Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Glia ; 72(2): 452-469, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37969043

RESUMEN

Genetic findings have highlighted key roles for microglia in the pathology of neurodegenerative conditions such as Alzheimer's disease (AD). A number of mutations in the microglial protein triggering receptor expressed on myeloid cells 2 (TREM2) have been associated with increased risk for developing AD, most notably the R47H/+ substitution. We employed gene editing and stem cell models to gain insight into the effects of the TREM2 R47H/+ mutation on human-induced pluripotent stem cell-derived microglia. We found transcriptional changes affecting numerous cellular processes, with R47H/+ cells exhibiting a proinflammatory gene expression signature. TREM2 R47H/+ also caused impairments in microglial movement and the uptake of multiple substrates, as well as rendering microglia hyperresponsive to inflammatory stimuli. We developed an in vitro laser-induced injury model in neuron-microglia cocultures, finding an impaired injury response by TREM2 R47H/+ microglia. Furthermore, mouse brains transplanted with TREM2 R47H/+ microglia exhibited reduced synaptic density, with upregulation of multiple complement cascade components in TREM2 R47H/+ microglia suggesting inappropriate synaptic pruning as one potential mechanism. These findings identify a number of potentially detrimental effects of the TREM2 R47H/+ mutation on microglial gene expression and function likely to underlie its association with AD.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Ratones , Animales , Humanos , Microglía/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Mutación/genética , Enfermedad de Alzheimer/patología , Sinapsis/metabolismo , Encéfalo/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
2.
J Gastroenterol Hepatol ; 39(2): 369-380, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38012119

RESUMEN

BACKGROUND AND AIM: Triggering receptor expressed on myeloid cells 2 (TREM2) plays crucial roles in metabolic homeostasis and inflammatory response. Altered metabolic function in macrophages could modulate their activation and immune phenotype. The present study aimed to investigate the expression of TREM2 in non-alcoholic fatty liver disease (NAFLD) and to clarify the underlying mechanism of TREM2 on macrophages lipid metabolism and oxidative stress. METHODS: Hepatic TREM2 expression and its relationship with NAFLD progression were analyzed in patients with NAFLD and mice fed a high-fat diet. Lipid metabolism and oxidative stress were investigated in macrophages from NAFLD mice or stimulated with saturated fatty acids. Knockdown and overexpression of TREM2 were further explored. RESULTS: Triggering receptor expressed on myeloid cells 2+ macrophages were increased along with NAFLD development, characterized by aggravated steatosis and liver damage in humans and mice. TREM2 expression was upregulated and lipid metabolism was changed in macrophages from NAFLD mice or metabolically activated by saturated fatty acid in vitro, as demonstrated by increased lipid uptake and catabolism, but reduced de novo synthesis of fatty acids (FAs). Regulation of TREM2 expression in lipid-laden macrophages reprogrammed lipid metabolism, especially the fatty acid oxidation capacity of mitochondria. TREM2 knockdown promoted oxidative stress by aggravating FAs deposition in mitochondria. Intervention of mitochondrial FAs transport in lipid-laden macrophages alleviated FA deposition and reactive oxygen species production induced by TREM2 knockdown. CONCLUSIONS: Triggering receptor expressed on myeloid cells 2 expression was associated with the lipid metabolic profile and reactive oxygen species production in macrophages. High expression of TREM2 in macrophages may protect the liver from oxidative stress in NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos , Metabolismo de los Lípidos/fisiología , Hígado/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Células Mieloides/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
Int J Toxicol ; 43(2): 165-176, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38006258

RESUMEN

Methamphetamine (METH) is a highly addictive psychostimulant and one of the most widely abused drugs worldwide. The continuous use of METH eventually leads to neurotoxicity and drug addiction. Studies have shown that neurotoxicity is strongly associated with METH-induced neuroinflammation, and microglia are the key drivers of neuroinflammation. Triggering receptor expressed on myeloid cells 2 (TREM2) is reported to play a key role in activation of microglia and neuroinflammation. Yet, the molecular mechanisms by which METH causes neuroinflammation and neurotoxicity remain elusive. In the current study, we investigated the role of TREM2 in neuroinflammation induced by METH in BV2 cells and the wild-type (WT) C57BL/6J mice, CX3CR1GFP/+ transgenic mice, and TREM2 knockout (KO) mice. Postmortem samples from the frontal cortex of humans with a history of METH use were also analyzed to determine the levels of TREM2, TLR4, IBA1, and IL-1ß. The expression levels of TREM2, TLR4, IBA1, IL-1ß, iNOS, and Arg-1 were then assessed in the BV2 cells and frontal cortex of mice and human METH users. Results revealed that the expression levels of TREM2, TLR4, IBA1, and IL-1ß were significantly elevated in METH-using individuals and BV2 cells. Microglia were clearly activated in the frontal cortex of WT C57BL/6 mice and CX3CR1GFP/+ transgenic mice, and the protein levels of IBA1, TREM2, TLR4, and IL-1ß were elevated in the METH-induced mouse models. Moreover, TREM2-KO mice showed further increased microglial activation, neuroinflammation, and excitotoxicity induced by METH. Thus, these findings suggest that TREM2 may be a target for regulating METH-induced neuroinflammation.


Asunto(s)
Metanfetamina , Humanos , Animales , Ratones , Metanfetamina/toxicidad , Microglía/metabolismo , Enfermedades Neuroinflamatorias , Receptor Toll-Like 4/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Mieloides/metabolismo
4.
J Cell Mol Med ; 27(15): 2261-2269, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37430471

RESUMEN

Schistosomiasis is a tropical parasitic disease that damages the liver and poses a serious threat to human health. Macrophages play a key role in the development of liver granulomas and fibrosis by undergoing polarization from M1 to M2 type during schistosomiasis. Therefore, regulating macrophage polarization is important for controlling pathological changes that occur during this disease. Triggering receptor expressed on myeloid cells 2 (TREM2) expressed on the surface of macrophages, dendritic cells and other immune cells has been shown to play a role in inhibiting inflammatory responses and regulating M2 macrophage polarization, however its role in macrophage polarization in schistosomiasis has not been investigated. In this study, we confirmed that TREM2 expression was upregulated in the livers and peritoneal macrophages of mice infected with Schistosoma japonicum. Moreover, the TREM2 expression trend correlated with the expression of M2 macrophage polarization-related molecules in the liver tissues of S. japonicum-infected mice. Using Trem2-/- mice, we also showed that Trem2 deletion inhibited Arg1 and Ym1 expression in liver tissues. Trem2 deletion also increased the number of F4/80 + CD86+ cells in peritoneal macrophages of infected mice. In summary, our study suggests that TREM2 may be involved in M2 macrophage polarization during schistosomiasis.


Asunto(s)
Schistosoma japonicum , Esquistosomiasis Japónica , Esquistosomiasis , Humanos , Animales , Ratones , Macrófagos Peritoneales/patología , Macrófagos/metabolismo , Hígado/metabolismo , Esquistosomiasis/metabolismo , Esquistosomiasis/patología , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
5.
J Neuroinflammation ; 20(1): 50, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36829205

RESUMEN

BACKGROUND: The repair of white matter injury is of significant importance for functional recovery after ischemic stroke, and the up-regulation of triggering receptors expressed on myeloid cells 2 (TREM2) after ischemic stroke is neuroprotective and implicated in remyelination. However, the lack of effective therapies calls for the need to investigate the regenerative process of remyelination and the role of rehabilitation therapy. This study sought to investigate whether and how moderate physical exercise (PE) promotes oligodendrogenesis and remyelination in rats with transient middle cerebral artery occlusion (tMCAO). METHODS: Male Sprague-Dawley rats (weighing 250-280 g) were subjected to tMCAO. AAV-shRNA was injected into the lateral ventricle to silence the Trem2 gene before the operation. The rats in the physical exercise group started electric running cage training at 48 h after the operation. The Morris water maze and novel object recognition test were used to evaluate cognitive function. Luxol fast blue staining, diffusion tensor imaging, and electron microscopy were used to observe myelin injury and repair. Immunofluorescence staining was applied to observe the proliferation and differentiation of oligodendrocyte precursor cells (OPCs). Expression of key molecules were detected using immunofluorescence staining, quantitative real-time polymerase chain reaction, Western blotting, and Enzyme-linked immunosorbent assay, respectively. RESULTS: PE exerted neuroprotective efects by modulating microglial state, promoting remyelination and recovery of neurological function of rats over 35 d after stroke, while silencing Trem2 expression in rats suppressed the aforementioned effects promoted by PE. In addition, by leveraging the activin-A neutralizing antibody, we found a direct beneficial effect of PE on microglia-derived activin-A and its subsequent role on oligodendrocyte differentiation and remyelination mediated by the activin-A/Acvr axis. CONCLUSIONS: The present study reveals a novel regenerative role of PE in white matter injury after stroke, which is mediated by upregulation of TREM2 and microglia-derived factor for oligodendrocytes regeneration. PE is an effective therapeutic approach for improving white matter integrity and alleviating neurological function deficits after ischemic stroke.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Sustancia Blanca , Ratas , Masculino , Animales , Microglía/metabolismo , Sustancia Blanca/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Isquemia Encefálica/metabolismo , Imagen de Difusión Tensora , Ratas Sprague-Dawley , Accidente Cerebrovascular/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Lesiones Encefálicas/metabolismo
6.
Neurol Sci ; 44(8): 2743-2751, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36913148

RESUMEN

BACKGROUND: Previous studies showed conflicting results regarding soluble triggering receptor expressed on myeloid cells 2 (sTREM2) level alteration in body fluid in Alzheimer's disease (AD) and Parkinson's disease (PD). METHODS: We applied the STATA 12.0 software to compute standard mean difference (SMD) and 95% confidence interval (CI). RESULTS: The study showed elevated sTREM2 level in cerebrospinal fluid (CSF) in AD, mild cognitive impairment (MCI), and preclinical AD (pre-AD) patients, compared to healthy controls (HCs) with random effects models (AD: SMD 0.28, 95% CI 0.12 to 0.44, I2 = 77.6%, p < 0.001; MCI: SMD 0.29, 95% CI 0.09 to 0.48, I2 = 89.7%, p < 0.001; pre-AD: SMD 0.24, 95% CI 0.00 to 0.48, I2 = 80.8%, p < 0.001). The study showed no significant difference in sTREM2 level in plasma between AD patients and HCs with a random effects model (SMD 0.06, 95% CI - 0.16 to 0.28, I2 = 65.6%, p = 0.008). The study showed no significant difference in sTREM2 level in CSF or plasma between PD patients and HCs with random effects models (CSF: SMD 0.33, 95% CI - 0.02 to 0.67, I2 = 85.6%, p < 0.001; plasma: SMD 0.37, 95% CI - 0.17 to 0.92, I2 = 77.8%, p = 0.011). CONCLUSIONS: In conclusion, the study highlighted the CSF sTREM2 as a promising biomarker in the different clinical stages of AD. More studies were essential to explore the CSF and plasmatic concentrations of sTREM2 alteration in PD.


Asunto(s)
Enfermedad de Alzheimer , Líquidos Corporales , Enfermedad de Parkinson , Humanos , Enfermedad de Alzheimer/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Enfermedad de Parkinson/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Glicoproteínas de Membrana , Receptores Inmunológicos
7.
Adv Exp Med Biol ; 1423: 289-301, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37525057

RESUMEN

Current hypothesis of Alzheimer's disease (AD) postulates that amyloid ß (Aß) deposition in the brain causes tau inclusion in neurons and leads to cognitive decline. The discovery of the genetic association between triggering receptor expressed on myeloid cells 2 (TREM2) with increased AD risk points to a causal link between microglia and AD pathogenesis, and revealed a crucial role of TREM2-dependent clustering of microglia around amyloid plaques that prevents Aß toxicity to facilitate tau deposition near the plaques. Here we review the physiological and pathological roles of another AD risk gene expressed in microglia, inositol polyphosphate-5-polyphosphatase D (INPP5D), which encodes a phosphoinositide phosphatase. Evidence suggests that its risk polymorphisms alter the expression level and/or function of INPP5D, while concomitantly affecting tau levels in cerebrospinal fluids. In ß-amyloidosis mice, INPP5D was upregulated upon Aß deposition and negatively regulated the microglial clustering toward amyloid plaques. INPP5D seems to exert its function by acting antagonistically at downstream of the TREM2 signaling pathway, suggesting that it is a novel regulator of the protective barrier by microglia. Further studies to elucidate INPP5D's role in AD may help in developing new therapeutic targets for AD treatment.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Ácido Anhídrido Hidrolasas/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad , Microglía/patología , Placa Amiloide/patología
8.
J Integr Neurosci ; 22(3): 72, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37258433

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a chronic neurodegenerative brain disorder currently without satisfactory therapeutic treatments. Triggering receptors expressed on a myeloid cells-2 (Trem2) gene mutation has been reported as a powerful AD risk factor that induces Trem2 gene deletion aggravated microglia disfunction and Amyloid-ß (Aß) aggregation in the brain. The traditional Chinese medicine (TCM) formula Danggui-Shaoyao-San (DSS) has shown therapeutic effect on alleviating the symptoms of AD. However, the neuroprotective effect and underlying mechanism of DSS against AD is still far from fully understood. METHODS: Double-label immunofluorescence and Western blotting were employed to evaluate the different polarization states of mouse BV2 microglial (BV2) cells after lipopolysaccharide (LPS) or interleukin (IL)-4 treatment. Trem2 over-expression lentiviral vector and Trem2 siRNA were used respectively to evaluate the effect of Trem2 on microglia polarization via detecting the proteins expression of iNOS and arginase1 (Arg1) by Western blotting while the Aß-scavenging capacity of BV2 cells was assessed by flow cytometry. Cell counting kit-8 (CCK8) assay was performed to assess the effect of DSS on the viability of BV2 cells. Flow cytometry was used to investigate the effect of DSS on the Aß-scavenging capacity of BV2 cells treated with corresponding concentration of DSS-containing serum. Protein of Trem2 and the gene expression of the M1 or M2 phenotype in BV2 cells treated with DSS after Trem2 over-expression or silence were detected by Western blot and RT-qPCR, respectively. RESULTS: In vitro experiments. DSS exhibited anti-inflammatory and neuroprotective functions. It was found that Trem2 had an effect on inducing a shift of M1 microglia towards the M2 phenotype and enhanced the Aß-scavenging capacity of BV2 cells, further that DSS administration relieved inflammation by engulfing Aß through the activities of Trem2. Importantly, DSS treatment effectively increased the Aß-scavenging capacity of BV2 cells through accelerating the shift of M1 microglia towards an M2 phenotype via increasing Trem2 expression. CONCLUSIONS: Results demonstrated that DSS promoted the clearance of Aß through the regulation of microglia polarization via increased expression of Trem2 in BV2 cells.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Ratones , Animales , Inflamación/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/genética
9.
Glia ; 70(12): 2290-2308, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35912412

RESUMEN

The receptor Triggering Receptor Expressed on Myeloid cells 2 (TREM2) is associated with several neurodegenerative diseases including Alzheimer's Disease and TREM2 stimulation represents a novel therapeutic opportunity. TREM2 can be activated by antibodies targeting the stalk region, most likely through receptor dimerization. Endogenous ligands of TREM2 are suggested to be negatively charged apoptotic bodies, mimicked by phosphatidylserine incorporated in liposomes and other polyanionic molecules likely binding to TREM2 IgV fold. However, there has been much discrepancy in the literature on the nature of phospholipids (PLs) that can activate TREM2 and on the stability of the corresponding liposomes over time. We describe optimized liposomes as robust agonists selective for TREM2 over TREM1 in cellular system. The detailed structure/activity relationship studies of lipid polar heads indicate that negatively charged lipid heads are required for activity and we identified the shortest maximally active PL sidechain. Optimized liposomes are active on both TREM2 common variant and TREM2 R47H mutant. Activity and selectivity were further confirmed in different native TREM2 expressing cell types including on integrated cellular responses such as stimulation of phagocytic activity. Such tool agonists will be useful in further studies of TREM2 biology in cellular systems alongside antibodies, and in the design of small molecule synthetic TREM2 agonists.


Asunto(s)
Enfermedad de Alzheimer , Liposomas , Glicoproteínas de Membrana/inmunología , Receptores Inmunológicos/inmunología , Enfermedad de Alzheimer/metabolismo , Anticuerpos/metabolismo , Encéfalo/metabolismo , Humanos , Ligandos , Microglía/metabolismo , Células Mieloides/metabolismo , Fosfatidilserinas/metabolismo , Receptor Activador Expresado en Células Mieloides 1/metabolismo
11.
Eur J Neurosci ; 53(10): 3294-3310, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33786894

RESUMEN

Neurodegeneration is a debilitating condition that causes nerve cell degeneration or death. Neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal dementia (FTD), and Lewy body dementia (LBD) are posing a larger population burden of dementia worldwide. Neurodegenerative dementia is one of the main challenges in public health with its main characteristics being permanent loss of memory, impairment in cognition, and impaired daily functions. The published literature about genetic studies of these disorders suggests genetic underpinning in the pathogenesis of neurodegenerative dementia. In the process of underlining the pathogenesis of NDD, growing evidence has related genetic variations in the triggering receptor expressed on myeloid cells 2 (TREM2). This review paper aims to provide a detailed information regarding the association of TREM2 and NDDs leading to dementia. A central consideration is AD that accounts for almost 50%-70% of all late-life dementias alone or in combination with other neurological disorders. Other prevalent neurodegenerative conditions that lead to dementia are also discussed. Such studies are important as they can give a comprehensive knowledge of TREM2's role in various NDDs, in order to maximize the potential for developing new therapeutic approaches.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Enfermedad de Parkinson , Demencia Frontotemporal/genética , Humanos , Glicoproteínas de Membrana , Células Mieloides , Receptores Inmunológicos/genética
12.
J Neuroinflammation ; 18(1): 90, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33845849

RESUMEN

BACKGROUND: A high-salt diet (HSD) is one of the major risk factors for acute ischemic stroke (AIS). As a potential mechanism, surplus salt intake primes macrophages towards a proinflammatory phenotype. In this study, whether HSD could blunt the efferocytic capability of macrophages after ischemic stroke, thus exacerbating post-stroke neural inflammation, was investigated. METHODS: Wild-type male C57BL/6 mice were fed with fodder containing 8% sodium chloride for 4 weeks and subjected to transient middle cerebral occlusion (tMCAO). Disease severity, macrophage polarization as well as efferocytic capability were evaluated. Bone marrow-derived macrophages were cultured in vitro, and the impact of high salinity on their efferocytic activity, as well as their expression of phagocytic molecules, were analyzed. The relationships among sodium concentration, macrophage phenotype, and disease severity in AIS patients were explored. RESULTS: HSD-fed mice displayed increased infarct volume and aggravated neurological deficiency. Mice fed with HSD suffered exacerbated neural inflammation as shown by higher inflammatory mediator expression and immune cell infiltration levels. Infiltrated macrophages within stroke lesions in HSD-fed mice exhibited a shift towards proinflammatory phenotype and impaired efferocytic capability. As assessed with a PCR array, the expression of triggering receptor expressed on myeloid cells 2 (TREM2), a receptor relevant to phagocytosis, was downregulated in high-salt-treated bone marrow-derived macrophages. Enhancement of TREM2 signaling restored the efferocytic capacity and cellular inflammation resolution of macrophages in a high salinity environment in vitro and in vivo. A high concentration of urine sodium in AIS patients was found to be correlated with lower TREM2 expression and detrimental stroke outcomes. CONCLUSIONS: HSD inhibited the efferocytic capacity of macrophages by downregulating TREM2 expression, thus impeding inflammation resolution after ischemic stroke. Enhancing TREM2 signaling in monocytes/macrophages could be a promising therapeutic strategy to enhance efferocytosis and promote post-stroke inflammation resolution.


Asunto(s)
Dieta , Regulación hacia Abajo/efectos de los fármacos , Accidente Cerebrovascular Isquémico , Macrófagos/efectos de los fármacos , Glicoproteínas de Membrana/biosíntesis , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/biosíntesis , Receptores Inmunológicos/metabolismo , Cloruro de Sodio Dietético/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Humanos , Inflamación/metabolismo , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular Isquémico/patología , Activación de Macrófagos , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Células Mieloides/metabolismo , Fagocitosis , Receptores Inmunológicos/genética
13.
Neurobiol Dis ; 145: 105072, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32890775

RESUMEN

Genetic studies identified mutations in several immune-related genes that confer increased risk for developing Alzheimer's disease (AD), suggesting a key role for microglia in AD pathology. Microglia are recruited to and actively modulate the local toxicity of amyloid plaques in models of AD through these cells' transcriptional and functional reprogramming to a disease-associated phenotype. However, it remains unknown whether microglia actively respond to amyloid accumulation before plaque deposition in AD. We compared microglial interactions with neurons that exhibit amyloid accumulation to those that do not in 1-month-old 5XFAD mice to determine which aspects of microglial morphology and function are altered by early 6E10+ amyloid accumulation. We provide evidence of preferential microglial process engagement of amyloid laden neurons. Microglia, on exposure to amyloid, also increase their internalization of neurites even before plaque onset. Unexpectedly, we found that triggering receptor expressed on myeloid cells 2 (TREM2), which is critical for microglial responses to amyloid plaque pathology later in disease, is not required for enhanced microglial interactions with neurons or neurite internalization early in disease. However, TREM2 was still required for early morphological changes exhibited by microglia. These data demonstrate that microglia sense and respond to amyloid accumulation before plaques form using a distinct mechanism from the TREM2-dependent pathway required later in disease.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Glicoproteínas de Membrana/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Placa Amiloide/metabolismo , Receptores Inmunológicos/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Microglía/patología , Neuronas/patología , Placa Amiloide/patología
14.
J Neuroinflammation ; 17(1): 204, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32635934

RESUMEN

Triggering receptor expressed on myeloid cells 2 (TREM2) is a receptor mainly expressed on the surface of microglia. It mediates multiple pathophysiological processes in various diseases. Recently, TREM2 has been found to play a role in the development of Alzheimer's disease (AD). TREM2 is a transmembrane protein that is specifically expressed on microglia in the brain. It contains a long ectodomain that directly interacts with the extracellular environment to regulate microglial function. The ectodomain of TREM2 is processed by a disintegrin and metalloprotease, resulting in the release of a soluble form of TREM2 (sTREM2). Recent studies have demonstrated that sTREM2 is a bioactive molecule capable of binding ligands, activating microglia, and regulating immune responses during the AD continuum. Clinical studies revealed that sTREM2 level is elevated in cerebrospinal fluid (CSF) of AD patients, and the sTREM2 level is positively correlated with the levels of classical CSF biomarkers, namely t-tau and p-tau, indicating that it is a reliable predictor of the early stages of AD. Herein, we summarize the key results on the generation, structure, and function of sTREM2 to provide new insights into TREM2-related mechanisms underlying AD pathogenesis and to promote the development of TREM2-based therapeutic strategy.


Asunto(s)
Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico , Glicoproteínas de Membrana/líquido cefalorraquídeo , Enfermedad de Alzheimer/genética , Animales , Biomarcadores/líquido cefalorraquídeo , Humanos , Glicoproteínas de Membrana/genética , Microglía/metabolismo , Microglía/patología , Isoformas de Proteínas/líquido cefalorraquídeo , Isoformas de Proteínas/genética , Receptores Inmunológicos/genética , Solubilidad , Proteínas tau/líquido cefalorraquídeo , Proteínas tau/genética
15.
J Neuroinflammation ; 17(1): 223, 2020 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-32711525

RESUMEN

BACKGROUND: Cerebral amyloid angiopathy (CAA) is typified by the cerebrovascular deposition of amyloid. The mechanisms underlying the contribution of CAA to neurodegeneration are not currently understood. Although CAA is highly associated with the accumulation of amyloid beta (Aß), other amyloids are known to associate with the vasculature. Alzheimer's disease (AD) is characterized by parenchymal Aß deposition, intracellular accumulation of tau, and significant neuroinflammation. CAA increases with age and is present in 85-95% of individuals with AD. A substantial amount of research has focused on understanding the connection between parenchymal amyloid and glial activation and neuroinflammation, while associations between vascular amyloid pathology and glial reactivity remain understudied. METHODS: Here, we dissect the glial and immune responses associated with early-stage CAA with histological, biochemical, and gene expression analyses in a mouse model of familial Danish dementia (FDD), a neurodegenerative disease characterized by the vascular accumulation of Danish amyloid (ADan). Findings observed in this CAA mouse model were complemented with primary culture assays. RESULTS: We demonstrate that early-stage CAA is associated with dysregulation in immune response networks and lipid processing, severe astrogliosis with an A1 astrocytic phenotype, and decreased levels of TREM2 with no reactive microgliosis. Our results also indicate how cholesterol accumulation and ApoE are associated with vascular amyloid deposits at the early stages of pathology. We also demonstrate A1 astrocytic mediation of TREM2 and microglia homeostasis. CONCLUSION: The initial glial response associated with early-stage CAA is characterized by the upregulation of A1 astrocytes without significant microglial reactivity. Gene expression analysis revealed that several AD risk factors involved in immune response and lipid processing may also play a preponderant role in CAA. This study contributes to the increasing evidence that brain cholesterol metabolism, ApoE, and TREM2 signaling are major players in the pathogenesis of AD-related dementias, including CAA. Understanding the basis for possible differential effects of glial response, ApoE, and TREM2 signaling on parenchymal plaques versus vascular amyloid deposits provides important insight for developing future therapeutic interventions.


Asunto(s)
Astrocitos/metabolismo , Astrocitos/patología , Angiopatía Amiloide Cerebral/metabolismo , Angiopatía Amiloide Cerebral/patología , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Gliosis/metabolismo , Gliosis/patología , Humanos , Masculino , Ratones , Ratones Transgénicos
16.
J Neurovirol ; 26(4): 511-519, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32488843

RESUMEN

HIV-associated neuroinflammation is primarily driven by CNS macrophages including microglia. Regulation of these immune responses, however, remains to be characterized in detail. Using the SIV/macaque model of HIV, we evaluated CNS expression of triggering receptor expressed on myeloid cells 2 (TREM2) which is constitutively expressed by microglia and contributes to cell survival, proliferation, and differentiation. Loss-of-function mutations in TREM2 are recognized risk factors for neurodegenerative diseases including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Nasu-Hakola disease (NHD); recent reports have also indicated a role for TREM2 in HIV-associated neuroinflammation. Using in situ hybridization (ISH) and qRT-PCR, TREM2 mRNA levels were found to be significantly elevated in frontal cortex of macaques with SIV encephalitis compared with uninfected controls (P = 0.02). TREM2 protein levels were also elevated as measured by ELISA of frontal cortex tissue homogenates in these animals. Previously, we characterized the expression of CSF1R (colony-stimulating factor 1 receptor) in this model; the TREM2 and CSF1R promoters both contain a PU.1 binding site. While TREM2 and CSF1R mRNA levels in the frontal cortex were highly correlated (Spearman R = 0.79, P < 0.001), protein levels were not well correlated. In SIV-infected macaques released from ART to study viral rebound, neither TREM2 nor CSF1R mRNA increased with rebound viremia. However, CSF1R protein levels remained significantly elevated unlike TREM2 (P = 0.02). This differential expression suggests that TREM2 and CSF1R play unique, distinct roles in the pathogenesis of HIV CNS disease.


Asunto(s)
Encefalitis Viral/genética , Macaca nemestrina/inmunología , Macrófagos/inmunología , Glicoproteínas de Membrana/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Terapia Antirretroviral Altamente Activa/métodos , Antivirales/farmacología , Esquema de Medicación , Encefalitis Viral/tratamiento farmacológico , Encefalitis Viral/inmunología , Encefalitis Viral/virología , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/inmunología , Lóbulo Frontal/virología , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Macaca nemestrina/genética , Macaca nemestrina/virología , Macrófagos/efectos de los fármacos , Macrófagos/virología , Masculino , Glicoproteínas de Membrana/inmunología , Microglía/efectos de los fármacos , Microglía/inmunología , Microglía/virología , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/inmunología , ARN Mensajero/genética , ARN Mensajero/inmunología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Virus de la Inmunodeficiencia de los Simios/crecimiento & desarrollo , Transactivadores/genética , Transactivadores/inmunología
17.
Int J Mol Sci ; 21(6)2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32183348

RESUMEN

Cerebral amyloid angiopathy (CAA) is a cerebrovascular disease directly implicated in Alzheimer's disease (AD) pathogenesis through amyloid-ß (Aß) deposition, which may cause the development and progression of dementia. Despite extensive studies to explore drugs targeting Aß, clinical benefits have not been reported in large clinical trials in AD patients or presymptomatic individuals at a risk for AD. However, recent studies on CAA and AD have provided novel insights regarding CAA- and AD-related pathogenesis. This work has revealed potential therapeutic targets, including Aß drainage pathways, Aß aggregation, oxidative stress, and neuroinflammation. The functional significance and therapeutic potential of bioactive molecules such as cilostazol and taxifolin have also become increasingly evident. Furthermore, recent epidemiological studies have demonstrated that serum levels of a soluble form of triggering receptor expressed on myeloid cells 2 (TREM2) may have clinical significance as a potential novel predictive biomarker for dementia incidence. This review summarizes recent advances in CAA and AD research with a focus on discussing future research directions regarding novel therapeutic approaches and predictive biomarkers for CAA and AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Angiopatía Amiloide Cerebral/tratamiento farmacológico , Angiopatía Amiloide Cerebral/patología , Fármacos Neuroprotectores/uso terapéutico , Agregación Patológica de Proteínas/tratamiento farmacológico , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Animales , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Biomarcadores/sangre , Encéfalo , Cilostazol/uso terapéutico , Modelos Animales de Enfermedad , Humanos , Glicoproteínas de Membrana/sangre , Ratones , Estrés Oxidativo/fisiología , Agregación Patológica de Proteínas/patología , Quercetina/análogos & derivados , Quercetina/uso terapéutico , Receptores Inmunológicos/sangre
18.
J Biol Chem ; 293(32): 12634-12646, 2018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-29794134

RESUMEN

Triggering receptor expressed on myeloid cells 2 (TREM2) is an immune receptor expressed on the surface of microglia, macrophages, dendritic cells, and osteoclasts. The R47H TREM2 variant is a significant risk factor for late-onset Alzheimer's disease (AD), and the molecular basis of R47H TREM2 loss of function is an emerging area of TREM2 biology. Here, we report three high-resolution structures of the extracellular ligand-binding domains (ECDs) of R47H TREM2, apo-WT, and phosphatidylserine (PS)-bound WT TREM2 at 1.8, 2.2, and 2.2 Å, respectively. The structures reveal that Arg47 plays a critical role in maintaining the structural features of the complementarity-determining region 2 (CDR2) loop and the putative positive ligand-interacting surface (PLIS), stabilizing conformations capable of ligand interaction. This is exemplified in the PS-bound structure, in which the CDR2 loop and PLIS drive critical interactions with PS via surfaces that are disrupted in the variant. Together with in vitro and in vivo characterization, our structural findings elucidate the molecular mechanism underlying loss of ligand binding, putative oligomerization, and functional activity of R47H TREM2. They also help unravel how decreased in vitro and in vivo stability of TREM2 contribute to loss of function in disease.


Asunto(s)
Enfermedad de Alzheimer/genética , Predisposición Genética a la Enfermedad , Glicoproteínas de Membrana/química , Proteínas Mutantes/química , Receptores Inmunológicos/química , Enfermedad de Alzheimer/patología , Cristalografía por Rayos X , Células Dendríticas/química , Células Dendríticas/patología , Variación Genética , Humanos , Ligandos , Macrófagos/química , Macrófagos/patología , Glicoproteínas de Membrana/genética , Microglía/química , Microglía/patología , Proteínas Mutantes/genética , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Osteoclastos/química , Osteoclastos/patología , Conformación Proteica , Dominios Proteicos/genética , Receptores Inmunológicos/genética
19.
Cytokine ; 116: 115-119, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30690291

RESUMEN

Homozygous mutations in Triggering Receptor Expressed on Myeloid cells 2 gene (TREM2) are one of the major causes of Nasu Hakola Disease (NHD). We analysed Peripheral Blood Mononuclear Cells (PBMC) profile of 164 inflammatory factors in patients with NHD carrying the TREM2 Q33X mutation as compared with heterozygous and wild type individuals. Several molecules related to bone formation and angiogenesis were altered in NHD compared to non-carriers: Bone Morphogenetic Protein (BMP)-1 mRNA levels were significantly increased in PBMC (2.32 fold-increase; P = 0.01), as were Transforming Growth Factor Beta (TGFB)3 levels (1.51 fold-increase; P = 0.02). Conversely, CXCL5 and Pro Platelet Basic Protein (PPBP) were strongly downregulated (-28.26, -9.85 fold-decrease over non-carriers, respectively, P = 0.01), as well as Platelet Factor 4 Variant 1 (PF4V1; -41.44, P = 0.03). Among other inflammatory factors evaluated, Interleukin (IL)-15 and Tumor Necrosis Factor Superfamily Member (TNFSF)4 mRNA levels were decreased in NHD as compared with non-carriers (-2.25 and -3.87 fold-decrease, P = 0.01 and 0.001, respectively). In heterozygous individuals, no significant differences were observed, apart from IL-15 mRNA levels, that were decreased at the same extent as NHD (-2.05 fold-decrease over non-carriers, P = 0.002). We identified a signature in PBMC from patients with NHD consisting of strongly decreased mRNA levels of CXCL5, PPBP, PF4V1, mildly decreased IL-15 and TNFSF4 and mildly increased BMP-1 and TGFB3.


Asunto(s)
Citocinas/sangre , Leucocitos Mononucleares/inmunología , Lipodistrofia/genética , Osteocondrodisplasias/genética , ARN Mensajero/análisis , Panencefalitis Esclerosante Subaguda/genética , Proteína Morfogenética Ósea 1/genética , Quimiocina CXCL5/genética , Citocinas/genética , Femenino , Humanos , Inflamación , Leucocitos Mononucleares/patología , Lipodistrofia/sangre , Lipodistrofia/patología , Masculino , Glicoproteínas de Membrana/genética , Ligando OX40/genética , Osteocondrodisplasias/sangre , Osteocondrodisplasias/patología , Factor Plaquetario 4/genética , ARN Mensajero/genética , Receptores Inmunológicos/genética , Panencefalitis Esclerosante Subaguda/sangre , Panencefalitis Esclerosante Subaguda/patología , Factor de Crecimiento Transformador beta3/genética , beta-Tromboglobulina/genética
20.
Adv Exp Med Biol ; 1118: 83-116, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30747419

RESUMEN

The accumulation of aggregated amyloid ß (Aß) peptides in the brain is deeply involved in Alzheimer disease (AD) pathogenesis. Mutations in APP and presenilins play major roles in Aß pathology in rare autosomal-dominant forms of AD, whereas pathomechanisms of sporadic AD, accounting for the majority of cases, remain unknown. In this chapter, we review current knowledge on genetic risk factors of AD, clarified by recent advances in genome analysis technology. Interestingly, TREM2 and many genes associated with disease risk are predominantly expressed in microglia, suggesting that these risk factors are involved in pathogenicity through common mechanisms involving microglia. Therefore, we focus on factors closely associated with microglia and discuss their possible roles in pathomechanisms of AD. Furthermore, we review current views on the pathological roles of microglia and emphasize the importance of microglial changes in response to Aß deposition and mechanisms underlying the phenotypic changes. Importantly, functional outcomes of microglial activation can be both protective and deleterious to neurons. We further describe the involvement of microglia in tau pathology and the activation of other glial cells. Through these topics, we shed light on microglia as a promising target for drug development for AD and other neurological disorders.


Asunto(s)
Enfermedad de Alzheimer/genética , Microglía/patología , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Encéfalo/patología , Humanos , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/genética , Factores de Riesgo , Proteínas tau/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA