Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 68(3): e0089323, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38259090

RESUMEN

Staphylococcus aureus is an important human pathogen and vancomycin is widely used for the treatment of S. aureus infections. The global regulator agr is known as a well-described virulence regulator. Previous studies have found that agr-dysfunction strains are more likely to develop into vancomycin-resistant strains, but the mechanism for this phenomenon remains unknown. VraSR is a two-component regulatory system related to vancomycin resistance. In this study, we found that the expression levels of vraR were higher in agr-dysfunction clinical strains than in the agr-functional strains. We knocked out agr in a clinical strain, and quantitative reverse transcription PCR and ß-galactosidase activity assays revealed that agr repressed transcription of vraR. After vancomycin exposures, population analysis revealed larger subpopulations displaying reduced susceptibility in agr knockout strain compared with wild-type strain, and this pattern was also observed in agr-dysfunction clinical strains compared with the agr-functional strains. Electrophoretic mobility experiment demonstrated binding of purified AgrA to the promoter region of vraR. In conclusion, our results indicated that the loss of agr function in S. aureus may contribute to the evolution of reduced vancomycin susceptibility through the downregulation of vraSR.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Vancomicina/farmacología , Antibacterianos/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/epidemiología , Regiones Promotoras Genéticas/genética , Proteínas Bacterianas/metabolismo
2.
Microb Pathog ; 172: 105766, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36087689

RESUMEN

Streptococcus suis (S. suis) is an important zoonotic pathogen that can cause high morbidity and mortality in both humans and swine. As the most important life-threatening infection of the central nervous system (CNS), meningitis is an important syndrome of S. suis infection. The vancomycin resistance associated sensor/regulator (VraSR) is a critical two-component signal transduction system that affects the ability of S. suis to resist the host innate immune system and promotes its ability to adhere to brain microvascular endothelial cells (BMECs). Prior work also found mice infected with ΔvraSR had no obvious neurological symptoms, unlike mice infected with wild-type SC19. Whether and how VraSR participates in the development of S. suis meningitis remains unknown. Here, we found ΔvraSR-infected mice did not show obvious meningitis, compared with wild-type SC19-infected mice. Moreover, the proinflammatory cytokines and chemokines in serum and brains of ΔvraSR-infected mice, including IL-6, TNF-α, MCP-1 and IFN-γ, were significantly lower than wild-type infected group. Besides, blood-brain barrier (BBB) permeability also confirmed that the mutant had lower ability to disrupt BBB. Furthermore, in vivo and in vitro experiments showed that SC19 could increase BBB permeability by downregulating tight junction (TJ) proteins such as ZO-1, ß-Catenin, Occludin, and Clauidn-5, compared with mutant ΔvraSR. These findings provide new insight into the influence of S. suis VraSR on BBB disruption during the pathogenic process of streptococcal meningitis, thereby offering potential targets for future preventative and therapeutic strategies against this disease.


Asunto(s)
Meningitis Bacterianas , Infecciones Estreptocócicas , Streptococcus suis , Humanos , Animales , Ratones , Porcinos , Streptococcus suis/metabolismo , Barrera Hematoencefálica/metabolismo , beta Catenina/metabolismo , Células Endoteliales/metabolismo , Resistencia a la Vancomicina , Ocludina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Meningitis Bacterianas/metabolismo , Infecciones Estreptocócicas/metabolismo , Transducción de Señal/fisiología , Citocinas/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Quimiocinas/metabolismo
3.
BMC Microbiol ; 19(1): 153, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31277575

RESUMEN

BACKGROUND: Staphylococcus aureus remains a medical challenge in the treatment of bacterial infections. It has acquired resistance to commonly used antibiotics, and to those considered to be the last weapons in treating staphylococcal infections, such as vancomycin. Studies have revealed that S. aureus is capable of mounting a rapid response to antibiotics that target cell wall peptidoglycan biosynthesis, such as ß-lactams and vancomycin. The two-component system VraSR has been linked to the coordination of this response. VraS is a histidine kinase that undergoes autophosphorylation in the presence of signals elicited upon cell wall damage and it then transfers its phosphoryl group to VraR. VraR is a response regulator protein that functions as a transcription factor. Phosphorylation of VraR leads to its dimerization, which is required for optimum binding to its target promoters. Two-component systems have been targeted for the development of antibacterial agents. Deletion of the vraS or vraR gene has been shown to re-sensitize S. aureus to ß-lactams and vancomycin. RESULTS: In this study, we explored perturbation of the VraR phosphorylation-induced activation as a means to inhibit the VraSR-mediated signal transduction pathway. We show that dimerization of VraR is essential for the phosphorylation-induced activation of VraR. A single point mutation in the dimerization interface of VraR, in which Met13 was replaced by Ala, led to the inability of VraR to dimerize and to bind optimally to the target promoter. The consequences of these in vitro molecular deficiencies are equally dramatic in vivo. Complementation of a vraR deletion S. aureus strain with the vraRM13Ala mutant gene failed to induce the cell wall stress response. CONCLUSIONS: This study highlights the potential of targeting the phosphorylation-induced dimerization of VraR to disrupt the S. aureus cell wall stress response and in turn to re-sensitize S. aureus to ß-lactams and vancomycin.


Asunto(s)
Proteínas Bacterianas/fisiología , Pared Celular/metabolismo , Proteínas de Unión al ADN/fisiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/patogenicidad , Fosforilación , Multimerización de Proteína , Estrés Fisiológico , Resistencia a la Vancomicina/fisiología
4.
Int Microbiol ; 22(4): 411-417, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30811005

RESUMEN

Glycopeptides, particularly the cell wall-acting antibiotic vancomycin, are the safest cure for methicillin-resistant Staphylococcus aureus. The aim of this study was to evaluate nonsusceptibility of clinical isolates of S. aureus to vancomycin and investigate mutations in vraSR, a cell wall synthesis regulator gene, in vancomycin-resistant strains. Susceptibility of 110 clinical strains of S. aureus to methicillin and vancomycin were determined using disc diffusion method and determination of minimum inhibitory concentration, respectively. Presence of mecA and vanA genes was determined by PCR. Determination of spa types and mutations of the vraSR gene in vancomycin nonsusceptible isolates were assessed by PCR-sequencing analyses. In total, 47 isolates (42.73%) were recognized as MRSA, three (2.73%) strains were resistant to vancomycin, and eight (7.27%) strains were vancomycin intermediates. The MIC of vancomycin was 4-64 µg/ml in these isolates. All vancomycin nonsusceptible S. aureus strains were mecA positive and one isolate was positive for the vanA gene. Spa type t030 was found as the most common type. In vraSR sequence analysis, all 11 vancomycin nonsusceptible isolates had the D59E mutation in the vraR and E45G in vraS genes. R117H, R121S, and R121I are the other identified missense mutations in the vraR gene. The identification of a high percentage of MRSA and presence of VRSA and VISA isolates is a serious warning about the treatment of future MRSA infections and reveals the need for new and effective therapeutic agents.


Asunto(s)
Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Resistencia a la Vancomicina , Vancomicina/farmacología , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Humanos , Irán , Meticilina/farmacología , Staphylococcus aureus Resistente a Meticilina/clasificación , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/clasificación , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
5.
Microbiol Spectr ; : e0037023, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37646518

RESUMEN

The overuse of antibiotics in humans and livestock has driven the emergence and spread of antimicrobial resistance and has therefore prompted research on the discovery of novel antibiotics. Complestatin (Cm) and corbomycin (Cb) are glycopeptide antibiotics with an unprecedented mechanism of action that is active even against methicillin-resistant and daptomycin-resistant Staphylococcus aureus. They bind to peptidoglycan and block the activity of peptidoglycan hydrolases required for remodeling the cell wall during growth. Bacterial signaling through two-component transduction systems (TCSs) has been associated with the development of S. aureus antimicrobial resistance. However, the role of TCSs in S. aureus susceptibility to Cm and Cb has not been previously addressed. In this study, we determined that, among all 16 S. aureus TCSs, VraSR is the only one controlling the susceptibility to Cm and Cb. Deletion of vraSR increased bacterial susceptibility to both antibiotics. Epistasis analysis with members of the vraSR regulon revealed that deletion of spdC, which encodes a membrane protein that scaffolds SagB for cleavage of peptidoglycan strands to achieve physiological length, in the vraSR mutant restored Cm and Cb susceptibility to wild-type levels. Moreover, deletion of either spdC or sagB in the wild-type strain increased resistance to both antibiotics. Further analyses revealed a significant rise in the relative amount of peptidoglycan and its total degree of cross-linkage in ΔspdC and ΔsagB mutants compared to the wild-type strain, suggesting that these changes in the cell wall provide resistance to the damaging effect of Cm and Cb. IMPORTANCE Although Staphylococcus aureus is a common colonizer of the skin and digestive tract of humans and many animals, it is also a versatile pathogen responsible for causing a wide variety and number of infections. Treatment of these infections requires the bacteria to be constantly exposed to antibiotic treatment, which facilitates the selection of antibiotic-resistant strains. The development of new antibiotics is, therefore, urgently needed. In this paper, we investigated the role of the sensory system of S. aureus in susceptibility to two new antibiotics: corbomycin and complestatin. The results shed light on the cell-wall synthesis processes that are affected by the presence of the antibiotic and the sensory system responsible for coordinating their activity.

7.
mSphere ; 6(5): e0064121, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34550006

RESUMEN

The two-component system VraSR responds to the cell wall-active antibiotic stress in Staphylococcus epidermidis. To study its regulatory function in biofilm formation, a vraSR deletion mutant (ΔvraSR) was constructed using S. epidermidis strain 1457 (SE1457) as the parent strain. Compared to SE1457, the ΔvraSR mutant showed impaired biofilm formation both in vitro and in vivo with a higher ratio of dead cells within the biofilm. Consistently, the ΔvraSR mutant produced much less polysaccharide intercellular adhesin (PIA). The ΔvraSR mutant also showed increased susceptibility to the cell wall inhibitor and SDS, and its cell wall observed under a transmission electron microscope (TEM) appeared to be thinner and interrupted, which is in accordance with higher susceptibility to the stress. Complementation of vraSR in the ΔvraSR mutant restored the biofilm formation and the cell wall thickness to wild-type levels. Transcriptome sequencing (RNA-Seq) showed that the vraSR deletion affected the transcription levels of 73 genes, including genes involved in biofilm formation, bacterial programmed cell death (CidA-LrgAB system), glycolysis/gluconeogenesis, the pentose phosphate pathway (PPP), and the tricarboxylic acid (TCA) cycle, etc. The results of RNA-Seq were confirmed by quantitative real-time reverse transcription-PCR (qRT-PCR). In the ΔvraSR mutant, the expression of icaA and lrgAB was downregulated and the expression of icaR and cidA was upregulated, in comparison to that of SE1457. The transcriptional levels of antibiotic-resistant genes (pbp2, serp1412, murAA, etc.) had no significant changes. An electrophoretic mobility shift assay further revealed that phosphorylated VraR bound to the promoter regions of the ica operon, as well as its own promoter region. This study demonstrates that in S. epidermidis, VraSR is an autoregulator and directly regulates biofilm formation in an ica-dependent manner. Upon cell wall stress, it indirectly regulates cell death and drug resistance in association with alterations to multiple metabolism pathways. IMPORTANCE S. epidermidis is a leading cause of hospital-acquired catheter-related infections, and its pathogenicity depends mostly on its ability to form biofilms on implants. The biofilm formation is a complex procedure that involves multiple regulating factors. Here, we show that a vancomycin resistance-associated two-component regulatory system, VraSR, plays an important role in modulating S. epidermidis biofilm formation and tolerance to stress. We demonstrate that S. epidermidis VraSR is an autoregulated system that selectively responds to stress targeting cell wall synthesis. Besides, phosphorylated VraR can bind to the promoter region of the ica operon and directly regulates polysaccharide intercellular adhesin production and biofilm formation in S. epidermidis. Furthermore, VraSR may indirectly modulate bacterial cell death and extracellular DNA (eDNA) release in biofilms through the CidA-LrgAB system. This work provides a new molecular insight into the mechanisms of VraSR-mediated modulation of the biofilm formation and cell death of S. epidermidis.


Asunto(s)
Biopelículas , Perfilación de la Expresión Génica , Operón , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/genética , Resistencia a la Vancomicina , Animales , Proteínas Bacterianas/genética , Femenino , Eliminación de Gen , Pruebas de Sensibilidad Microbiana , Polisacáridos Bacterianos , Conejos , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
Antibiotics (Basel) ; 10(7)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34356742

RESUMEN

Methicillin-resistant Staphylococcus aureus infections are a global health problem. New control strategies, including fifth-generation cephalosporins such as ceftaroline, have been developed, however rare sporadic resistance has been reported. Our study aimed to determine whether disruption of two-component environmental signal systems detectably led to enhanced susceptibility to ceftaroline in S. aureus CA-MRSA strain MW2 at sub-MIC concentrations where cells normally continue to grow. A collection of sequential mutants in all fifteen S. aureus non-essential two-component systems (TCS) was first screened for ceftaroline sub-MIC susceptibility, using the spot population analysis profile method. We discovered a role for both ArlRS and VraSR TCS as determinants responsible for MW2 survival in the presence of sub-MIC ceftaroline. Subsequent analysis showed that dual disruption of both arlRS and vraSR resulted in a very strong ceftaroline hypersensitivity phenotype. Genetic complementation analysis confirmed these results and further revealed that arlRS and vraSR likely regulate some common pathway(s) yet to be determined. Our study shows that S. aureus uses particular TCS environmental sensing systems for this type of defense and illustrates the proof of principle that if these TCS were inhibited, the efficacy of certain antibiotics might be considerably enhanced.

9.
Microbiol Spectr ; 9(2): e0052821, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34668723

RESUMEN

Staphylococcus aureus is an opportunistic pathogen that causes a wide range of infections. Due to the rapid evolution of antibiotic resistance that leads to treatment failure, it is important to understand the underlying mechanisms. Here, the cell wall structures of several laboratory vancomycin-intermediate S. aureus (VISA) strains were analyzed. Among the VISA strains were S. aureus VC40, which accumulated 79 mutations, including most importantly 2 exchanges in the histidine-kinase VraS, and developed full resistance against vancomycin (MIC, 64 µg/ml); a revertant S. aureus VC40R, which has an additional mutation in vraR (MIC, 4 µg/ml); and S. aureus VraS(VC40), in which the 2 vraS mutations were reconstituted into a susceptible background (MIC, 4 µg/ml). A ultraperformance liquid chromatography (UPLC) analysis showed that S. aureus VC40 had a significantly decreased cross-linking of the peptidoglycan. Both S. aureus VC40 and S. aureus VraS(VC40) displayed reduced autolysis and an altered autolysin profile in a zymogram. Most striking was the significant increase in d-alanine and N-acetyl-d-glucosamine (GlcNAc) substitution of the wall teichoic acids (WTAs) in S. aureus VC40. Nuclear magnetic resonance (NMR) analysis revealed that this strain had mostly ß-glycosylated WTAs in contrast to the other strains, which showed only the α-glycosylation peak. Salt stress induced the incorporation of ß-GlcNAc anomers and drastically increased the vancomycin MIC for S. aureus VC40R. In addition, ß-glycosylated WTAs decreased the binding affinity of AtlA, the major autolysin of S. aureus, to the cell wall, compared with α-glycosylated WTAs. In conclusion, there is a novel connection between wall teichoic acids, autolysis, and vancomycin susceptibility in S. aureus. IMPORTANCE Infections with methicillin-resistant Staphylococcus aureus are commonly treated with vancomycin. This antibiotic inhibits cell wall biosynthesis by binding to the cell wall building block lipid II. We set out to characterize the mechanisms leading to decreased vancomycin susceptibility in a laboratory-generated strain, S. aureus VC40. This strain has an altered cell wall architecture with a thick cell wall with low cross-linking, which provides decoy binding sites for vancomycin. The low cross-linking, necessary for this resistance mechanism, decreases the stability of the cell wall against lytic enzymes, which separate the daughter cells. Protection against these enzymes is provided by another cell wall polymer, the teichoic acids, which contain an unusually high substitution with sugars in the ß-conformation. By experimentally increasing the proportion of ß-N-acetyl-d-glucosamine in a closely related isolate through the induction of salt stress, we could show that the ß-conformation of the sugars plays a vital role in the resistance of S. aureus VC40.


Asunto(s)
Ácidos Teicoicos/metabolismo , Ácidos Teicoicos/farmacología , Staphylococcus aureus Resistente a Vancomicina/efectos de los fármacos , Staphylococcus aureus Resistente a Vancomicina/metabolismo , Vancomicina/farmacología , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Pared Celular/metabolismo , Proteínas de Unión al ADN/genética , Glicosilación , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/metabolismo , Pruebas de Sensibilidad Microbiana , Mutación , Peptidoglicano/metabolismo , Infecciones Estafilocócicas , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Staphylococcus aureus Resistente a Vancomicina/genética
10.
Biomedicines ; 10(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35052714

RESUMEN

The vancomycin-resistance associated sensor/regulator, VraSR two-component regulatory-system (VraSR), regulates virulence and the response of Staphylococcus aureus (SA) to environmental stress. To investigate the role of VraSR in SA skin and soft tissue infections (SSTI), we inactivated the VraSR of a clinical CA-MRSA ST30 strain by insertional mutation in vraR gene using the TargeTron-Gene Knockout System. We constructed an organotypic keratinocyte fibroblast co-culture (3D-skin model) and a humanized mouse as SSTI infection models. In the 3D-skin model, inactivation of VraSR in the strains ST30 and USA300 showed 1-log reduction in adhesion and internalization (p < 0.001) compared to the respective wildtype. The mutant strains of ST30 (p < 0.05) and USA300-LAC (p < 0.001) also exhibited reduced apoptosis. The wildtype ST30 infection in the humanized mouse model demonstrated increased skin lesion size and bacterial burden compared to BALB/c mice (p < 0.01). The response of the humanized mouse towards the MRSA infection exhibited human similarity indicating that the humanized mouse SSTI model is more suitable for evaluating the role of virulence determinants. Inactivation of VraSR in ST30 strain resulted in decreased skin lesion size in the humanized mouse SSTI model (p < 0.05) and reduction in apoptotic index (p < 0.01) when compared with the wildtype. Our results reveal that inactivating the VraSR system may be a potent anti-virulence approach to control MRSA infection.

11.
mSphere ; 4(1)2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30760612

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) threatens human health in hospital and community settings. The lipopeptide antibiotic daptomycin (DAP) is a frequently used treatment option for MRSA infection. DAP exposure can cause bacterial resistance because mutations are induced in genes implicated in cell membrane and cell wall metabolism. Adaptations aimed at surviving antimicrobial pressure can affect bacterial physiology and modify in vivo aptitude and pathogenesis. In this study, clinical DAP-susceptible (DAPs) and DAP-resistant (DAPr) MRSA isolates were used to investigate associations between DAP resistance and staphylococcal virulence. We previously found that VraSR is a critical sensor of cell membrane/wall homeostasis associated with DAP acquisition during MRSA infection. The present study found that DAPr CB1634 and CB5014 MRSA strains with vraSR upregulation were less virulent than their susceptible counterparts, CB1631 and CB5013. Differential gene-transcription profile analysis revealed that DAPr CB1634 had decreased agr two-component system expression, virulence factors, and highly suppressed hemolysis activity. Functional genetic analysis performed in DAPr CB1634 strains using vraSR inactivation followed by gene complementation found that vraSR acted as a transcriptional agrA regulator. These results indicated that VraSR has a broad range of regulatory functions. VraSR also appeared to affect DAPr adherence to epithelial cells, which would affect DAPr strain colonization and survival in the host. The correlation between DAP resistance and decreased virulence was also found in the CB5013 (DAPs) and CB5014 (DAPr) pair. Taken together, these findings are the first evidence that DAP resistance and MRSA virulence are tightly connected and involve compromised expression of regulatory and virulence determinants.IMPORTANCE Methicillin-resistant S. aureus continues to develop resistance to antimicrobials, including those in current clinical use as daptomycin (DAP). Resistance to DAP arises by mutations in cell membrane and cell wall genes and/or upregulation of the two-component VraSR system. However, less is known about the connection between the pathogen and virulence traits during DAP resistance development. We provide new insights into VraSR and its regulatory role for virulence factors during DAP resistance, highlighting coordinated interactions that favor the higher persistence of MRSA DAP-resistant strains in the infected host.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Daptomicina/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Animales , Adhesión Bacteriana , Farmacorresistencia Bacteriana Múltiple , Células Epiteliales/microbiología , Regulación Bacteriana de la Expresión Génica , Genotipo , Meticilina/farmacología , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Ratones SCID , Pruebas de Sensibilidad Microbiana , Fenotipo , Sepsis/microbiología , Infecciones Estafilocócicas/microbiología , Virulencia/genética
12.
Front Microbiol ; 10: 1222, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31214151

RESUMEN

The VraSR two-component system is a vancomycin resistance-associated sensor/regulator that is upregulated in vancomycin-intermediate Staphylococcus aureus (VISA) and heterogeneous VISA (hVISA) strains. VISA/hVISA show reduced susceptibility to vancomycin and an increased ability to evade host immune responses, resulting in enhanced clinical persistence. However, the underlying mechanism remains unclear. Recent studies have reported that S. aureus strains have developed some strategies to survive within the host cell by using autophagy processes. In this study, we confirmed that clinical isolates with high vraR expression showed increased survival in murine macrophage-like RAW264.7 cells. We constructed isogenic vraSR deletion strain Mu3ΔvraSR and vraSR-complemented strain Mu3ΔvraSR-C to ascertain whether S. aureus uses the VraSR system to modulate autophagy for increasing intracellular survival in RAW264.7. Overall, the survival of Mu3ΔvraSR in RAW264.7 cells was reduced at all infection time points compared with that of the Mu3 wild-type strain. Mu3ΔvraSR-infected RAW264.7 cells also showed decreased transcription of autophagy-related genes Becn1 and Atg5, decreased LC3-II turnover and increased p62 degradation, and fewer visible punctate LC3 structures. In addition, we found that inhibition of autophagic flux significantly increased the survival of Mu3ΔvraSR in RAW264.7 cells. Together, these results demonstrate that S. aureus uses the VraSR system to modulate host-cell autophagy processes for increasing its own survival within macrophages. Our study provides novel insights into the impact of VraSR on bacterial infection and will help to further elucidate the relationship between bacteria and the host immune response. Moreover, understanding the autophagic pathway in vraSR associated immunity has potentially important implications for preventing or treating VISA/hVISA infection.

13.
Microbes Infect ; 21(8-9): 361-367, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31009806

RESUMEN

Vancomycin-intermediate Staphylococcus aureus (VISA) and heterogeneous VISA (hVISA) are increasingly being reported as associated with treatment failure. Previous studies indicated that VISA/hVISA resists clearance by the host immune system, thereby allowing persistence within the host. VraSR is a vancomycin-resistance-associated sensor/regulator that is highly expressed in VISA/hVISA strains. Whether VraSR plays an important role in immune escape by VISA/hVISA strains is unclear. Here, we constructed a vraSR deletion mutant strain (ΔvraSR) and complementary strain (CΔvraSR) in Mu3 to investigate the effect of VraSR on S. aureus viability in polymorphonuclear leukocytes (PMNs). The ΔvraSR strain was more susceptible to phagocytosis by PMNs and reduced the ability of S. aureus to survive within PMNs. ΔvraSR showed phenotypic changes, including a thinner cell wall, reduced adhesion, and decreased biofilm-forming ability. Real-time quantitative PCR revealed that the transcript levels of cell wall synthesis-related genes (cap5K, cap5N, nanA, tagA, murD) and adhesion-associated genes (fnbA, fnbB, clfA, ebps, sbi) were significantly decreased in the ΔvraSR strain compared with Mu3. In summary, VraSR promotes the survival of S. aureus in the host, which may be associated with an increase in the thickness of the cell wall, adhesion, and biofilm formation.


Asunto(s)
Proteínas Bacterianas/inmunología , Proteínas de Unión al ADN/inmunología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/inmunología , Resistencia a la Vancomicina , Adhesión Bacteriana/genética , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Pared Celular/genética , Pared Celular/metabolismo , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Evasión Inmune , Viabilidad Microbiana/genética , Mutación , Neutrófilos/microbiología , Resistencia a la Vancomicina/genética , Resistencia a la Vancomicina/inmunología
14.
Virulence ; 9(1): 771-782, 2018 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-29471718

RESUMEN

Streptococcus suis is a highly invasive pathogen that can cause sepsis and meningitis in pigs and humans. However, we have limited understanding of the mechanisms S. suis uses to evade innate immunity. To investigate the involvement of the two-component signal transduction system of S. suis in host immune defense, we examined the expression of 15 response regulators of S. suis following stimulation with polymorphonuclear leukocytes (PMNs). We found that several response regulators were significantly up-regulated including vraR. Thus, we constructed an isogenic deletion mutant of vraSR genes in S. suis and demonstrated VraSR promotes both bacterial survival in human blood and resistance to human PMN-mediated killing. The VraSR mutant was more susceptible to phagocytosis by human PMNs and had greater sensitivity to oxidant and lysozyme than wild-type S. suis. Furthermore, in vitro findings and in vivo evidence from a mouse infection model together strongly demonstrate that ΔvraSR had greatly attenuated virulence compared with wild-type S. suis. Collectively, our data reveal that VraSR is a critical regulatory system that contributes to the survival of S. suis and its ability to defend against host innate immunity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Evasión Inmune , Inmunidad Innata , Transducción de Señal , Infecciones Estreptocócicas/patología , Streptococcus suis/patogenicidad , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Actividad Bactericida de la Sangre , Células Cultivadas , Modelos Animales de Enfermedad , Eliminación de Gen , Humanos , Ratones , Viabilidad Microbiana , Muramidasa/metabolismo , Neutrófilos/inmunología , Neutrófilos/microbiología , Oxidantes/toxicidad , Fagocitosis , Infecciones Estreptocócicas/inmunología , Streptococcus suis/genética , Streptococcus suis/inmunología , Virulencia , Factores de Virulencia/genética
15.
Jpn J Infect Dis ; 70(4): 458-460, 2017 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-28250264

RESUMEN

Staphylococcus haemolyticus is a coagulase-negative staphylococcus that is frequently isolated from blood cultures. Here, we report a case of methicillin-susceptible S. haemolyticus that is resistant to teicoplanin (TEC) and heteroresistant to vancomycin (VAN). The isolate was susceptible to cefoxitin and resistant to TEC by Etest. Population analysis profile-area under the curve analysis confirmed the presence of a VAN heteroresistant subpopulation. Next-generation sequencing analysis of the genome revealed the presence of blaZ and msr(A), which encode cross-resistance to macrolide, lincosamide, and streptogramin B, and the quinolone resistance-conferring gene norA. In addition, several amino acid substitutions were observed in the TEC resistance operon tcaRAB, including I3N, I390N, and L450I in tcaA and L44V, G52V, and S87P in tcaR, as well as in the transpeptidase encoding gene walK (D336Y, R375L, and V404A) and L315 and P316 in graS. We hypothesized that this combination of mutations could confer TEC resistance and reduced VAN susceptibility.


Asunto(s)
Antibacterianos/farmacología , Bacteriemia/microbiología , Farmacorresistencia Bacteriana , Meticilina/farmacología , Infecciones Estafilocócicas/microbiología , Staphylococcus haemolyticus/efectos de los fármacos , Teicoplanina/farmacología , Sustitución de Aminoácidos , Variación Biológica Poblacional , Cefoxitina/farmacología , Pruebas Antimicrobianas de Difusión por Disco , Femenino , Genes Bacterianos , Humanos , Persona de Mediana Edad , Mutación Missense , Operón , Análisis de Secuencia de ADN , Staphylococcus haemolyticus/aislamiento & purificación , Secuenciación Completa del Genoma
16.
Int J Antimicrob Agents ; 47(5): 362-7, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27084050

RESUMEN

The objective of this study was to comprehensively identify the target genes regulated by the two-component regulatory system VraSR in Staphylococcus aureus and to clarify the role of VraSR in low-level vancomycin resistance. Expression of vraS was determined by real-time quantitative reverse transcriptase PCR (qRT-PCR). A clinical heterogeneous vancomycin-intermediate S. aureus (hVISA) strain B6D and a vancomycin-intermediate S. aureus (VISA) strain D7 that was induced from a meticillin-resistant S. aureus strain were selected to construct vraSR null mutants by allelic replacement. The vraSR-complemented strain B6D_c was also constructed by allelic replacement. Genes differentially expressed in the wild-type, vraSR null mutant and complemented strains were detected using RNA-Seq and were validated by qRT-PCR. Compared with vancomycin-susceptible S. aureus strains, expression of vraS was upregulated in all four isogenic hVISA strains. Vancomycin minimum inhibitory concentrations (MICs) in the vraSR null mutants B6D-ΔvraSR and D7-ΔvraSR were significantly lower than in the wild-type strains B6D and D7 and the complemented strain B6D_c. RNA-Seq and qRT-PCR data showed that expression of genes encoding FmtA protein, foldase protein PrsA, capsular polysaccharide biosynthesis glycosyltransferase, TcaA, a putative membrane protein, and six hypothetical proteins was down regulated in both vraSR-null mutants B6D-ΔvraSR and D7-ΔvraSR. Most of these differentially expressed proteins are involved in cell wall biosynthesis, which is associated with vancomycin resistance in S. aureus. In conclusion, VraSR plays an important role in S. aureus strains with low-level vancomycin resistance. PrsA, FmtA, glycosyltransferase and TcaA are regulated directly or indirectly by VraSR.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Proteínas de Unión al ADN/biosíntesis , Perfilación de la Expresión Génica , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Resistencia a la Vancomicina , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Eliminación de Gen , Prueba de Complementación Genética , Humanos , Pruebas de Sensibilidad Microbiana , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN
17.
Microbes Infect ; 22(3): 93-95, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31539563
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA