización Patológica , Proteínas Angiogénicas/metabolismo
8.
Alzheimers Dement ; 20(4): 3127-3140, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38323738

RESUMEN

The Centers for Medicare & Medicaid Services (CMS) established a class-based National Coverage Determination (NCD) for monoclonal antibodies directed against amyloid for Alzheimer's disease (AD) with patient access through Coverage with Evidence Development (CED) based on three questions. This review, focused on donanemab, answers each of these CED questions with quality evidence. TRAILBLAZER-ALZ registration trials are presented with supporting literature and real-world data to answer CED questions for donanemab. TRAILBLAZER-ALZ registration trials demonstrated that donanemab significantly slowed cognitive and functional decline in amyloid-positive early symptomatic AD participants, and lowered their risk of disease progression while key safety risks occurred primarily within the first 6 months and then declined. Donanemab meaningfully improved health outcomes with a manageable safety profile in an early symptomatic AD population, representative of Medicare populations across diverse practice settings. The donanemab data provide the necessary level of evidence for CMS to open a reconsideration of their NCD. HIGHLIGHTS: Donanemab meaningfully improved outcomes in trial participants with early symptomatic Alzheimer's disease. Comorbidities in trial participants were consistent with the Medicare population. Co-medications in trial participants were consistent with the Medicare population. Risks associated with treatment tended to occur in the first 6 months. Risks of amyloid-related imaging abnormalities were managed with careful observation and magnetic resonance imaging monitoring.


Asunto(s)
Enfermedad de Alzheimer , Anticuerpos Monoclonales Humanizados , Enfermedades no Transmisibles , Anciano , Humanos , Estados Unidos , Enfermedad de Alzheimer/patología , Medicare , Amiloide , Proteínas Amiloidogénicas , Péptidos beta-Amiloides
9.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38673939

RESUMEN

Polyglutamine (polyQ)-encoding CAG repeat expansions represent a common disease-causing mutation responsible for several dominant spinocerebellar ataxias (SCAs). PolyQ-expanded SCA proteins are toxic for cerebellar neurons, with Purkinje cells (PCs) being the most vulnerable. RNA interference (RNAi) reagents targeting transcripts with expanded CAG reduce the level of various mutant SCA proteins in an allele-selective manner in vitro and represent promising universal tools for treating multiple CAG/polyQ SCAs. However, it remains unclear whether the therapeutic targeting of CAG expansion can be achieved in vivo and if it can ameliorate cerebellar functions. Here, using a mouse model of SCA7 expressing a mutant Atxn7 allele with 140 CAGs, we examined the efficacy of short hairpin RNAs (shRNAs) targeting CAG repeats expressed from PHP.eB adeno-associated virus vectors (AAVs), which were introduced into the brain via intravascular injection. We demonstrated that shRNAs carrying various mismatches with the CAG target sequence reduced the level of polyQ-expanded ATXN7 in the cerebellum, albeit with varying degrees of allele selectivity and safety profile. An shRNA named A4 potently reduced the level of polyQ-expanded ATXN7, with no effect on normal ATXN7 levels and no adverse side effects. Furthermore, A4 shRNA treatment improved a range of motor and behavioral parameters 23 weeks after AAV injection and attenuated the disease burden of PCs by preventing the downregulation of several PC-type-specific genes. Our results show the feasibility of the selective targeting of CAG expansion in the cerebellum using a blood-brain barrier-permeable vector to attenuate the disease phenotype in an SCA mouse model. Our study represents a significant advancement in developing CAG-targeting strategies as a potential therapy for SCA7 and possibly other CAG/polyQ SCAs.


Asunto(s)
Ataxina-7 , Dependovirus , Modelos Animales de Enfermedad , Péptidos , Fenotipo , ARN Interferente Pequeño , Ataxias Espinocerebelosas , Expansión de Repetición de Trinucleótido , Animales , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/terapia , Ataxias Espinocerebelosas/metabolismo , Péptidos/genética , Dependovirus/genética , Ratones , Ataxina-7/genética , Ataxina-7/metabolismo , Expansión de Repetición de Trinucleótido/genética , ARN Interferente Pequeño/genética , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Células de Purkinje/metabolismo , Células de Purkinje/patología , Ratones Transgénicos , Cerebelo/metabolismo , Cerebelo/patología , Humanos , Terapia Genética/métodos , Alelos
10.
Biol Chem ; 404(10): 909-930, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37555646

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive neurological disorder with currently no cure. Central to the cellular dysfunction associated with this fatal proteinopathy is the accumulation of unfolded/misfolded superoxide dismutase 1 (SOD1) in various subcellular locations. The molecular mechanism driving the formation of SOD1 aggregates is not fully understood but numerous studies suggest that aberrant aggregation escalates with folding instability of mutant apoSOD1. Recent advances on combining organelle-targeting therapies with the anti-aggregation capacity of chemical chaperones have successfully reduce the subcellular load of misfolded/aggregated SOD1 as well as their downstream anomalous cellular processes at low concentrations (micromolar range). Nevertheless, if such local aggregate reduction directly correlates with increased folding stability remains to be explored. To fill this gap, we synthesized and tested here the effect of 9 ER-, mitochondria- and lysosome-targeted chemical chaperones on the folding stability of truncated monomeric SOD1 (SOD1bar) mutants directed to those organelles. We found that compound ER-15 specifically increased the native state stability of ER-SOD1bar-A4V, while scaffold compound FDA-approved 4-phenylbutyric acid (PBA) decreased it. Furthermore, our results suggested that ER15 mechanism of action is distinct from that of PBA, opening new therapeutic perspectives of this novel chemical chaperone on ALS treatment.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/química , Superóxido Dismutasa-1/metabolismo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Pliegue de Proteína , Mutación , Chaperonas Moleculares
11.
Invest New Drugs ; 41(2): 183-192, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36790603

RESUMEN

BACKGROUND: Lung cancer is the leading cause of cancer death worldwide, and EGFR mutation is the most common genetic alteration among Asian patients with lung adenocarcinoma. While osimertinib has been shown to be effective in lung cancer patients with EGFR mutation, the majority of patients eventually develop acquired resistance to treatment. We explored the significance of the cyclin D1 expression in patients with EGFR mutation and the potential efficacy of adding abemaciclib, a cyclin-dependent kinase (CDK) 4/6 inhibitor, simultaneously with osimertinib in vitro. MATERIALS AND METHODS: Immunohistochemical staining, using an anti-cyclin D1 antibody, of specimens from 83 patients with EGFR mutation (male, n = 27; pStage 0-I, n = 71) who were treated by surgical resection between 2017 and 2020, and the relationship between the cyclin D1 expression and clinicopathological factors was analyzed. Additionally, the combined effect of osimertinib and abemaciclib in lung cancer cell lines were analyzed using a growth inhibition test, and the signaling pathway underlying the combined effect was investigated. RESULTS: Cyclin D1 was negative in 18.1% of patients with EGFR mutation, and cyclin D1 negativity was associated with pStage ≥ II (p = 0.02), lymph node metastasis (p = 0.001), and lymphatic invasion (p = 0.01). The cyclin D1-negative group had significantly shorter recurrence-free survival (p = 0.02), although this difference disappeared when limited to pN0 patients. In EGFR mutated cell lines, the combination of osimertinib and abemaciclib demonstrated synergistic effects, which were thought to be mediated by the inhibition of AKT phosphorylation. CONCLUSION: Combination therapy with CDK4/6 inhibitors and EGFR-TKIs may be a promising approach.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Masculino , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Resistencia a Antineoplásicos , Compuestos de Anilina , Receptores ErbB , Quinasas Ciclina-Dependientes , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
12.
Bioorg Chem ; 133: 106409, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36753963

RESUMEN

Histone demethylation is a key post-translational modification of chromatin, and its dysregulation affects a wide array of nuclear activities including the maintenance of genome integrity, transcriptional regulation, and epigenetic inheritance. Lysine specific demethylase 6A (KDM6A, also known as UTX) is an Fe2+- and α-ketoglutarate- dependent oxidase which belongs to KDM6 Jumonji histone demethylase subfamily, and it can remove mono-, di- and tri-methyl groups from methylated lysine 27 of histone H3 (H3K27me1/2/3). Mounting studies indicate that KDM6A is responsible for driving multiple human diseases, particularly cancers and pharmacological inhibition of KDM6A is an effective strategy to treat varieties of KDM6A-amplified cancers in cellulo and in vivo. Although there are several reviews on the roles of KDM6 subfamily in cancer development and therapy, all of them only simply introduce the roles of KDM6A in cancer without systematically summarizing the specific mechanisms of KDM6A in tumorigenesis, which greatly limits the advances on the understanding of roles KDM6A in varieties of cancers, discovering targeting selective KDM6A inhibitors, and exploring the adaptive profiles of KDM6A antagonists. Herein, we present the structure and functions of KDM6A, simply outline the functions of KDM6A in homeostasis and non-cancer diseases, summarize the role of KDM6A and its distinct target genes/ligand proteins in development of varieties of cancers, systematically classify KDM6A inhibitors, sum up the difficulties encountered in the research of KDM6A and the discovery of related drugs, and provide the corresponding solutions, which will contribute to understanding the roles of KDM6A in carcinogenesis and advancing the progression of KDM6A as a drug target in cancer therapy.


Asunto(s)
Histona Demetilasas , Neoplasias , Humanos , Carcinogénesis/metabolismo , Histona Demetilasas/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética
13.
J Nanobiotechnology ; 21(1): 325, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684605

RESUMEN

Bacterial infection has been a major threat to worldwide human health, in particular with the ever-increasing level of antimicrobial resistance. Given the complex microenvironment of bacterial infections, conventional use of antibiotics typically renders a low efficacy in infection control, thus calling for novel strategies for effective antibacterial therapies. As an excellent candidate for antibiotics delivery, mesoporous silica nanoparticles (MSNs) demonstrate unique physicochemical advantages in antibacterial therapies. Beyond the delivery capability, extensive efforts have been devoted in engineering MSNs to be bioactive to further synergize the therapeutic effect in infection control. In this review, we critically reviewed the essential properties of MSNs that benefit their antibacterial application, followed by a themed summary of strategies in manipulating MSNs into bioactive nanoplatforms for enhanced antibacterial therapies. The chemically functionalized platform, photo-synergized platform, physical antibacterial platform and targeting-directed platform are introduced in details, where the clinical translation challenges of these MSNs-based antibacterial nanoplatforms are briefly discussed afterwards. This review provides critical information of the emerging trend in turning bioinert MSNs into bioactive antibacterial agents, paving the way to inspire and translate novel MSNs-based nanotherapies in combating bacterial infection diseases.


Asunto(s)
Antibacterianos , Nanopartículas , Humanos , Antibacterianos/farmacología , Dióxido de Silicio
14.
World J Surg Oncol ; 21(1): 194, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391802

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is the most heterogenous and aggressive subtype of breast cancer. Chemotherapy remains the standard treatment option for patients with TNBC owing to the unavailability of acceptable targets and biomarkers in clinical practice. Novel biomarkers and targets for patient stratification and treatment of TNBC are urgently needed. It has been reported that the overexpression of DNA damage-inducible transcript 4 gene (DDIT4) is associated with resistance to neoadjuvant chemotherapy and poor prognosis in patients with TNBC. In this study, we aimed to identify novel biomarkers and therapeutic targets using RNA sequencing (RNA-seq) and data mining using data from public databases. METHODS: RNA sequencing (RNA-Seq) was performed to detect the different gene expression patterns in the human TNBC cell line HS578T treated with docetaxel or doxorubicin. Sequencing data were further analyzed by the R package "edgeR" and "clusterProfiler" to identify the profile of differentially expressed genes (DEGs) and annotate gene functions. The prognostic and predictive value of DDIT4 expression in patients with TNBC was further validated by published online data resources, including TIMER, UALCAN, Kaplan-Meier plotter, and LinkedOmics, and GeneMANIA and GSCALite were used to investigate the functional networks and hub genes related to DDIT4, respectively. RESULTS: Through the integrative analyses of RNA-Seq data and public datasets, we observed the overexpression of DDIT4 in TNBC tissues and found that patients with DDIT4 overexpression showed poor survival outcomes. Notably, immune infiltration analysis showed that the levels of DDIT4 expression correlated negatively with the abundance of tumor-infiltrating immune cells and immune biomarker expression, but correlated positively with immune checkpoint molecules. Furthermore, DDIT4 and its hub genes (ADM, ENO1, PLOD1, and CEBPB) involved in the activation of apoptosis, cell cycle, and EMT pathways. Eventually, we found ADM, ENO1, PLOD1, and CEBPB showed poor overall survival in BC patients. CONCLUSION: In this study, we found that DDIT4 expression is associated with the progression, therapeutic efficacy, and immune microenvironment of patients with TNBC, and DDIT4 would be as a potential prognostic biomarker and therapeutic target. These findings will help to identify potential molecular targets and improve therapeutic strategies against TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Pronóstico , Apoptosis , Ciclo Celular , Inmunoterapia , Microambiente Tumoral , Factores de Transcripción/genética
15.
J Obstet Gynaecol Res ; 49(8): 2000-2009, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37317594

RESUMEN

AIM: To explore the role of salt-inducible kinase 2 (SIK2) on glucose and lipid metabolism in ovarian cancer (OC), so as to increase the understanding of potential inhibitors targeting SIK2 and lay a foundation for future precision medicine in OC patients. METHODS: We reviewed and summarized the regulation effect of SIK2 on glycolysis, gluconeogenesis, lipid synthesis, and fatty acids ß-oxidation (FAO) in OC, as well as the potential molecular mechanism and the prospects of potential inhibitors targeting SIK2 in future cancer treatments. RESULTS: Many pieces of evidence show that SIK2 is closed associated with glucose and lipid metabolism of OC. On the one hand, SIK2 enhances the Warburg effect by promoting glycolysis and inhibiting oxidative phosphorylation and gluconeogenesis, on the other hand, SIK2 regulates intracellular lipid metabolism through promoting lipid synthesis and FAO, all of which ultimately induces growth, proliferation, invasion, metastasis, and therapeutic resistance of OC. On this basis, SIK2 targeting may become a new solution for the treatment of a variety of cancer types including OC. The efficacy of some small molecule kinase inhibitors has also been demonstrated in tumor clinical trials. CONCLUSION: SIK2 displays significant effects in OC progression and treatment through regulating cellular metabolism including glucose and lipid metabolism. Therefore, future research needs to further explore the molecular mechanisms of SIK2 in other types of energy metabolism in OC, based on this to develop more unique and effective inhibitors.


Asunto(s)
Neoplasias Ováricas , Proteínas Serina-Treonina Quinasas , Humanos , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Fosforilación Oxidativa , Glucosa/metabolismo , Lípidos
16.
Alzheimers Dement ; 19(12): 5407-5417, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37204338

RESUMEN

INTRODUCTION: Apolipoprotein E (APOE) ε4 may interact with response to amyloid-targeting therapies. METHODS: Aggregate data from trials enrolling participants with amyloid-positive, early symptomatic Alzheimer's disease (AD) were analyzed for disease progression. RESULTS: Pooled analysis of potentially efficacious antibodies lecanemab, aducanumab, solanezumab, and donanemab shows slightly better efficacy in APOE ε4 carriers than in non-carriers. Carrier and non-carrier mean (95% confidence interval) differences from placebo using Clinical Dementia Rating Scale-Sum of Boxes (CDR-SB) were -0.30 (-0.478, -0.106) and -0.20 (-0.435, 0.042) and AD Assessment Scale-Cognitive subscale (ADAS-Cog) values were -1.01 (-1.577, -0.456) and -0.80 (-1.627, 0.018), respectively. Decline in the APOE ε4 non-carrier placebo group was equal to or greater than that in carriers across multiple scales. Probability of study success increases as the representation of the carrier population increases. DISCUSSION: We hypothesize that APOE ε4 carriers have same or better response than non-carriers to amyloid-targeting therapies and similar or less disease progression with placebo in amyloid-positive trials. HIGHLIGHTS: Amyloid-targeting therapies had slightly greater efficacy in apolipoprotein E (APOE) ε4 carriers. Clinical decline is the same/slightly faster in amyloid-positive APOE ε4 non-carriers. Prevalence of non-carriers in trial populations could impact outcomes.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Amiloide , Proteínas Amiloidogénicas , Progresión de la Enfermedad
17.
Zhonghua Nan Ke Xue ; 29(3): 264-268, 2023 Mar.
Artículo en Zh | MEDLINE | ID: mdl-38597709

RESUMEN

Prostate cancer has now become the most common urinary tract tumor in men. Some special subtypes of prostate cancer are occasionally found clinically, which are characterized by rapid disease progression, easy recurrence and metastasis, poor effect of single endocrine therapy, and shorter overall survival of the patients than those with common prostate adenocarcinoma. Early diagnosis and early treatment with novel targeting drugs and genetic tests may prolong the survival of the patients. This review presents an overview and a prospect of the epidemiological features, origin, molecular regulation mechanisms, clinical characteristics and treatment of three rare subtypes of prostate cancer.


Asunto(s)
Adenocarcinoma , Neoplasias de la Próstata , Masculino , Humanos , Adenocarcinoma/patología , Neoplasias de la Próstata/patología , Progresión de la Enfermedad
18.
Angew Chem Int Ed Engl ; 62(36): e202306803, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37458367

RESUMEN

Traditional photodynamic therapy (PDT) is dependent on externally applied light and oxygen, and the depth of penetration of these factors can be insufficient for the treatment of deep infections. The short half-life and short diffusion distance of reactive oxygen species (ROS) also limit the antibacterial efficiency of PDT. Herein, we designed a targeting singlet oxygen delivery system, CARG-Py, for irradiation-free and oxygen-free PDT. This system was converted to the "singlet oxygen battery" CARG-1 O2 and released singlet oxygen without external irradiation or oxygen. CARG-1 O2 is composed of pyridones coupled to a targeting peptide that improves the utilization of singlet oxygen in deep multidrug-resistant bacterial infections. CARG-1 O2 was shown to damage DNA, protein, and membranes by increasing the level of reactive oxygen inside bacteria; the attacking of multiple biomolecular sites caused the death of methicillin-resistant Staphylococcus aureus (MRSA). An in vivo study in a MRSA-infected mouse model of pneumonia demonstrated the potential of CARG-1 O2 for the efficient treatment of deep infections. This work provides a new strategy to improve traditional PDT for irradiation- and oxygen-free treatment of deep infections while improving convenience of PDT.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Fotoquimioterapia , Animales , Ratones , Oxígeno Singlete , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Staphylococcus aureus Resistente a Meticilina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/química , Oxígeno
19.
Semin Cancer Biol ; 75: 97-115, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33220459

RESUMEN

RNA methylations, as the prevalent post-transcriptional modifications, are critical in regulating various biological processes, such as RNA transcription, splicing, structure, stability, and translation. Its dysregulation is closely related to the occurrence of human malignancies. The advance of high-throughput sequencing technology facilitates the investigations about how methylation of coding and non-coding RNAs regulates cancer progression through reshaping the transcriptomics. Here, we review the current progress about the regulatory role of several representative RNA modifications in cancers, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A) and 2'-O-methylation (Nm). Meanwhile, we also discuss the potential clinical value of RNA methylation in diagnostic and therapeutic implications of human cancers.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Neoplasias/patología , Animales , Biomarcadores de Tumor/genética , Humanos , Metilación , Neoplasias/genética , Neoplasias/metabolismo
20.
J Autoimmun ; 132: 102897, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36029718

RESUMEN

OBJECTIVE: The ability to regulate B cell development has long been recognized to have therapeutic potential in a variety of autoimmune diseases. However, despite the presence of a classic autoantibody in primary biliary cholangitis (PBC), B cell depleting therapy and indeed therapy with other biologic agents has been disappointing. Unsuccessful treatment using Rituximab is associated with elevation of B-cell activating factor (BAFF) level. Indeed, therapies for PBC remain directed at modulating bile salt biology, rather than targeting effector pathways. With these data in mind, we proposed that targeting two major stages of B cell development, namely long-lived memory B cells and short-lived peripheral autoreactive plasma cells would have therapeutic potential. METHODS: To address this thesis, we administrated anti-BAFF and anti-CD20 monoclonal antibody to ARE-Del mice, a well-characterized murine model of human PBC. We evaluated and compared the therapeutic efficacy of the two agents individually and the combination of anti-BAFF and anti-CD20 in female mice with well-established disease. RESULTS: Our data demonstrate that there was an increased level of B cell depletion that resulted in a significantly more effective clinical and serologic response using the combination of agents as compared with the use of the individual agents. The combination of anti-BAFF and anti-CD20 treatment was more effective in reducing serum levels of antimitochondrial antibody (AMA), total IgM and IgG compared to mice treated with the 2 individual agents. Combination treatment efficiently depleted B cells in the peripheral blood, peritoneal cavity and spleen. Importantly, we identified a unique IgM+ FCRL5+ B cell subset which was sensitive to dual B-cell targeting therapy and depletion of this unique population was associated with reduced portal infiltration and bile duct damage. Taken together, our data indicate that dual B cell targeting therapy with anti-BAFF and anti-CD20 not only led to the efficient depletion of B cells both in the peripheral blood and tissues, but also led to significant clinical improvement. These findings highlight the potential application of combination of anti-BAFF and anti-CD20 in treating patients with PBC. However, additional studies in other animal models of PBC should be undertaken before considering human trials in those PBC patients who have incomplete responses to conventional therapy.


Asunto(s)
Enfermedades Autoinmunes , Colangitis , Humanos , Femenino , Ratones , Animales , Colangitis/tratamiento farmacológico , Enfermedades Autoinmunes/tratamiento farmacológico , Antígenos CD20 , Autoanticuerpos , Inmunoglobulina M
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA