Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Ecol ; 27(17): 3515-3524, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30040159

RESUMEN

Spatial variation in pathogen-mediated selection is predicted to influence the evolutionary trajectory of host populations and lead to spatial variation in their immunogenetic composition. However, to date few studies have been able to directly link small-scale spatial variation in infection risk to host immune gene evolution in natural, nonhuman populations. Here, we use a natural rodent-Borrelia system to test for associations between landscape-level spatial variation in Borrelia infection risk along replicated elevational gradients in the Swiss Alps and Toll-like receptor 2 (TLR2) evolution, a candidate gene for Borrelia resistance, across bank vole (Myodes glareolus) populations. We found that Borrelia infection risk (i.e., the product of Borrelia prevalence in questing ticks and the average tick load of voles at a sampling site) was spatially variable and significantly negatively associated with elevation. Across sampling sites, Borrelia prevalence in bank voles was significantly positively associated with Borrelia infection risk along the elevational clines. We observed a significant association between naturally occurring TLR2 polymorphisms in hosts and their Borrelia infection status. The TLR2 variant associated with a reduced likelihood of Borrelia infection was most common in rodent populations at lower elevations that face a high Borrelia infection risk, and its frequency changed in accordance with the change in Borrelia infection risk along the elevational clines. These results suggest that small-scale spatial variation in parasite-mediated selection affects the immunogenetic composition of natural host populations, providing a striking example that the microbial environment shapes the evolution of the host's immune system in the wild.


Asunto(s)
Arvicolinae/genética , Infecciones por Borrelia/veterinaria , Resistencia a la Enfermedad/genética , Receptor Toll-Like 2/genética , Altitud , Animales , Arvicolinae/microbiología , Borrelia , Ambiente , Genotipo , Ixodes , Análisis Espacial , Suiza
2.
J Anim Ecol ; 85(3): 829-42, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26935482

RESUMEN

Most directly transmitted infections require some form of close contact between infectious and susceptible hosts to spread. Often disease models assume contacts are equal and use mean field estimates of transmission probability for all interactions with infectious hosts. Such methods may inaccurately describe transmission when interactions differ substantially in their ability to cause infection. Understanding this variation in transmission risk may be critical to properly model and manage some infectious diseases. In this study, we investigate how varying exposure and transmission may be key to understanding disease dynamics in the threatened desert tortoise Gopherus agassizii. We created heterogeneity in Mycoplasma agassizii exposure (the putative bacterial agent of a respiratory disease) by varying the duration of interactions between naturally infected and uninfected captive desert tortoises. Using qPCR, we identified new infections and compared models of transmission probability as a function of contact duration and pathogen load. We then examined the contact patterns of a wild tortoise population using proximity loggers to identify heterogeneity in contact duration. The top-ranked model predicting M. agassizii transmission included a dose term defined as the product of the number of days in proximity to an infected host and the infection level of that host. Models predicted low transmission probability for short interactions, unless the infectious host had a high load of M. agassizii: such hosts were predicted to transmit infection at higher rates with any amount of contact. We observed predominantly short-lived interactions in a free-ranging tortoise population and thus, expect transmission patterns in this population to vary considerably with the frequency and duration of high infection levels. Mean field models may misrepresent natural transmission patterns in this and other populations depending on the distribution of high-risk contact and shedding events. Rapid outbreaks in generally solitary species may result from changes to their naturally low-risk contact patterns or due to increases in the frequency of severe infections or super-shedding events - population characteristics that should be further investigated to develop effective management strategies.


Asunto(s)
Infecciones por Mycoplasma/transmisión , Infecciones del Sistema Respiratorio/microbiología , Infecciones del Sistema Respiratorio/transmisión , Tortugas/microbiología , Animales , Brotes de Enfermedades/veterinaria , Especies en Peligro de Extinción , Femenino , Masculino , Mycoplasma/aislamiento & purificación , Mycoplasma/fisiología , Infecciones por Mycoplasma/patología , Infecciones por Mycoplasma/veterinaria , Infecciones del Sistema Respiratorio/patología , Infecciones del Sistema Respiratorio/veterinaria
3.
Am J Primatol ; 77(5): 579-94, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25716944

RESUMEN

Parasitism is expected to impact host morbidity or mortality, although the fitness costs of parasitism have rarely been quantified for wildlife hosts. Tapeworms in the genus Taenia exploit a variety of vertebrates, including livestock, humans, and geladas (Theropithecus gelada), monkeys endemic to the alpine grasslands of Ethiopia. Despite Taenia's adverse societal and economic impacts, we know little about the prevalence of disease associated with Taenia infection in wildlife or the impacts of this disease on host health, mortality and reproduction. We monitored geladas at Guassa, Ethiopia over a continuous 6½ year period for external evidence (cysts or coenuri) of Taenia-associated disease (coenurosis) and evaluated the impact of coenurosis on host survival and reproduction. We also identified (through genetic and histological analyses) the tapeworms causing coenurosis in wild geladas at Guassa as Taenia serialis. Nearly 1/3 of adult geladas at Guassa possessed ≥1 coenurus at some point in the study. Coenurosis adversely impacted gelada survival and reproduction at Guassa and this impact spanned two generations: adults with coenuri suffered higher mortality than members of their sex without coenuri and offspring of females with coenuri also suffered higher mortality. Coenurosis also negatively affected adult reproduction, lengthening interbirth intervals and reducing the likelihood that males successfully assumed reproductive control over units of females. Our study provides the first empirical evidence that coenurosis increases mortality and reduces fertility in wild nonhuman primate hosts. Our research highlights the value of longitudinal monitoring of individually recognized animals in natural populations for advancing knowledge of parasite-host evolutionary dynamics and offering clues to the etiology and control of infectious disease.


Asunto(s)
Enfermedades de los Monos/parasitología , Teniasis/veterinaria , Theropithecus/parasitología , Animales , Etiopía/epidemiología , Femenino , Fertilidad , Masculino , Enfermedades de los Monos/epidemiología , Conducta Sexual Animal , Taenia/genética , Taenia/aislamiento & purificación , Teniasis/epidemiología , Teniasis/parasitología
4.
J Wildl Dis ; 57(4): 820-830, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34460913

RESUMEN

Canine distemper is a high-impact disease of many mammal species and has caused substantial carnivore population declines. Analysis was conducted on passive surveillance data of canine distemper (CDV)-positive wild mammal cases submitted to the Southeastern Cooperative Wildlife Disease Study, Athens, Georgia, US, between January 1975 and December 2019. Overall, 964 cases from 17 states were CDV positive, including 646 raccoons (Procyon lotor), 254 gray foxes (Urocyon cinereoargenteus), 33 striped skunks (Mephitis mephitis), 18 coyotes (Canis latrans), four red foxes (Vulpes vulpes), three gray wolves (Canis lupus), three American black bears (Ursus americanus), two American mink (Mustela vison), and one long-tailed weasel (Mustela frenata). Raccoon and gray fox case data from the state of Georgia (n=441) were selected for further analysis. Autoregressive integrated moving average models were developed predicting raccoon and gray fox case numbers. The best-performing model for gray foxes used numbers of gray fox CDV cases from the previous 2 mo and of raccoon cases in the present month to predict the numbers of gray fox cases in the present month. The best-performing model for raccoon prediction used numbers of raccoon CDV cases from the previous month and of gray fox cases in the present month and previous 2 mo to predict numbers of raccoon cases in the present month. Temporal trends existed in CDV cases for both species, with cases more likely to occur during the breeding season. Spatial clustering of cases was more likely to occur in areas of medium to high human population density; fewer cases occurred in both the most densely populated and sparsely populated areas. This pattern was most prominent for raccoons, which may correspond to high transmission rates in suburban areas, where raccoon population densities are probably highest, possibly because of a combination of suitable habitat and supplemental resources.


Asunto(s)
Coyotes , Virus del Moquillo Canino , Moquillo , Enfermedades de los Perros , Animales , Animales Salvajes , Moquillo/epidemiología , Perros , Zorros , Mapaches
5.
Int J Parasitol Parasites Wildl ; 7(2): 221-227, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29942738

RESUMEN

Understanding the impacts of parasites on wildlife is growing in importance as diseases pose a threat to wildlife populations. Woylie (syn. brush-tailed bettong, Bettongia penicillata) populations have undergone enigmatic declines in south-western Western Australia over the past decade. Trypanosomes have been suggested as a possible factor contributing towards these declines because of their high prevalence in the declining population. We asked whether temporal patterns of infection with Trypanosoma spp. were associated with the decline patterns of the host, or if other factors (host sex, body condition, co-infection or rainfall) were more influential in predicting infection patterns. Species-specific nested PCRs were used to detect the two most common trypanosomes (T. copemani and T. vegrandis) from 444 woylie blood samples collected between 2006 and 2012. Time relative to the decline (year) and an interaction with co-infection by the other trypanosome best explained patterns of infection for both trypanosomes. The prevalence of single species infections for both T. copemani and T. vegrandis was lower after the population crash, however, the occurrence of co-infections increased after the crash compared to before the crash. Our results suggest an interaction between the two parasites with the decline of their host, leading to a higher level of co-infection after the decline. We discuss the possible mechanisms that may have led to a higher level of co-infection after the population crash, and highlight the importance of considering co-infection when investigating the role of parasites in species declines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA