Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.648
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(23): 5015-5027.e12, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37949057

RESUMEN

Embryonic development is remarkably robust, but temperature stress can degrade its ability to generate animals with invariant anatomy. Phenotypes associated with environmental stress suggest that some cell types are more sensitive to stress than others, but the basis of this sensitivity is unknown. Here, we characterize hundreds of individual zebrafish embryos under temperature stress using whole-animal single-cell RNA sequencing (RNA-seq) to identify cell types and molecular programs driving phenotypic variability. We find that temperature perturbs the normal proportions and gene expression programs of numerous cell types and also introduces asynchrony in developmental timing. The notochord is particularly sensitive to temperature, which we map to a specialized cell type: sheath cells. These cells accumulate misfolded protein at elevated temperature, leading to a cascading structural failure of the notochord and anatomic defects. Our study demonstrates that whole-animal single-cell RNA-seq can identify mechanisms for developmental robustness and pinpoint cell types that constitute key failure points.


Asunto(s)
Proteostasis , Pez Cebra , Animales , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Temperatura , Pez Cebra/crecimiento & desarrollo
2.
Cell ; 175(4): 1074-1087.e18, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388444

RESUMEN

Mutation rates along the genome are highly variable and influenced by several chromatin features. Here, we addressed how nucleosomes, the most pervasive chromatin structure in eukaryotes, affect the generation of mutations. We discovered that within nucleosomes, the somatic mutation rate across several tumor cohorts exhibits a strong 10 base pair (bp) periodicity. This periodic pattern tracks the alternation of the DNA minor groove facing toward and away from the histones. The strength and phase of the mutation rate periodicity are determined by the mutational processes active in tumors. We uncovered similar periodic patterns in the genetic variation among human and Arabidopsis populations, also detectable in their divergence from close species, indicating that the same principles underlie germline and somatic mutation rates. We propose that differential DNA damage and repair processes dependent on the minor groove orientation in nucleosome-bound DNA contribute to the 10-bp periodicity in AT/CG content in eukaryotic genomes.


Asunto(s)
ADN/genética , Mutación de Línea Germinal , Tasa de Mutación , Nucleosomas/genética , Arabidopsis/genética , ADN/química , Secuencia Rica en GC , Variación Genética , Conformación de Ácido Nucleico , Nucleosomas/química
3.
Cell ; 173(1): 196-207.e14, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29502970

RESUMEN

Microbial populations can maximize fitness in dynamic environments through bet hedging, a process wherein a subpopulation assumes a phenotype not optimally adapted to the present environment but well adapted to an environment likely to be encountered. Here, we show that oxygen induces fluctuating expression of the trimethylamine oxide (TMAO) respiratory system of Escherichia coli, diversifying the cell population and enabling a bet-hedging strategy that permits growth following oxygen loss. This regulation by oxygen affects the variance in gene expression but leaves the mean unchanged. We show that the oxygen-sensitive transcription factor IscR is the key regulator of variability. Oxygen causes IscR to repress expression of a TMAO-responsive signaling system, allowing stochastic effects to have a strong effect on the output of the system and resulting in heterogeneous expression of the TMAO reduction machinery. This work reveals a mechanism through which cells regulate molecular noise to enhance fitness.


Asunto(s)
Escherichia coli/metabolismo , Transducción de Señal , Aerobiosis , Anaerobiosis , Secuencia de Bases , Sitios de Unión , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Metilaminas/metabolismo , Metilaminas/farmacología , Oxígeno/metabolismo , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/genética , Proteínas Periplasmáticas/metabolismo , Fosfotransferasas/química , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Regulación hacia Arriba
4.
Cell ; 169(2): 229-242.e21, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28388408

RESUMEN

Phenotypic variability is a hallmark of diseases involving chromosome gains and losses, such as Down syndrome and cancer. Allelic variances have been thought to be the sole cause of this heterogeneity. Here, we systematically examine the consequences of gaining and losing single or multiple chromosomes to show that the aneuploid state causes non-genetic phenotypic variability. Yeast cell populations harboring the same defined aneuploidy exhibit heterogeneity in cell-cycle progression and response to environmental perturbations. Variability increases with degree of aneuploidy and is partly due to gene copy number imbalances, suggesting that subtle changes in gene expression impact the robustness of biological networks and cause alternate behaviors when they occur across many genes. As inbred trisomic mice also exhibit variable phenotypes, we further propose that non-genetic individuality is a universal characteristic of the aneuploid state that may contribute to variability in presentation and treatment responses of diseases caused by aneuploidy.


Asunto(s)
Aneuploidia , Heterogeneidad Genética , Fenotipo , Animales , Ciclo Celular , División Celular , Daño del ADN , Regulación de la Expresión Génica , Cinética , Ratones , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética
5.
Physiol Rev ; 103(3): 1789-1826, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36787480

RESUMEN

Solar ultraviolet-B (UV-B) radiation has played a crucial role in the evolution of life on Earth, and potential changes in its levels could affect the health and functionality of humans and the ecosystems. UV exposure presents both risks and benefits to humans. However, optimal UV-B radiation exposure depends on several environmental and physiological factors and cannot be easily determined. The present document provides a review of the current state of knowledge relative to the effects of UV-B radiation on human health. A brief description of the physical mechanisms that control the levels of solar UV-B radiation at the Earth's surface is provided, with special emphasis on the role of ozone and the importance of the Montreal Protocol. A comprehensive review of studies reporting current trends in levels of surface solar UV-B radiation and projections of future levels reveals the dominant role of climatic changes in the long-term variability of UV-B radiation and its impact on the development of melanomas as well as eye disorders. The review provides strong evidence that despite the success of the Montreal Protocol and the expected ozone recovery, the future evolution of the levels of solar UV-B radiation at the Earth's surface is not certain.


Asunto(s)
Ecosistema , Ozono , Humanos , Rayos Ultravioleta/efectos adversos , Dosis de Radiación
6.
Annu Rev Neurosci ; 44: 315-334, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-33761268

RESUMEN

Advances in the instrumentation and signal processing for simultaneously acquired electroencephalography and functional magnetic resonance imaging (EEG-fMRI) have enabled new ways to observe the spatiotemporal neural dynamics of the human brain. Central to the utility of EEG-fMRI neuroimaging systems are the methods for fusing the two data streams, with machine learning playing a key role. These methods can be dichotomized into those that are symmetric and asymmetric in terms of how the two modalities inform the fusion. Studies using these methods have shown that fusion yields new insights into brain function that are not possible when each modality is acquired separately. As technology improves and methods for fusion become more sophisticated, the future of EEG-fMRI for noninvasive measurement of brain dynamics includes mesoscale mapping at ultrahigh magnetic resonance fields, targeted perturbation-based neuroimaging, and using deep learning to uncover nonlinear representations that link the electrophysiological and hemodynamic measurements.


Asunto(s)
Electroencefalografía , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Humanos , Neuroimagen
7.
Annu Rev Cell Dev Biol ; 31: 11-29, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26566110

RESUMEN

Schizosaccharomyces pombe is a good model to study cell-size control. These cells integrate size information into cell cycle controls at both the G1/S and G2/M transitions, although the primary control operates at the entry into mitosis. At G2/M there is both a size threshold, demonstrated by the fact that cells divide when they reach 14 µm in length, and also correction around this threshold, evident from the narrow distribution of sizes within a population. This latter property is referred to as size homeostasis. It has been argued that a population of cells accumulating mass in a linear fashion will have size homeostasis in the absence of size control, if cycle time is controlled by a fixed timer. Because fission yeast cells do not grow in a simple linear fashion, they require a size-sensing mechanism. However, current models do not fully describe all aspects of this control, especially the coordination of cell size with ploidy.


Asunto(s)
Mitosis/fisiología , Schizosaccharomyces/fisiología , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Tamaño de la Célula , Homeostasis/fisiología , Schizosaccharomyces/metabolismo
8.
EMBO J ; 43(8): 1618-1633, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499788

RESUMEN

Cellular processes are subject to inherent variability, but the extent to which cells can regulate this variability has received little investigation. Here, we explore the characteristics of the rate of cellular protein synthesis in single cells of the eukaryote fission yeast. Strikingly, this rate is highly variable despite protein synthesis being dependent on hundreds of reactions which might be expected to average out at the overall cellular level. The rate is variable over short time scales, and exhibits homoeostatic behaviour at the population level. Cells can regulate the level of variability through processes involving the TOR pathway, suggesting there is an optimal level of variability conferring a selective advantage. While this could be an example of bet-hedging, but we propose an alternative explanation: regulated 'loose' control of complex processes of overall cellular metabolism such as protein synthesis, may lead to this variability. This could ensure cells are fluid in control and agile in response to changing conditions, and may constitute a novel organisational principle of complex metabolic cellular systems.


Asunto(s)
Biosíntesis de Proteínas , Schizosaccharomyces
9.
Annu Rev Neurosci ; 43: 391-415, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32250724

RESUMEN

Neural activity and behavior are both notoriously variable, with responses differing widely between repeated presentation of identical stimuli or trials. Recent results in humans and animals reveal that these variations are not random in their nature, but may in fact be due in large part to rapid shifts in neural, cognitive, and behavioral states. Here we review recent advances in the understanding of rapid variations in the waking state, how variations are generated, and how they modulate neural and behavioral responses in both mice and humans. We propose that the brain has an identifiable set of states through which it wanders continuously in a nonrandom fashion, owing to the activity of both ascending modulatory and fast-acting corticocortical and subcortical-cortical neural pathways. These state variations provide the backdrop upon which the brain operates, and understanding them is critical to making progress in revealing the neural mechanisms underlying cognition and behavior.


Asunto(s)
Conducta/fisiología , Encéfalo/fisiología , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Animales , Corteza Cerebral/fisiología , Humanos , Neuronas/fisiología
10.
Annu Rev Pharmacol Toxicol ; 64: 89-114, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-37722720

RESUMEN

Today's challenge for precision medicine involves the integration of the impact of molecular clocks on drug pharmacokinetics, toxicity, and efficacy toward personalized chronotherapy. Meaningful improvements of tolerability and/or efficacy of medications through proper administration timing have been confirmed over the past decade for immunotherapy and chemotherapy against cancer, as well as for commonly used pharmacological agents in cardiovascular, metabolic, inflammatory, and neurological conditions. Experimental and human studies have recently revealed sexually dimorphic circadian drug responses. Dedicated randomized clinical trials should now aim to issue personalized circadian timing recommendations for daily medical practice, integrating innovative technologies for remote longitudinal monitoring of circadian metrics, statistical prediction of molecular clock function from single-timepoint biopsies, and multiscale biorhythmic mathematical modelling. Importantly, chronofit patients with a robust circadian function, who would benefit most from personalized chronotherapy, need to be identified. Conversely, nonchronofit patients could benefit from the emerging pharmacological class of chronobiotics targeting the circadian clock.


Asunto(s)
Relojes Circadianos , Neoplasias , Masculino , Femenino , Humanos , Ritmo Circadiano , Cronoterapia , Neoplasias/tratamiento farmacológico , Preparaciones Farmacéuticas
11.
Am J Hum Genet ; 111(5): 954-965, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38614075

RESUMEN

Variability in quantitative traits has clinical, ecological, and evolutionary significance. Most genetic variants identified for complex quantitative traits have only a detectable effect on the mean of trait. We have developed the mean-variance test (MVtest) to simultaneously model the mean and log-variance of a quantitative trait as functions of genotypes and covariates by using estimating equations. The advantages of MVtest include the facts that it can detect effect modification, that multiple testing can follow conventional thresholds, that it is robust to non-normal outcomes, and that association statistics can be meta-analyzed. In simulations, we show control of type I error of MVtest over several alternatives. We identified 51 and 37 previously unreported associations for effects on blood-pressure variance and mean, respectively, in the UK Biobank. Transcriptome-wide association studies revealed 633 significant unique gene associations with blood-pressure mean variance. MVtest is broadly applicable to studies of complex quantitative traits and provides an important opportunity to detect novel loci.


Asunto(s)
Presión Sanguínea , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Humanos , Presión Sanguínea/genética , Polimorfismo de Nucleótido Simple , Modelos Genéticos , Genotipo , Variación Genética , Simulación por Computador , Fenotipo
12.
Am J Hum Genet ; 111(7): 1431-1447, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38908374

RESUMEN

Methods of estimating polygenic scores (PGSs) from genome-wide association studies are increasingly utilized. However, independent method evaluation is lacking, and method comparisons are often limited. Here, we evaluate polygenic scores derived via seven methods in five biobank studies (totaling about 1.2 million participants) across 16 diseases and quantitative traits, building on a reference-standardized framework. We conducted meta-analyses to quantify the effects of method choice, hyperparameter tuning, method ensembling, and the target biobank on PGS performance. We found that no single method consistently outperformed all others. PGS effect sizes were more variable between biobanks than between methods within biobanks when methods were well tuned. Differences between methods were largest for the two investigated autoimmune diseases, seropositive rheumatoid arthritis and type 1 diabetes. For most methods, cross-validation was more reliable for tuning hyperparameters than automatic tuning (without the use of target data). For a given target phenotype, elastic net models combining PGS across methods (ensemble PGS) tuned in the UK Biobank provided consistent, high, and cross-biobank transferable performance, increasing PGS effect sizes (ß coefficients) by a median of 5.0% relative to LDpred2 and MegaPRS (the two best-performing single methods when tuned with cross-validation). Our interactively browsable online-results and open-source workflow prspipe provide a rich resource and reference for the analysis of polygenic scoring methods across biobanks.


Asunto(s)
Bancos de Muestras Biológicas , Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Humanos , Herencia Multifactorial/genética , Fenotipo , Diabetes Mellitus Tipo 1/genética , Polimorfismo de Nucleótido Simple , Aprendizaje Automático
13.
Proc Natl Acad Sci U S A ; 121(23): e2318481121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38814869

RESUMEN

Living tissues display fluctuations-random spatial and temporal variations of tissue properties around their reference values-at multiple scales. It is believed that such fluctuations may enable tissues to sense their state or their size. Recent theoretical studies developed specific models of fluctuations in growing tissues and predicted that fluctuations of growth show long-range correlations. Here, we elaborated upon these predictions and we tested them using experimental data. We first introduced a minimal model for the fluctuations of any quantity that has some level of temporal persistence or memory, such as concentration of a molecule, local growth rate, or mechanical property. We found that long-range correlations are generic, applying to any such quantity, and that growth couples temporal and spatial fluctuations, through a mechanism that we call "fluctuation stretching"-growth enlarges the length scale of variation of this quantity. We then analyzed growth data from sepals of the model plant Arabidopsis and we quantified spatial and temporal fluctuations of cell growth using the previously developed cellular Fourier transform. Growth appears to have long-range correlations. We compared different genotypes and growth conditions: mutants with lower or higher response to mechanical stress have lower temporal correlations and longer-range spatial correlations than wild-type plants. Finally, we used theoretical predictions to merge experimental data from all conditions and developmental stages into a unifying curve, validating the notion that temporal and spatial fluctuations are coupled by growth. Altogether, our work reveals kinematic constraints on spatiotemporal fluctuations that have an impact on the robustness of morphogenesis.


Asunto(s)
Arabidopsis , Modelos Biológicos , Morfogénesis , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Flores/crecimiento & desarrollo , Flores/genética
14.
Proc Natl Acad Sci U S A ; 121(28): e2306800121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38959037

RESUMEN

Understanding the genesis of shared trial-to-trial variability in neuronal population activity within the sensory cortex is critical to uncovering the biological basis of information processing in the brain. Shared variability is often a reflection of the structure of cortical connectivity since it likely arises, in part, from local circuit inputs. A series of experiments from segregated networks of (excitatory) pyramidal neurons in the mouse primary visual cortex challenge this view. Specifically, the across-network correlations were found to be larger than predicted given the known weak cross-network connectivity. We aim to uncover the circuit mechanisms responsible for these enhanced correlations through biologically motivated cortical circuit models. Our central finding is that coupling each excitatory subpopulation with a specific inhibitory subpopulation provides the most robust network-intrinsic solution in shaping these enhanced correlations. This result argues for the existence of excitatory-inhibitory functional assemblies in early sensory areas which mirror not just response properties but also connectivity between pyramidal cells. Furthermore, our findings provide theoretical support for recent experimental observations showing that cortical inhibition forms structural and functional subnetworks with excitatory cells, in contrast to the classical view that inhibition is a nonspecific blanket suppression of local excitation.


Asunto(s)
Modelos Neurológicos , Red Nerviosa , Células Piramidales , Animales , Ratones , Células Piramidales/fisiología , Red Nerviosa/fisiología , Corteza Visual/fisiología , Corteza Visual Primaria/fisiología
15.
EMBO J ; 41(2): e109445, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34931323

RESUMEN

Genetically diverse pluripotent stem cells display varied, heritable responses to differentiation cues. Here, we harnessed these disparities through derivation of mouse embryonic stem cells from the BXD genetic reference panel, along with C57BL/6J (B6) and DBA/2J (D2) parental strains, to identify loci regulating cell state transitions. Upon transition to formative pluripotency, B6 stem cells quickly dissolved naïve networks adopting gene expression modules indicative of neuroectoderm lineages, whereas D2 retained aspects of naïve pluripotency. Spontaneous formation of embryoid bodies identified divergent differentiation where B6 showed a propensity toward neuroectoderm and D2 toward definitive endoderm. Genetic mapping identified major trans-acting loci co-regulating chromatin accessibility and gene expression in both naïve and formative pluripotency. These loci distally modulated occupancy of pluripotency factors at hundreds of regulatory elements. One trans-acting locus on Chr 12 primarily impacted chromatin accessibility in embryonic stem cells, while in epiblast-like cells, the same locus subsequently influenced expression of genes enriched for neurogenesis, suggesting early chromatin priming. These results demonstrate genetically determined biases in lineage commitment and identify major regulators of the pluripotency epigenome.


Asunto(s)
Diferenciación Celular , Epigenoma , Células Madre Embrionarias de Ratones/metabolismo , Animales , Linaje de la Célula , Ensamble y Desensamble de Cromatina , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Ratones , Ratones Endogámicos DBA , Células Madre Embrionarias de Ratones/citología , Secuencias Reguladoras de Ácidos Nucleicos
16.
Immunity ; 46(4): 609-620, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28389069

RESUMEN

Immune cells communicate by exchanging cytokines to achieve a context-appropriate response, but the distances over which such communication happens are not known. Here, we used theoretical considerations and experimental models of immune responses in vitro and in vivo to quantify the spatial extent of cytokine communications in dense tissues. We established that competition between cytokine diffusion and consumption generated spatial niches of high cytokine concentrations with sharp boundaries. The size of these self-assembled niches scaled with the density of cytokine-consuming cells, a parameter that gets tuned during immune responses. In vivo, we measured interactions on length scales of 80-120 µm, which resulted in a high degree of cell-to-cell variance in cytokine exposure. Such heterogeneous distributions of cytokines were a source of non-genetic cell-to-cell variability that is often overlooked in single-cell studies. Our findings thus provide a basis for understanding variability in the patterning of immune responses by diffusible factors.


Asunto(s)
Comunicación Celular/inmunología , Citocinas/inmunología , Sistema Inmunológico/inmunología , Transducción de Señal/inmunología , Animales , Línea Celular Tumoral , Células Cultivadas , Citocinas/metabolismo , Difusión , Citometría de Flujo , Humanos , Sistema Inmunológico/citología , Sistema Inmunológico/metabolismo , Inmunohistoquímica , Interleucina-2/genética , Interleucina-2/inmunología , Interleucina-2/farmacología , Subunidad alfa del Receptor de Interleucina-2/inmunología , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Modelos Inmunológicos , Factor de Transcripción STAT5/inmunología , Factor de Transcripción STAT5/metabolismo , Transducción de Señal/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo
17.
Proc Natl Acad Sci U S A ; 120(23): e2212154120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37253012

RESUMEN

The personality trait neuroticism is tightly linked to mental health, and neurotic people experience stronger negative emotions in everyday life. But, do their negative emotions also show greater fluctuation? This commonsensical notion was recently questioned by [Kalokerinos et al. Proc Natl Acad Sci USA 112, 15838-15843 (2020)], who suggested that the associations found in previous studies were spurious. Less neurotic people often report very low levels of negative emotion, which is usually measured with bounded rating scales. Therefore, they often pick the lowest possible response option, which severely constrains the amount of emotional variability that can be observed in principle. Applying a multistep statistical procedure that is supposed to correct for this dependency, [Kalokerinos et al. Proc Natl Acad Sci USA 112, 15838-15843 (2020)] no longer found an association between neuroticism and emotional variability. However, like other common approaches for controlling for undesirable effects due to bounded scales, this method is opaque with respect to the assumed mechanism of data generation and might not result in a successful correction. We thus suggest an alternative approach that a) takes into account that emotional states outside of the scale bounds can occur and b) models associations between neuroticism and both the mean and variability of emotion in a single step with the help of Bayesian censored location-scale models. Simulations supported this model over alternative approaches. We analyzed 13 longitudinal datasets (2,518 individuals and 11,170 measurements in total) and found clear evidence that more neurotic people experience greater variability in negative emotion.


Asunto(s)
Emociones , Salud Mental , Humanos , Neuroticismo/fisiología , Teorema de Bayes , Emociones/fisiología
18.
Proc Natl Acad Sci U S A ; 120(33): e2203828120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549298

RESUMEN

Cellular omics such as single-cell genomics, proteomics, and microbiomics allow the characterization of tissue and microbial community composition, which can be compared between conditions to identify biological drivers. This strategy has been critical to revealing markers of disease progression, such as cancer and pathogen infection. A dedicated statistical method for differential variability analysis is lacking for cellular omics data, and existing methods for differential composition analysis do not model some compositional data properties, suggesting there is room to improve model performance. Here, we introduce sccomp, a method for differential composition and variability analyses that jointly models data count distribution, compositionality, group-specific variability, and proportion mean-variability association, being aware of outliers. sccomp provides a comprehensive analysis framework that offers realistic data simulation and cross-study knowledge transfer. Here, we demonstrate that mean-variability association is ubiquitous across technologies, highlighting the inadequacy of the very popular Dirichlet-multinomial distribution. We show that sccomp accurately fits experimental data, significantly improving performance over state-of-the-art algorithms. Using sccomp, we identified differential constraints and composition in the microenvironment of primary breast cancer.


Asunto(s)
Genómica , Microbiota , Proteómica/métodos , Simulación por Computador , Algoritmos
19.
Proc Natl Acad Sci U S A ; 120(8): e2219049120, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36787352

RESUMEN

Biological neurons show significant cell-to-cell variability but have the striking ability to maintain their key firing properties in the face of unpredictable perturbations and stochastic noise. Using a population of multi-compartment models consisting of soma, neurites, and axon for the lateral pyloric neuron in the crab stomatogastric ganglion, we explore how rebound bursting is preserved when the 14 channel conductances in each model are all randomly varied. The coupling between the axon and other compartments is critical for the ability of the axon to spike during bursts and consequently determines the set of successful solutions. When the coupling deviates from a biologically realistic range, the neuronal tolerance of conductance variations is lessened. Thus, the gross morphological features of these neurons enhance their robustness to perturbations of channel densities and expand the space of individual variability that can maintain a desired output pattern.


Asunto(s)
Modelos Neurológicos , Neuronas , Neuronas/fisiología , Axones , Píloro , Potenciales de Acción/fisiología
20.
Proc Natl Acad Sci U S A ; 120(28): e2210152120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37406102

RESUMEN

Sepsis has emerged as a global health burden associated with multiple organ dysfunction and 20% mortality rate in patients. Numerous clinical studies over the past two decades have correlated the disease severity and mortality in septic patients with impaired heart rate variability (HRV), as a consequence of impaired chronotropic response of sinoatrial node (SAN) pacemaker activity to vagal/parasympathetic stimulation. However, the molecular mechanism(s) downstream to parasympathetic inputs have not been investigated yet in sepsis, particularly in the SAN. Based on electrocardiography, fluorescence Ca2+ imaging, electrophysiology, and protein assays from organ to subcellular level, we report that impaired muscarinic receptor subtype 2-G protein-activated inwardly-rectifying potassium channel (M2R-GIRK) signaling in a lipopolysaccharide-induced proxy septic mouse model plays a critical role in SAN pacemaking and HRV. The parasympathetic responses to a muscarinic agonist, namely IKACh activation in SAN cells, reduction in Ca2+ mobilization of SAN tissues, lowering of heart rate and increase in HRV, were profoundly attenuated upon lipopolysaccharide-induced sepsis. These functional alterations manifested as a direct consequence of reduced expression of key ion-channel components (GIRK1, GIRK4, and M2R) in the mouse SAN tissues and cells, which was further evident in the human right atrial appendages of septic patients and likely not mediated by the common proinflammatory cytokines elevated in sepsis.


Asunto(s)
Lipopolisacáridos , Sepsis , Humanos , Animales , Ratones , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , Nodo Sinoatrial/fisiología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Transducción de Señal/fisiología , Sepsis/inducido químicamente , Sepsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA