Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 613
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 179(5): 1191-1206.e21, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31730857

RESUMEN

This study identifies mechanisms mediating responses to immune checkpoint inhibitors using mouse models of triple-negative breast cancer. By creating new mammary tumor models, we find that tumor mutation burden and specific immune cells are associated with response. Further, we developed a rich resource of single-cell RNA-seq and bulk mRNA-seq data of immunotherapy-treated and non-treated tumors from sensitive and resistant murine models. Using this, we uncover that immune checkpoint therapy induces T follicular helper cell activation of B cells to facilitate the anti-tumor response in these models. We also show that B cell activation of T cells and the generation of antibody are key to immunotherapy response and propose a new biomarker for immune checkpoint therapy. In total, this work presents resources of new preclinical models of breast cancer with large mRNA-seq and single-cell RNA-seq datasets annotated for sensitivity to therapy and uncovers new components of response to immune checkpoint inhibitors.


Asunto(s)
Linfocitos B/inmunología , Inmunoterapia , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/inmunología , Mutación/genética , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Antígeno CTLA-4/metabolismo , Modelos Animales de Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Ingeniería Genética , Genoma , Humanos , Inmunoglobulina G/metabolismo , Activación de Linfocitos/inmunología , Neoplasias Mamarias Animales/terapia , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/terapia
2.
Immunity ; 56(1): 93-106.e6, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36574773

RESUMEN

Improved identification of anti-tumor T cells is needed to advance cancer immunotherapies. CD39 expression is a promising surrogate of tumor-reactive CD8+ T cells. Here, we comprehensively profiled CD39 expression in human lung cancer. CD39 expression enriched for CD8+ T cells with features of exhaustion, tumor reactivity, and clonal expansion. Flow cytometry of 440 lung cancer biospecimens revealed weak association between CD39+ CD8+ T cells and tumoral features, such as programmed death-ligand 1 (PD-L1), tumor mutation burden, and driver mutations. Immune checkpoint blockade (ICB), but not cytotoxic chemotherapy, increased intratumoral CD39+ CD8+ T cells. Higher baseline frequency of CD39+ CD8+ T cells conferred improved clinical outcomes from ICB therapy. Furthermore, a gene signature of CD39+ CD8+ T cells predicted benefit from ICB, but not chemotherapy, in a phase III clinical trial of non-small cell lung cancer. These findings highlight CD39 as a proxy of tumor-reactive CD8+ T cells in human lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Linfocitos T CD8-positivos , Inmunoterapia
3.
Cell ; 171(4): 934-949.e16, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29033130

RESUMEN

The mechanisms by which immune checkpoint blockade modulates tumor evolution during therapy are unclear. We assessed genomic changes in tumors from 68 patients with advanced melanoma, who progressed on ipilimumab or were ipilimumab-naive, before and after nivolumab initiation (CA209-038 study). Tumors were analyzed by whole-exome, transcriptome, and/or T cell receptor (TCR) sequencing. In responding patients, mutation and neoantigen load were reduced from baseline, and analysis of intratumoral heterogeneity during therapy demonstrated differential clonal evolution within tumors and putative selection against neoantigenic mutations on-therapy. Transcriptome analyses before and during nivolumab therapy revealed increases in distinct immune cell subsets, activation of specific transcriptional networks, and upregulation of immune checkpoint genes that were more pronounced in patients with response. Temporal changes in intratumoral TCR repertoire revealed expansion of T cell clones in the setting of neoantigen loss. Comprehensive genomic profiling data in this study provide insight into nivolumab's mechanism of action.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Inmunoterapia , Melanoma/terapia , Microambiente Tumoral , Estudio de Asociación del Genoma Completo , Humanos , Melanoma/genética , Melanoma/inmunología , Nivolumab , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Linfocitos T , Transcriptoma
4.
Hum Mol Genet ; 33(12): 1023-1035, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38491801

RESUMEN

Breast cancer (BRCA) is a highly heterogeneous disease, with significant differences in prognosis among patients. Existing biomarkers and prognostic models have limited ability to predict BRCA prognosis. Moonlighting genes regulate tumor progression and are associated with cancer prognosis. This study aimed to construct a moonlighting gene-based prognostic model for BRCA. We obtained differentially expressed genes (DEGs) in BRCA from The Cancer Genome Atlas and intersected them with moonlighting genes from MoonProt to acquire differential moonlighting genes. GO and KEGG results showed main enrichment of these genes in the response of BRCA cells to environmental stimuli and pentose phosphate pathway. Based on moonlighting genes, we conducted drug prediction and validated results through cellular experiments. After ABCB1 knockdown, viability and proliferation of BRCA cells were significantly enhanced. Based on differential moonlighting genes, BRCA was divided into three subgroups, among which cluster2 had the highest survival rate and immunophenoscore and relatively low tumor mutation burden. TP53 had the highest mutation frequency in cluster2 and cluster3, while PIK3CA had a higher mutation frequency in cluster1, with the majority being missense mutations. Subsequently, we established an 11-gene prognostic model in the training set based on DEGs among subgroups using univariate Cox regression, LASSO regression, and multivariable Cox regression analyses. Model prognostic performance was verified in GEO, METABRIC and ICGC validation sets. In summary, this study obtained three BRCA moonlighting gene-related subtypes and constructed an 11-gene prognostic model. The 11-gene BRCA prognostic model has good predictive performance, guiding BRCA prognosis for clinical doctors.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Pronóstico , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Mutación , Perfilación de la Expresión Génica/métodos , Proteína p53 Supresora de Tumor/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Proliferación Celular/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/genética
5.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38632951

RESUMEN

In cancer genomics, variant calling has advanced, but traditional mean accuracy evaluations are inadequate for biomarkers like tumor mutation burden, which vary significantly across samples, affecting immunotherapy patient selection and threshold settings. In this study, we introduce TMBstable, an innovative method that dynamically selects optimal variant calling strategies for specific genomic regions using a meta-learning framework, distinguishing it from traditional callers with uniform sample-wide strategies. The process begins with segmenting the sample into windows and extracting meta-features for clustering, followed by using a pre-trained meta-model to select suitable algorithms for each cluster, thereby addressing strategy-sample mismatches, reducing performance fluctuations and ensuring consistent performance across various samples. We evaluated TMBstable using both simulated and real non-small cell lung cancer and nasopharyngeal carcinoma samples, comparing it with advanced callers. The assessment, focusing on stability measures, such as the variance and coefficient of variation in false positive rate, false negative rate, precision and recall, involved 300 simulated and 106 real tumor samples. Benchmark results showed TMBstable's superior stability with the lowest variance and coefficient of variation across performance metrics, highlighting its effectiveness in analyzing the counting-based biomarker. The TMBstable algorithm can be accessed at https://github.com/hello-json/TMBstable for academic usage only.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Genómica/métodos , Genoma , Algoritmos
6.
Brief Bioinform ; 24(5)2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37668090

RESUMEN

As the fundamental unit of a gene and its transcripts, nucleotides have enormous impacts on the gene function and evolution, and thus on phenotypes and diseases. In order to identify the key nucleotides of one specific gene, it is quite crucial to quantitatively measure the importance of each base on the gene. However, there are still no sequence-based methods of doing that. Here, we proposed Base Importance Calculator (BIC), an algorithm to calculate the importance score of each single base based on sequence information of human mRNAs and long noncoding RNAs (lncRNAs). We then confirmed its power by applying BIC to three different tasks. Firstly, we revealed that BIC can effectively evaluate the pathogenicity of both genes and single bases through single nucleotide variations. Moreover, the BIC score in The Cancer Genome Atlas somatic mutations is able to predict the prognosis of some cancers. Finally, we show that BIC can also precisely predict the transmissibility of SARS-CoV-2. The above results indicate that BIC is a useful tool for evaluating the single base importance of human mRNAs and lncRNAs.


Asunto(s)
COVID-19 , ARN Largo no Codificante , Humanos , COVID-19/genética , ARN Largo no Codificante/genética , SARS-CoV-2/genética , Algoritmos , Nucleótidos , ARN Mensajero/genética
7.
Hum Genomics ; 18(1): 65, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886862

RESUMEN

BACKGROUND: Human cytomegalovirus (HCMV) is a herpesvirus that can infect various cell types and modulate host gene expression and immune response. It has been associated with the pathogenesis of various cancers, but its molecular mechanisms remain elusive. METHODS: We comprehensively analyzed the expression of HCMV pathway genes across 26 cancer types using the Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) databases. We also used bioinformatics tools to study immune invasion and tumor microenvironment in pan-cancer. Cox regression and machine learning were used to analyze prognostic genes and their relationship with drug sensitivity. RESULTS: We found that HCMV pathway genes are widely expressed in various cancers. Immune infiltration and the tumor microenvironment revealed that HCMV is involved in complex immune processes. We obtained prognostic genes for 25 cancers and significantly found 23 key genes in the HCMV pathway, which are significantly enriched in cellular chemotaxis and synaptic function and may be involved in disease progression. Notably, CaM family genes were up-regulated and AC family genes were down-regulated in most tumors. These hub genes correlate with sensitivity or resistance to various drugs, suggesting their potential as therapeutic targets. CONCLUSIONS: Our study has revealed the role of the HCMV pathway in various cancers and provided insights into its molecular mechanism and therapeutic significance. It is worth noting that the key genes of the HCMV pathway may open up new doors for cancer prevention and treatment.


Asunto(s)
Biología Computacional , Citomegalovirus , Neoplasias , Microambiente Tumoral , Humanos , Citomegalovirus/genética , Citomegalovirus/patogenicidad , Biología Computacional/métodos , Neoplasias/genética , Neoplasias/virología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Regulación Neoplásica de la Expresión Génica/genética , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/virología , Pronóstico , Redes Reguladoras de Genes/genética , Perfilación de la Expresión Génica , Bases de Datos Genéticas
8.
Oncologist ; 29(7): 619-628, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38655867

RESUMEN

BACKGROUND: CD8+ tumor-infiltrating lymphocyte (TIL) predicts response to anti-PD-(L)1 therapy. However, there remains no standardized method to assess CD8+ TIL in melanoma, and developing a specific, cost-effective, reproducible, and clinically actionable biomarker to anti-PD-(L)1 remains elusive. We report on the development of automatic CD8+ TIL density quantification via whole slide image (WSI) analysis in advanced melanoma patients treated with front-line anti-PD-1 blockade, and correlation immunotherapy response. METHODS: Seventy-eight patients treated with PD-1 inhibitors in the front-line setting between January 2015 and May 2023 at the University of Pittsburgh Cancer Institute were included. CD8+ TIL density was quantified using an image analysis algorithm on digitized WSI. Targeted next-generation sequencing (NGS) was performed to determine tumor mutation burden (TMB) in a subset of 62 patients. ROC curves were used to determine biomarker cutoffs and response to therapy. Correlation between CD8+ TIL density and TMB cutoffs and response to therapy was studied. RESULTS: Higher CD8+ TIL density was significantly associated with improved response to front-line anti-PD-1 across all time points measured. CD8+ TIL density ≥222.9 cells/mm2 reliably segregated responders and non-responders to front-line anti-PD-1 therapy regardless of when response was measured. In a multivariate analysis, patients with CD8+ TIL density exceeding cutoff had significantly improved PFS with a trend toward improved OS. Similarly, increasing TMB was associated with improved response to anti-PD-1, and a cutoff of 14.70 Mut/Mb was associated with improved odds of response. The correlation between TMB and CD8+ TIL density was low, suggesting that each represented independent predictive biomarkers of response. CONCLUSIONS: An automatic digital analysis algorithm provides a standardized method to quantify CD8+ TIL density, which predicts response to front-line anti-PD-1 therapy. CD8+ TIL density and TMB are independent predictors of response to anti-PD-1 blockade.


Asunto(s)
Biomarcadores de Tumor , Linfocitos T CD8-positivos , Inmunoterapia , Linfocitos Infiltrantes de Tumor , Melanoma , Mutación , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Melanoma/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos T CD8-positivos/inmunología , Femenino , Masculino , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Anciano , Inmunoterapia/métodos , Adulto , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Anciano de 80 o más Años
9.
J Gene Med ; 26(1): e3637, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37994492

RESUMEN

BACKGROUND: In breast cancer (BC), homologous recombination defect (HRD) is a common carcinogenic mechanism. It is meaningful to classify BC according to HRD biomarkers and to develop a platform for identifying BC molecular features, pathological features and therapeutic responses. METHODS: In total, 109 HRD genes were collected and screened by univariate Cox regression analysis to determine the prognostic genes, which were used to construct a consensus matrix to identify BC subtype. Differentially expressed genes (DEGs) were filtered by the Limma package and screened by random forest analysis to build a model to analyze the immunotherapy response and sensitivity and prognosis of patients suffering from BC to different drugs. RESULTS: Thirteen out of 109 HRD genes were prognostic genes of BC, and BC was classified into two subgroups based on their expression. Cluster 1 had a significantly backward survival outcome and a significantly higher adaptive immunity score relative to cluster 2. Six genes were identified by random forest analysis as factors for developing the model. The model provided a prediction called risk score, which showed a significant stratification effect on BC prognosis, immunotherapy response and IC50 values of 62 drugs. CONCLUSIONS: In the present study, two HRD subtypes of BC were successfully identified, for which mutation and immunological features were determined. A model based on differential genes of HRD subtypes was established, which was a potential predictor of prognosis, immunotherapy response and drug sensitivity of BC.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/terapia , Inmunoterapia , Expresión Génica , Recombinación Homóloga/genética , Mutación
10.
BMC Med ; 22(1): 42, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38281914

RESUMEN

BACKGROUND: Microsatellite instability-high (MSI-H) is a unique genomic status in many cancers. However, its role in the genomic features and immunotherapy in cholangiocarcinoma (CCA) is unclear. This study aimed to systematically investigate the genomic characterization and immunotherapy efficacy of MSI-H patients with CCA. METHODS: We enrolled 887 patients with CCA in this study. Tumor samples were collected for next-generation sequencing. Differences in genomic alterations between the MSI-H and microsatellite stability (MSS) groups were analyzed. We also investigated the survival of PD-1 inhibitor-based immunotherapy between two groups of 139 patients with advanced CCA. RESULTS: Differential genetic alterations between the MSI-H and MSS groups included mutations in ARID1A, ACVR2A, TGFBR2, KMT2D, RNF43, and PBRM1 which were enriched in MSI-H groups. Patients with an MSI-H status have a significantly higher tumor mutation burden (TMB) (median 41.7 vs. 3.1 muts/Mb, P < 0.001) and more positive programmed death ligand 1 (PD-L1) expression (37.5% vs. 11.9%, P < 0.001) than those with an MSS status. Among patients receiving PD-1 inhibitor-based therapy, those with MSI-H had a longer median overall survival (OS, hazard ratio (HR) = 0.17, P = 0.001) and progression-free survival (PFS, HR = 0.14, P < 0.001) than patients with MSS. Integrating MSI-H and PD-L1 expression status (combined positive score ≥ 5) could distinguish the efficacy of immunotherapy. CONCLUSIONS: MSI-H status was associated with a higher TMB value and more positive PD-L1 expression in CCA tumors. Moreover, in patients with advanced CCA who received PD-1 inhibitor-based immunotherapy, MSI-H and positive PD-L1 expression were associated with improved both OS and PFS. TRIAL REGISTRATION: This study was registered on ClinicalTrials.gov on 07/01/2017 (NCT03892577).


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Inestabilidad de Microsatélites , Antígeno B7-H1/genética , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Colangiocarcinoma/genética , Colangiocarcinoma/terapia , Mutación , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/terapia , Conductos Biliares Intrahepáticos/metabolismo , Inmunoterapia , Genómica , Biomarcadores de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA