Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Más filtros

Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(3): e0193123, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376171

RESUMEN

White-rot fungi employ secreted carbohydrate-active enzymes (CAZymes) along with reactive oxygen species (ROS), like hydrogen peroxide (H2O2), to degrade lignocellulose in wood. H2O2 serves as a co-substrate for key oxidoreductases during the initial decay phase. While the degradation of lignocellulose by CAZymes is well documented, the impact of ROS on the oxidation of the secreted proteins remains unclear, and the identity of the oxidized proteins is unknown. Methionine (Met) can be oxidized to Met sulfoxide (MetO) or Met sulfone (MetO2) with potential deleterious, antioxidant, or regulatory effects. Other residues, like proline (Pro), can undergo carbonylation. Using the white-rot Pycnoporus cinnabarinus grown on aspen wood, we analyzed the Met content of the secreted proteins and their susceptibility to oxidation combining H218O2 with deep shotgun proteomics. Strikingly, their overall Met content was significantly lower (1.4%) compared to intracellular proteins (2.1%), a feature conserved in fungi but not in metazoans or plants. We evidenced that a catalase, widespread in white-rot fungi, protects the secreted proteins from oxidation. Our redox proteomics approach allowed the identification of 49 oxidizable Met and 40 oxidizable Pro residues within few secreted proteins, mostly CAZymes. Interestingly, many of them had several oxidized residues localized in hotspots. Some Met, including those in GH7 cellobiohydrolases, were oxidized up to 47%, with a substantial percentage of sulfone (13%). These Met are conserved in fungal homologs, suggesting important functional roles. Our findings reveal that white-rot fungi safeguard their secreted proteins by minimizing their Met content and by scavenging ROS and pinpoint redox-active residues in CAZymes.IMPORTANCEThe study of lignocellulose degradation by fungi is critical for understanding the ecological and industrial implications of wood decay. While carbohydrate-active enzymes (CAZymes) play a well-established role in lignocellulose degradation, the impact of hydrogen peroxide (H2O2) on secreted proteins remains unclear. This study aims at evaluating the effect of H2O2 on secreted proteins, focusing on the oxidation of methionine (Met). Using the model white-rot fungi Pycnoporus cinnabarinus grown on aspen wood, we showed that fungi protect their secreted proteins from oxidation by reducing their Met content and utilizing a secreted catalase to scavenge exogenous H2O2. The research identified key oxidizable Met within secreted CAZymes. Importantly, some Met, like those of GH7 cellobiohydrolases, undergone substantial oxidation levels suggesting important roles in lignocellulose degradation. These findings highlight the adaptive mechanisms employed by white-rot fungi to safeguard their secreted proteins during wood decay and emphasize the importance of these processes in lignocellulose breakdown.


Asunto(s)
Basidiomycota , Peróxido de Hidrógeno , Polyporaceae , Catalasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Madera/microbiología , Especies Reactivas de Oxígeno/metabolismo , Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Basidiomycota/metabolismo , Oxidación-Reducción , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Carbohidratos , Metionina/metabolismo , Sulfonas/metabolismo
2.
New Phytol ; 242(6): 2775-2786, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38567688

RESUMEN

Unlike 'white rot' (WR) wood-decomposing fungi that remove lignin to access cellulosic sugars, 'brown rot' (BR) fungi selectively extract sugars and leave lignin behind. The relative frequency and distribution of these fungal types (decay modes) have not been thoroughly assessed at a global scale; thus, the fate of one-third of Earth's aboveground carbon, wood lignin, remains unclear. Using c. 1.5 million fungal sporocarp and c. 30 million tree records from publicly accessible databases, we mapped and compared decay mode and tree type (conifer vs angiosperm) distributions. Additionally, we mined fungal record metadata to assess substrate specificity per decay mode. The global average for BR fungi proportion (BR/(BR + WR records)) was 13% and geographic variation was positively correlated (R2 = 0.45) with conifer trees proportion (conifer/(conifer + angiosperm records)). Most BR species (61%) were conifer, rather than angiosperm (22%), specialists. The reverse was true for WR (conifer: 19%; angiosperm: 62%). Global BR proportion patterns were predicted with greater accuracy using the relative distributions of individual tree species (R2 = 0.82), rather than tree type. Fungal decay mode distributions can be explained by tree type and, more importantly, tree species distributions, which our data suggest is due to strong substrate specificities.


Asunto(s)
Ecosistema , Tracheophyta , Tracheophyta/microbiología , Hongos/fisiología , Madera/microbiología , Especificidad de la Especie , Lignina/metabolismo , Geografía , Árboles/microbiología
3.
Microb Ecol ; 87(1): 27, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38175304

RESUMEN

We studied the diversity, composition, and long-term dynamics of wood-inhabiting fungi in Quercus robur stumps left after commercial tree harvesting in Lithuania. Sampling of wood was carried out at three sites and from stumps, which were 10-, 20-, 30-, 40-, and 50-year-old. DNA was isolated from wood samples and fungal communities analyzed using high-throughput sequencing. Results showed that stump age had a limited effect on fungal diversity. The development of fungal communities in oak stums was found to be a slow process as fungal communities remained similar for decades, while larger changes were only detected in older stumps. The most common fungi were Eupezizella sp. (18.4%), Hyphodontia pallidula (12.9%), Mycena galericulata (8.3%), and Lenzites betulinus (7.1%). Fistulina hepatica, which is a red-listed wood-decay oak fungus, was also detected at a low relative abundance in stump wood. In the shortage of suitable substrate, oak stumps may provide habitats for long-term survival of different fungal species, including red-listed and oak-related fungi.


Asunto(s)
Micobioma , Quercus , Secuenciación de Nucleótidos de Alto Rendimiento , Árboles , Madera
4.
Appl Environ Microbiol ; 89(5): e0027223, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37098943

RESUMEN

Perenniporia fraxinea can colonize living trees and cause severe damage to standing hardwoods by secreting a number of carbohydrate-activate enzymes (CAZymes), unlike other well-studied Polyporales. However, significant knowledge gaps exist in understanding the detailed mechanisms for this hardwood-pathogenic fungus. To address this issue, five monokaryotic P. fraxinea strains, SS1 to SS5, were isolated from the tree species Robinia pseudoacacia, and high polysaccharide-degrading activities and the fastest growth were found for P. fraxinea SS3 among the isolates. The whole genome of P. fraxinea SS3 was sequenced, and its unique CAZyme potential for tree pathogenicity was determined in comparison to the genomes of other nonpathogenic Polyporales. These CAZyme features are well conserved in a distantly related tree pathogen, Heterobasidion annosum. Furthermore, the carbon source-dependent CAZyme secretions of P. fraxinea SS3 and a nonpathogenic and strong white-rot Polyporales member, Phanerochaete chrysosporium RP78, were compared by activity measurements and proteomic analyses. As seen in the genome comparisons, P. fraxinea SS3 exhibited higher pectin-degrading activities and higher laccase activities than P. chrysosporium RP78, which were attributed to the secretion of abundant glycoside hydrolase family 28 (GH28) pectinases and auxiliary activity family 1_1 (AA1_1) laccases, respectively. These enzymes are possibly related to fungal invasion into the tree lumens and the detoxification of tree defense substances. Additionally, P. fraxinea SS3 showed secondary cell wall degradation capabilities at the same level as that of P. chrysosporium RP78. Overall, this study suggested mechanisms for how this fungus can attack the cell walls of living trees as a serious pathogen and differs from other nonpathogenic white-rot fungi. IMPORTANCE Many studies have been done to understand the mechanisms underlying the degradation of plant cell walls of dead trees by wood decay fungi. However, little is known about how some of these fungi weaken living trees as pathogens. P. fraxinea belongs to the Polyporales, a group of strong wood decayers, and is known to aggressively attack and fell standing hardwood trees all over the world. Here, we report CAZymes potentially related to plant cell wall degradation and pathogenesis factors in a newly isolated fungus, P. fraxinea SS3, by genome sequencing in conjunction with comparative genomic and secretomic analyses. The present study provides insights into the mechanisms of the degradation of standing hardwood trees by the tree pathogen, which will contribute to the prevention of this serious tree disease.


Asunto(s)
Phanerochaete , Polyporales , Árboles , Proteómica , Genoma Fúngico , Polyporales/metabolismo , Genómica , Phanerochaete/genética
5.
Appl Environ Microbiol ; 89(12): e0140623, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38014962

RESUMEN

IMPORTANCE: We applied macro- (forest stand and forest management) and micro-scale (bacterial and fungal community) analyses for a better understanding of the Heterobasidion pathosystem and associated wood decay process. The core microbiome, as defined by hierarchy analysis and a consistent model, and environmental factors correlation with the community assembly were found to be novel.


Asunto(s)
Ascomicetos , Basidiomycota , Microbiota , Madera/microbiología , Bosques
6.
Arch Microbiol ; 205(5): 194, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37061655

RESUMEN

In esca disease affecting grapevines, Phaeomoniella chlamydospora and Phaeoacremonium minimum colonize the woody parts of the trunks and arms, where they obtain nutrition from xylem sap and, potentially, from residues resulting from the enzymatic breakdown of lignified cell walls, particularly osidic residues. We quantified the secretion of lignin peroxidase, manganese peroxidase and laccase by these fungi in woody tissues of selectively infected cuttings using immunolabeling and transmission electron microscopy. Our results indicated that the detection of these enzymes was generally higher in tissues infected with Phaeoacremonium minimum. These data were confirmed through immunodetection of enzymes secreted by hyphae of fungi grown in vitro. Additionally, we observed that the supply of various carbohydrates (mono, di, tri and tetrasaccharides and polymers) differentially influenced fungal growth and polypeptide secretion. Since some secreted polypeptides display detrimental effects on grapevine cells, these results raise the question of whether the carbohydrate environment could be a factor affecting the aggressiveness of these pathogens.


Asunto(s)
Vitis , Madera , Madera/microbiología , Enfermedades de las Plantas/microbiología , Vitis/microbiología , Carbohidratos
7.
Biodegradation ; 34(6): 597-607, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37436664

RESUMEN

One of the most important biological factors that damage wood materials are wood-decay fungi (WDF). Chemical preservatives have traditionally been the most effective method for controlling WDF. However, due to environmental pressures, scientists are working on alternative protection methods. The aim of this study was to investigate the potential of some antagonistic fungi against wood-decay fungi as a biological control agent (BCA). For this purpose, the antagonistic effects of Trichoderma harzianum, Trichoderma viride, Aspergillus niger, and Penicillium brevicompactum fungi were investigated against the Trametes versicolor, Trametes hirsuta, Stereum hirsutum, Coniophora puteana, Neolentinus lepideus, and Postia placenta species of wood-decay Basidiomycetes fungi. In the study, firstly, inhibition rates were determined by comparing dual culture tests on agar medium, and then the performance of BCAs was compared by performing decay tests on wood blocks. As a result of the study, it was determined that the species belonging to the genus Trichoderma showed a very effective performance on WDF, increased the inhibition rate to 76-99%, and reduced the weight loss to 1.9-5.8%. Considering the inhibition rates, it was determined that the most effective rate of the BCAs was on P. placenta and the least on S. hirsutum species. According to the results obtained, it has been determined that some BCAs were very effective biological control agents of rot fungi on agar and wood blocks in vitro. However, in order to more clearly determine the effectiveness of BCAs in practice, this study, which was carried out in the laboratory environment, should be supported by tests performed in contact with the external field and soil.


Asunto(s)
Trichoderma , Madera , Agar , Madera/microbiología , Trametes , Hongos , Medios de Cultivo
8.
Proc Biol Sci ; 289(1968): 20212622, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35105237

RESUMEN

Biological communities within living organisms are structured by their host's traits. How host traits affect biodiversity and community composition is poorly explored for some associations, such as arthropods within fungal fruit bodies. Using DNA metabarcoding, we characterized the arthropod communities in living fruit bodies of 11 wood-decay fungi from boreal forests and investigated how they were affected by different fungal traits. Arthropod diversity was higher in fruit bodies with a larger surface area-to-volume ratio, suggesting that colonization is crucial to maintain arthropod populations. Diversity was not higher in long-lived fruit bodies, most likely because these fungi invest in physical or chemical defences against arthropods. Arthropod community composition was structured by all measured host traits, namely fruit body size, thickness, surface area, morphology and toughness. Notably, we identified a community gradient where soft and short-lived fruit bodies harboured more true flies, while tougher and long-lived fruit bodies had more oribatid mites and beetles, which might reflect different development times of the arthropods. Ultimately, close to 75% of the arthropods were specific to one or two fungal hosts. Besides revealing surprisingly diverse and host-specific arthropod communities within fungal fruit bodies, our study provided insight into how host traits structure communities.


Asunto(s)
Artrópodos , Animales , Biodiversidad , Código de Barras del ADN Taxonómico , Frutas , Madera
9.
Mol Ecol ; 31(11): 3241-3253, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35363919

RESUMEN

During decomposition of organic matter, microbial communities may follow different successional trajectories depending on the initial environment and colonizers. The timing and order of the species arrival (assembly history) can lead to divergent communities through priority effects. We explored how assembly history and resource quality affected fungal communities and decay rate of decomposing wood, 1.5 and 4.5 years after tree felling. Additionally, we investigated the effect of invertebrate exclusion during the first two summers. We measured initial resource quality of bark and wood of aspen (Populus tremula) logs and surveyed the fungal communities by DNA metabarcoding at different times during succession. We found that gradients in fungal community composition were related to resource quality and we discuss how this may reflect different fungal life history strategies. As with previous studies, the initial amount of bark tannins was negatively correlated with wood decomposition rate over 4.5 years. The initial fungal community explained variation in community composition after 1.5, but not 4.5, years of succession. Although the assembly history of initial colonizers may cause alternative trajectories in successional communities, our results indicate that the communities may converge with the arrival of secondary colonizers. We also identified a strong legacy of invertebrate exclusion on fungal communities, even after 4.5 years of succession, thereby adding crucial knowledge on the importance of invertebrates in affecting fungal community development. By measuring and manipulating aspects of assembly history and resource quality that have rarely been studied, we expand our understanding of the complexity of fungal community dynamics.


Asunto(s)
Micobioma , Madera , Animales , Hongos/genética , Invertebrados , Árboles , Madera/microbiología
10.
Mol Ecol ; 31(7): 1963-1979, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35076968

RESUMEN

Genome sequencing of spatially distributed individuals sheds light on how evolution structures genetic variation. Populations of Phellopilus nigrolimitatus, a red-listed wood-inhabiting fungus associated with old-growth coniferous forests, have decreased in size over the last century due to a loss of suitable habitats. We assessed the population genetic structure and investigated local adaptation in P. nigrolimitatus, by establishing a reference genome and genotyping 327 individuals sampled from 24 locations in Northern Europe by RAD sequencing. We revealed a shallow population genetic structure, indicating large historical population sizes and high levels of gene flow. Despite this weak substructuring, two genetic groups were recognized; a western group distributed mostly in Norway and an eastern group covering most of Finland, Poland and Russia. This substructuring may reflect coimmigration with the main host, Norway spruce (Picea abies), into Northern Europe after the last ice age. We found evidence of low levels of genetic diversity in southwestern Finland, which has a long history of intensive forestry and urbanization. Numerous loci were significantly associated with one or more environmental factors, indicating adaptation to specific environments. These loci clustered into two groups with different associations with temperature and precipitation. Overall, our findings indicate that the current population genetic structure of P. nigrolimitatus results from a combination of gene flow, genetic drift and selection. The acquisition of similar knowledge especially over broad geographic scales, linking signatures of adaptive genetic variation to evolutionary processes and environmental variation, for other fungal species will undoubtedly be useful for assessment of the combined effects of habitat fragmentation and climate change on fungi strongly bound to old-growth forests.


Asunto(s)
Flujo Génico , Picea , Bosques , Hongos , Humanos , Metagenómica , Picea/genética
11.
J Plant Res ; 134(1): 19-41, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33417080

RESUMEN

Mycoheterotrophic plants (MHPs) are leafless, achlorophyllous, and completely dependent on mycorrhizal fungi for their carbon supply. Mycorrhizal symbiosis is a mutualistic association with fungi that is undertaken by the majority of land plants, but mycoheterotrophy represents a breakdown of this mutualism in that plants parasitize fungi. Most MHPs are associated with fungi that are mycorrhizal with autotrophic plants, such as arbuscular mycorrhizal (AM) or ectomycorrhizal (ECM) fungi. Although these MHPs gain carbon via the common mycorrhizal network that links the surrounding autotrophic plants, some mycoheterotrophic lineages are associated with saprotrophic (SAP) fungi, which are free-living and decompose leaf litter and wood materials. Such MHPs are dependent on the forest carbon cycle, which involves the decomposition of wood debris and leaf litter, and have a unique biology and evolutionary history. MHPs associated with SAP fungi (SAP-MHPs) have to date been found only in the Orchidaceae and likely evolved independently at least nine times within that family. Phylogenetically divergent SAP Basidiomycota, mostly Agaricales but also Hymenochaetales, Polyporales, and others, are involved in mycoheterotrophy. The fungal specificity of SAP-MHPs varies from a highly specific association with a single fungal species to a broad range of interactions with multiple fungal orders. Establishment of symbiotic culture systems is indispensable for understanding the mechanisms underlying plant-fungus interactions and the conservation of MHPs. Symbiotic culture systems have been established for many SAP-MHP species as a pure culture of free-living SAP fungi is easier than that of biotrophic AM or ECM fungi. Culturable SAP-MHPs are useful research materials and will contribute to the advancement of plant science.


Asunto(s)
Micorrizas , Orchidaceae , Evolución Biológica , Carbono , Simbiosis
12.
Glob Chang Biol ; 26(2): 864-875, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31628697

RESUMEN

Whether global change will drive changing forests from net carbon (C) sinks to sources relates to how quickly deadwood decomposes. Because complete wood mineralization takes years, most experiments focus on how traits, environments and decomposer communities interact as wood decay begins. Few experiments last long enough to test whether drivers change with decay rates through time, with unknown consequences for scaling short-term results up to long-term forest ecosystem projections. Using a 7 year experiment that captured complete mineralization among 21 temperate tree species, we demonstrate that trait effects fade with advancing decay. However, wood density and vessel diameter, which may influence permeability, control how decay rates change through time. Denser wood loses mass more slowly at first but more quickly with advancing decay, which resolves ambiguity about the after-life consequences of this key plant functional trait by demonstrating that its effect on decay depends on experiment duration and sampling frequency. Only long-term data and a time-varying model yielded accurate predictions of both mass loss in a concurrent experiment and naturally recruited deadwood structure in a 32-year-old forest plot. Given the importance of forests in the carbon cycle, and the pivotal role for wood decay, accurate ecosystem projections are critical and they require experiments that go beyond enumerating potential mechanisms by identifying the temporal scale for their effects.


Asunto(s)
Ecosistema , Madera , Ciclo del Carbono , Bosques , Árboles
13.
Appl Microbiol Biotechnol ; 104(9): 3781-3795, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32144473

RESUMEN

Wood in service is sequestering carbon, but it is principally prone to deterioration where different fungi metabolize wood, and carbon dioxide is released back to the atmosphere. A key prerequisite for fungal degradation of wood is the presence of moisture. Conversely, keeping wood dry is the most effective way to protect wood from wood degradation and for long-term binding of carbon. Wood is porous and hygroscopic; it can take up water in liquid and gaseous form, and water is released from wood through evaporation following a given water vapour pressure gradient. During the last decades, the perception of wood-water relationships changed significantly and so did the view on moisture-affected properties of wood. Among the latter is its susceptibility to fungal decay. This paper reviews findings related to wood-water relationships and their role for fungal wood decomposition. These are complex interrelationships not yet fully understood, and current knowledge gaps are therefore identified. Studies with chemically and thermally modified wood are included as examples of fungal wood substrates with altered moisture properties. Quantification and localization of capillary and cell wall water - especially in the over-hygroscopic range - is considered crucial for determining minimum moisture thresholds (MMThr) of wood-decay fungi. The limitations of the various methods and experimental set-ups to investigate wood-water relationships and their role for fungal decay are manifold. Hence, combining techniques from wood science, mycology, biotechnology and advanced analytics is expected to provide new insights and eventually a breakthrough in understanding the intricate balance between fungal decay and wood-water relations. KEY POINTS: • Susceptibility to wood-decay fungi is closely linked to their physiological needs. • Content, state and distribution of moisture in wood are keys for fungal activity. • Quantification and localization of capillary and cell wall water in wood is needed. • New methodological approaches are expected to provide new insights.


Asunto(s)
Hongos/metabolismo , Agua/metabolismo , Madera/metabolismo , Madera/microbiología , Pared Celular/metabolismo , Lignina/metabolismo
14.
BMC Genomics ; 20(1): 430, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138126

RESUMEN

BACKGROUND: The white rot fungus Phlebia radiata, a type species of the genus Phlebia, is an efficient decomposer of plant cell wall polysaccharides, modifier of softwood and hardwood lignin, and is able to produce ethanol from various waste lignocellulose substrates. Thus, P. radiata is a promising organism for biotechnological applications aiming at sustainable utilization of plant biomass. Here we report the genome sequence of P. radiata isolate 79 originally isolated from decayed alder wood in South Finland. To better understand the evolution of wood decay mechanisms in this fungus and the Polyporales phlebioid clade, gene content and clustering of genes encoding specific carbohydrate-active enzymes (CAZymes) in seven closely related fungal species was investigated. In addition, other genes encoding proteins reflecting the fungal lifestyle including peptidases, transporters, small secreted proteins and genes involved in secondary metabolism were identified in the genome assembly of P. radiata. RESULTS: The PACBio sequenced nuclear genome of P. radiata was assembled to 93 contigs with 72X sequencing coverage and annotated, revealing a dense genome of 40.4 Mbp with approximately 14 082 predicted protein-coding genes. According to functional annotation, the genome harbors 209 glycoside hydrolase, 27 carbohydrate esterase, 8 polysaccharide lyase, and over 70 auxiliary redox enzyme-encoding genes. Comparisons with the genomes of other phlebioid fungi revealed shared and specific properties among the species with seemingly similar saprobic wood-decay lifestyles. Clustering of especially GH10 and AA9 enzyme-encoding genes according to genomic localization was discovered to be conserved among the phlebioid species. In P. radiata genome, a rich repertoire of genes involved in the production of secondary metabolites was recognized. In addition, 49 genes encoding predicted ABC proteins were identified in P. radiata genome together with 336 genes encoding peptidases, and 430 genes encoding small secreted proteins. CONCLUSIONS: The genome assembly of P. radiata contains wide array of carbohydrate polymer attacking CAZyme and oxidoreductase genes in a composition identifiable for phlebioid white rot lifestyle in wood decomposition, and may thus serve as reference for further studies. Comparative genomics also contributed to enlightening fungal decay mechanisms in conversion and cycling of recalcitrant organic carbon in the forest ecosystems.


Asunto(s)
Genoma Fúngico , Lignina/metabolismo , Polyporales/genética , Transportadoras de Casetes de Unión a ATP/genética , Metabolismo de los Hidratos de Carbono , Celulosa/metabolismo , Genómica , Pectinas/metabolismo , Péptido Hidrolasas/genética , Polyporales/enzimología , Polisacáridos/metabolismo , Metabolismo Secundario/genética
15.
J Virol ; 92(5)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29237832

RESUMEN

The fungal genus Heterobasidion includes some of the most devastating conifer pathogens in the boreal forest region. In this study, we showed that the alphapartitivirus Heterobasidion partitivirus 13 from Heterobasidion annosum (HetPV13-an1) is the main causal agent of severe phenotypic debilitation in the host fungus. Based on RNA sequencing using isogenic virus-infected and cured fungal strains, HetPV13-an1 affected the transcription of 683 genes, of which 60% were downregulated and 40% upregulated. Alterations observed in carbohydrate and amino acid metabolism suggest that the virus causes a state of starvation, which is compensated for by alternative synthesis routes. We used dual cultures to transmit HetPV13-an1 into new strains of H. annosum and Heterobasidion parviporum The three strains of H. parviporum that acquired the virus showed noticeable growth reduction on rich culturing medium, while only two of six H. annosum isolates tested showed significant debilitation. Based on reverse transcription-quantitative PCR (RT-qPCR) analysis, the response toward HetPV13-an1 infection was somewhat different in H. annosum and H. parviporum We assessed the effects of HetPV13-an1 on the wood colonization efficacy of H. parviporum in a field experiment where 46 Norway spruce trees were inoculated with isogenic strains with or without the virus. The virus-infected H. parviporum strain showed considerably less growth within living trees than the isolate without HetPV13-an1, indicating that the virus also causes growth debilitation in natural substrates.IMPORTANCE A biocontrol method restricting the spread of Heterobasidion species would be highly beneficial to forestry, as these fungi are difficult to eradicate from diseased forest stands and cause approximate annual losses of €800 million in Europe. We used virus curing and reintroduction experiments and RNA sequencing to show that the alphapartitivirus HetPV13-an1 affects many basic cellular functions of the white rot wood decay fungus Heterobasidion annosum, which results in aberrant hyphal morphology and a low growth rate. Dual fungal cultures were used to introduce HetPV13-an1 into a new host species, Heterobasidion parviporum, and field experiments confirmed the capability of the virus to reduce the growth of H. parviporum in living spruce wood. Taken together, our results suggest that HetPV13-an1 shows potential for the development of a future biocontrol agent against Heterobasidion fungi.


Asunto(s)
Basidiomycota/crecimiento & desarrollo , Basidiomycota/genética , Basidiomycota/virología , Enfermedades de las Plantas/microbiología , Virus ARN/fisiología , Atropina/metabolismo , Basidiomycota/patogenicidad , Agentes de Control Biológico , Metabolismo de los Hidratos de Carbono , Ciclo Celular , Diazepam/metabolismo , Combinación de Medicamentos , Emodina/análogos & derivados , Emodina/metabolismo , Europa (Continente) , Bosques , Regulación Fúngica de la Expresión Génica , Genotipo , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología , Metabolismo , Mitocondrias/metabolismo , Micelio/genética , Micelio/crecimiento & desarrollo , Micelio/virología , Noruega , Fenotipo , Fenilpropanolamina/metabolismo , Picea/microbiología , Enfermedades de las Plantas/economía , Infecciones por Virus ARN , Virus ARN/genética , ARN Viral/genética , ARN Viral/aislamiento & purificación , Análisis de Secuencia de ARN , Triyodotironina/metabolismo
16.
Appl Environ Microbiol ; 85(5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30578267

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that perform oxidative cleavage of recalcitrant polysaccharides. We have purified and characterized a recombinant family AA9 LPMO, LPMO9B, from Gloeophyllum trabeum (GtLPMO9B) which is active on both cellulose and xyloglucan. Activity of the enzyme was tested in the presence of three different reductants: ascorbic acid, gallic acid, and 2,3-dihydroxybenzoic acid (2,3-DHBA). Under standard aerobic conditions typically used in LPMO experiments, the first two reductants could drive LPMO catalysis whereas 2,3-DHBA could not. In agreement with the recent discovery that H2O2 can drive LPMO catalysis, we show that gradual addition of H2O2 allowed LPMO activity at very low, substoichiometric (relative to products formed) reductant concentrations. Most importantly, we found that while 2,3-DHBA is not capable of driving the LPMO reaction under standard aerobic conditions, it can do so in the presence of externally added H2O2 At alkaline pH, 2,3-DHBA is able to drive the LPMO reaction without externally added H2O2, and this ability overlaps entirely the endogenous generation of H2O2 by GtLPMO9B-catalyzed oxidation of 2,3-DHBA. These findings support the notion that H2O2 is a cosubstrate of LPMOs and provide insight into how LPMO reactions depend on, and may be controlled by, the choice of pH and reductant.IMPORTANCE Lytic polysaccharide monooxygenases promote enzymatic depolymerization of lignocellulosic materials by microorganisms due to their ability to oxidatively cleave recalcitrant polysaccharides. The properties of these copper-dependent enzymes are currently of high scientific and industrial interest. We describe a previously uncharacterized fungal LPMO and show how reductants, which are needed to prime the LPMO by reducing Cu(II) to Cu(I) and to supply electrons during catalysis, affect enzyme efficiency and stability. The results support claims that H2O2 is a natural cosubstrate for LPMOs by demonstrating that when certain reductants are used, catalysis can be driven only by H2O2 and not by O2 Furthermore, we show how auto-inactivation resulting from endogenous generation of H2O2 in the LPMO-reductant system may be prevented. Finally, we identified a reductant that leads to enzyme activation without any endogenous H2O2 generation, allowing for improved control of LPMO reactivity and providing a valuable tool for future LPMO research.


Asunto(s)
Basidiomycota/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxigenasas de Función Mixta/metabolismo , Polisacáridos/metabolismo , Basidiomycota/genética , Celulasa/metabolismo , Celulosa/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucanos/metabolismo , Concentración de Iones de Hidrógeno , Lignina/metabolismo , Oxigenasas de Función Mixta/genética , Oxidación-Reducción , Pichia/genética , Sustancias Reductoras , Madera , Xilanos/metabolismo
17.
Appl Environ Microbiol ; 85(14)2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31076422

RESUMEN

The aim of this study was to investigate differential expression profiles of the brown rot fungus Rhodonia placenta (previously Postia placenta) harvested at several time points when grown on radiata pine (Pinus radiata) and radiata pine with three different levels of modification by furfuryl alcohol, an environmentally benign commercial wood protection system. The entire gene expression pattern of a decay fungus was followed in untreated and modified wood from initial to advanced stages of decay. The results support the current model of a two-step decay mechanism, with the expression of genes related to initial oxidative depolymerization, followed by an accumulation of transcripts of genes related to the hydrolysis of cell wall polysaccharides. When the wood decay process is finished, the fungus goes into starvation mode after five weeks when grown on unmodified radiata pine wood. The pattern of repression of oxidative processes and oxalic acid synthesis found in radiata pine at later stages of decay is not mirrored for the high-furfurylation treatment. The high treatment level provided a more unpredictable expression pattern throughout the incubation period. Furfurylation does not seem to directly influence the expression of core plant cell wall-hydrolyzing enzymes, as a delayed and prolonged, but similar, pattern was observed in the radiata pine and the modified experiments. This indicates that the fungus starts a common decay process in the modified wood but proceeds at a slower pace as access to the plant cell wall polysaccharides is restricted. This is further supported by the downregulation of hydrolytic enzymes for the high treatment level at the last harvest point (mass loss, 14%). Moreover, the mass loss does not increase during the last weeks. Collectively, this indicates a potential threshold for lower mass loss for the high-furfurylation treatment.IMPORTANCE Fungi are important decomposers of woody biomass in natural habitats. Investigation of the mechanisms employed by decay fungi in their attempt to degrade wood is important for both the basic scientific understanding of ecology and carbon cycling in nature and for applied uses of woody materials. For wooden building materials, long service life and carbon storage are essential, but decay fungi are responsible for massive losses of wood in service. Thus, the optimization of durable wood products for the future is of major importance. In this study, we have investigated the fungal genetic response to furfurylated wood, a commercial environmentally benign wood modification approach that improves the service life of wood in outdoor applications. Our results show that there is a delayed wood decay by the fungus as a response to furfurylated wood, and new knowledge about the mechanisms behind the delay is provided.


Asunto(s)
Furanos/química , Polyporales/genética , Transcriptoma , Madera/microbiología , Biodegradación Ambiental , Furanos/administración & dosificación , Genes Fúngicos , Pinus/microbiología , Polyporales/metabolismo , Madera/química
18.
New Phytol ; 224(2): 902-915, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31257601

RESUMEN

Agaricomycetes are fruiting body-forming fungi that produce some of the most efficient enzyme systems to degrade wood. Despite decades-long interest in their biology, the evolution and functional diversity of both wood-decay and fruiting body formation are incompletely known. We performed comparative genomic and transcriptomic analyses of wood-decay and fruiting body development in Auriculariopsis ampla and Schizophyllum commune (Schizophyllaceae), species with secondarily simplified morphologies, an enigmatic wood-decay strategy and weak pathogenicity to woody plants. The plant cell wall-degrading enzyme repertoires of Schizophyllaceae are transitional between those of white rot species and less efficient wood-degraders such as brown rot or mycorrhizal fungi. Rich repertoires of suberinase and tannase genes were found in both species, with tannases restricted to Agaricomycetes that preferentially colonize bark-covered wood, suggesting potential complementation of their weaker wood-decaying abilities and adaptations to wood colonization through the bark. Fruiting body transcriptomes revealed a high rate of divergence in developmental gene expression, but also several genes with conserved expression patterns, including novel transcription factors and small-secreted proteins, some of the latter which might represent fruiting body effectors. Taken together, our analyses highlighted novel aspects of wood-decay and fruiting body development in an important family of mushroom-forming fungi.


Asunto(s)
Agaricales/genética , Cuerpos Fructíferos de los Hongos/fisiología , Genoma Fúngico , Genómica , Madera/microbiología , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Agaricales/fisiología , Regulación Fúngica de la Expresión Génica/fisiología , Filogenia , Especificidad de la Especie
19.
Microb Ecol ; 78(3): 725-736, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30761423

RESUMEN

The home-field advantage (HFA) hypothesis has been used intensively to study leaf litter decomposition in various ecosystems. However, the HFA in woody substrates is still unexplored. Here, we reanalyzed and integrated existing datasets on various groups of microorganisms collected from natural deadwood of two temperate trees, Fagus sylvatica and Picea abies, from forests in which one or other of these species dominates but where both are present. Our aims were (i) to test the HFA hypothesis on wood decomposition rates of these two temperate tree species, and (ii) to investigate if HFA hypothesis can be explained by diversity and community composition of bacteria and in detail N-fixing bacteria (as determined by molecular 16S rRNA and nifH gene amplification) and fungi (as determined by molecular ITS rRNA amplification and sporocarp surveys). Our results showed that wood decomposition rates were accelerated at "home" versus "away" by 38.19% ± 20.04% (mean ± SE). We detected strong changes in fungal richness (increase 36-50%) and community composition (RANOSIM = 0.52-0.60, P < 0.05) according to HFA hypothesis. The changes of fungi were much stronger than for total bacteria and nitrogen fixing for both at richness and community composition levels. In conclusion, our results support the HFA hypothesis in deadwood: decomposition rate is accelerated at home due to specialization of fungal communities produced by the plant community above them. Furthermore, the higher richness of fungal sporocarps and nitrogen-fixing bacteria (nifH) may stimulate or at least stabilize wood decomposition rates at "home" versus "away."


Asunto(s)
Fagus/microbiología , Hongos/aislamiento & purificación , Hongos/metabolismo , Micobioma , Picea/microbiología , Madera/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biodegradación Ambiental , ADN de Hongos/genética , Hongos/clasificación , Hongos/genética , Nitrógeno/metabolismo , ARN Ribosómico 16S/genética , Árboles/microbiología
20.
BMC Evol Biol ; 18(1): 119, 2018 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-30075699

RESUMEN

BACKGROUND: The majority of wood decomposing fungi are mushroom-forming Agaricomycetes, which exhibit two main modes of plant cell wall decomposition: white rot, in which all plant cell wall components are degraded, including lignin, and brown rot, in which lignin is modified but not appreciably removed. Previous studies suggested that brown rot fungi tend to be specialists of gymnosperm hosts and that brown rot promotes gymnosperm specialization. However, these hypotheses were based on analyses of limited datasets of Agaricomycetes. Overcoming this limitation, we used a phylogeny with 1157 species integrating available sequences, assembled decay mode characters from the literature, and coded host specialization using the newly developed R package, rusda. RESULTS: We found that most brown rot fungi are generalists or gymnosperm specialists, whereas most white rot fungi are angiosperm specialists. A six-state model of the evolution of host specialization revealed high transition rates between generalism and specialization in both decay modes. However, while white rot lineages switched most frequently to angiosperm specialists, brown rot lineages switched most frequently to generalism. A time-calibrated phylogeny revealed that Agaricomycetes is older than the flowering plants but many of the large clades originated after the diversification of the angiosperms in the Cretaceous. CONCLUSIONS: Our results challenge the current view that brown rot fungi are primarily gymnosperm specialists and reveal intensive white rot specialization to angiosperm hosts. We thus suggest that brown rot associated convergent loss of lignocellulose degrading enzymes was correlated with host generalism, rather than gymnosperm specialism. A likelihood model of host specialization evolution together with a time-calibrated phylogeny further suggests that the rise of the angiosperms opened a new mega-niche for wood-decay fungi, which was exploited particularly well by white rot lineages.


Asunto(s)
Basidiomycota/fisiología , Evolución Biológica , Cycadopsida/microbiología , Interacciones Huésped-Patógeno , Madera/microbiología , Basidiomycota/clasificación , Cuerpos Fructíferos de los Hongos/metabolismo , Modelos Biológicos , Filogenia , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA