Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(17): 5154-5164, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38602357

RESUMEN

Developing novel strategies for defeating osteoporosis has become a world-wide challenge with the aging of the population. In this work, novel supramolecular nanoagonists (NAs), constructed from alkaloids and phenolic acids, emerge as a carrier-free nanotherapy for efficacious osteoporosis treatment. These precision nanoagonists are formed through the self-assembly of berberine (BER) and chlorogenic acid (CGA), utilizing noncovalent electrostatic, π-π, and hydrophobic interactions. This assembly results in a 100% drug loading capacity and stable nanostructure. Furthermore, the resulting weights and proportions of CGA and BER within the NAs are meticulously controlled with strong consistency when the CGA/BER assembly feed ratio is altered from 1:1 to 1:4. As anticipated, our NAs themselves could passively target osteoporotic bone tissues following prolonged blood circulation, modulate Wnt signaling, regulate osteogenic differentiation, and ameliorate bone loss in ovariectomy-induced osteoporotic mice. We hope this work will open a new strategy to design efficient herbal-derived Wnt NAs for dealing with intractable osteoporosis.


Asunto(s)
Berberina , Ácido Clorogénico , Osteoporosis , Osteoporosis/tratamiento farmacológico , Animales , Ratones , Berberina/farmacología , Berberina/uso terapéutico , Berberina/química , Berberina/administración & dosificación , Berberina/farmacocinética , Ácido Clorogénico/química , Ácido Clorogénico/farmacología , Ácido Clorogénico/uso terapéutico , Ácido Clorogénico/administración & dosificación , Femenino , Humanos , Osteogénesis/efectos de los fármacos , Huesos/efectos de los fármacos , Huesos/patología , Nanoestructuras/química , Nanoestructuras/uso terapéutico
2.
Drug Chem Toxicol ; 47(2): 213-217, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36718984

RESUMEN

The aim of this study was to determine the possible therapeutic effect of chlorogenic acid (CGA) on cisplatin (CDDP)-induced ovarian damage in rats. Rats were first exposed to CDDP (5 mg/kg) and then treated CGA (1.5 and 3 mg/kg) for three days. Oxidative stress (OS), inflammation and apoptosis markers were determined using spectrophotometric methods. Ovarian tissues were also evaluated histologically. The levels of OS, inflammation and apoptosis biomarkers increased by CDDP administration (p < 0.05). Treatments with CGA significantly alleviated these markers dose-dependently (p < 0.05). These data reveal that CGA may exert an ovoprotective effect by reducing pro-inflammatory mediators and enhancing antioxidant status in ovarian tissue.


Asunto(s)
Ácido Clorogénico , Cisplatino , Ratas , Animales , Ácido Clorogénico/farmacología , Ácido Clorogénico/uso terapéutico , Cisplatino/toxicidad , Antioxidantes/farmacología , Estrés Oxidativo , Inflamación/tratamiento farmacológico , Apoptosis
3.
Ren Fail ; 46(2): 2371988, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38952291

RESUMEN

AIMS: Abnormal renal lipid metabolism causes renal lipid deposition, which leads to the development of renal fibrosis in diabetic kidney disease (DKD). The aim of this study was to investigate the effect and mechanism of chlorogenic acid (CA) on reducing renal lipid accumulation and improving DKD renal fibrosis. METHODS: This study evaluated the effects of CA on renal fibrosis, lipid deposition and lipid metabolism by constructing in vitro and in vivo models of DKD, and detected the improvement of Notch1 and Stat3 signaling pathways. Molecular docking was used to predict the binding between CA and the extracellular domain NRR1 of Notch1 protein. RESULTS: In vitro studies have shown that CA decreased the expression of Fibronectin, α-smooth muscle actin (α-SMA), p-smad3/smad3, alleviated lipid deposition, promoted the expression of carnitine palmitoyl transferase 1 A (CPT1A), and inhibited the expression of cholesterol regulatory element binding protein 1c (SREBP1c). The expression of Notch1, Cleaved Notch1, Hes1, and p-stat3/stat3 were inhibited. These results suggested that CA might reduce intercellular lipid deposition in human kidney cells (HK2) by inhibiting Notch1 and stat3 signaling pathways, thereby improving fibrosis. Further, in vivo studies demonstrated that CA improved renal fibrosis and renal lipid deposition in DKD mice by inhibiting Notch1 and stat3 signaling pathways. Finally, molecular docking experiments showed that the binding energy of CA and NRR1 was -6.6 kcal/mol, which preliminarily predicted the possible action of CA on Notch1 extracellular domain NRR1. CONCLUSION: CA reduces renal lipid accumulation and improves DKD renal fibrosis by inhibiting Notch1 and stat3 signaling pathways.


Asunto(s)
Ácido Clorogénico , Nefropatías Diabéticas , Fibrosis , Riñón , Metabolismo de los Lípidos , Receptor Notch1 , Factor de Transcripción STAT3 , Transducción de Señal , Factor de Transcripción STAT3/metabolismo , Receptor Notch1/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Animales , Transducción de Señal/efectos de los fármacos , Fibrosis/tratamiento farmacológico , Ácido Clorogénico/farmacología , Ácido Clorogénico/uso terapéutico , Humanos , Ratones , Masculino , Riñón/patología , Riñón/efectos de los fármacos , Riñón/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Simulación del Acoplamiento Molecular , Ratones Endogámicos C57BL , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Línea Celular
4.
Int J Mol Sci ; 25(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38791228

RESUMEN

Chemotherapeutic drugs are indispensable in cancer treatment, but their effectiveness is often lessened because of non-selective toxicity to healthy tissues, which triggers inflammatory pathways that are harmful to vital organs. In addition, tumors' resistance to drugs causes failures in treatment. Chlorogenic acid (5-caffeoylquinic acid, CGA), found in plants and vegetables, is promising in anticancer mechanisms. In vitro and animal studies have indicated that CGA can overcome resistance to conventional chemotherapeutics and alleviate chemotherapy-induced toxicity by scavenging free radicals effectively. This review is a summary of current information about CGA, including its natural sources, biosynthesis, metabolism, toxicology, role in combatting chemoresistance, and protective effects against chemotherapy-induced toxicity. It also emphasizes the potential of CGA as a pharmacological adjuvant in cancer treatment with drugs such as 5-fluorouracil, cisplatin, oxaliplatin, doxorubicin, regorafenib, and radiotherapy. By analyzing more than 140 papers from PubMed, Google Scholar, and SciFinder, we hope to find the therapeutic potential of CGA in improving cancer therapy.


Asunto(s)
Ácido Clorogénico , Resistencia a Antineoplásicos , Neoplasias , Humanos , Ácido Clorogénico/farmacología , Ácido Clorogénico/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Animales , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología
5.
BMC Oral Health ; 24(1): 911, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39112979

RESUMEN

AIM: The aim of the present study is to show how sodium nitrite alters the histology of submandibular salivary glands and livers of Albino rats, as well as how chlorogenic acid may have therapeutic benefits. METHODS: A sample size of thirty male Sprague Dawley Albino rats weighing between 100 and 150 g (5-6 weeks old) was randomly allocated into 3 equal groups. Group I: rats were used as controls and were given phosphate buffer solution, whereas Group II: rats were given an 80 mg/kg sodium nitrites (SN) daily dissolved in distilled water. The rats in Group III were given a daily dose of 80 mg/kg SN dissolved in distilled water and after 6 hours each rat received 50 mg/mL freshly prepared chlorogenic acid (CGA) every other day. For 12 weeks, all treatment modalities will be administered orally, every day. After the experiment, all rats were euthanized. Samples from salivary glands and livers were processed and stained with H&E and interleukin 6 (IL 6). Malondialdehyde (MDA) and superoxide dismutase (SOD) enzymes were detected using an ELISA assay. RESULTS: Groups III had nearly comparable findings to Group I regarding histological pattern with normal submandibular glands and livers features. Group III salivary gland treated with CGA exhibited higher SOD levels (20.60±4.81 U/g) in comparison to the SN group, and lower MDA levels (111.58±28.28 nmol/mg) in comparison to the SN treated samples. In comparison to the SN group, CGA treatment significantly reduced MDA levels in liver samples (167.56±21.17 nmol/mg) and raised SOD (30.85±6.77 U/g). CONCLUSIONS: Chlorogenic acid has a protective effect against salivary gland and liver toxicity induced by SN in rats. This was mediated via the anti-inflammatory and antioxidative properties of CGA and the restoration of oxidant/antioxidant balance in rat salivary gland and liver.


Asunto(s)
Ácido Clorogénico , Hígado , Malondialdehído , Ratas Sprague-Dawley , Nitrito de Sodio , Glándula Submandibular , Superóxido Dismutasa , Animales , Ácido Clorogénico/farmacología , Ácido Clorogénico/uso terapéutico , Masculino , Glándula Submandibular/efectos de los fármacos , Glándula Submandibular/patología , Glándula Submandibular/metabolismo , Ratas , Hígado/efectos de los fármacos , Hígado/patología , Nitrito de Sodio/farmacología , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/efectos de los fármacos , Malondialdehído/metabolismo , Distribución Aleatoria , Interleucina-6/análisis , Interleucina-6/metabolismo
6.
J Pharmacol Exp Ther ; 384(2): 254-264, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36456194

RESUMEN

Epithelial-mesenchymal transition (EMT) is a crucial biologic process for breast cancer metastasis, and inhibition of EMT could be an effective approach to suppress metastatic potential of mammary cancer. High expression of low-density lipoprotein receptor-related protein 6 (LRP6) is usually observed in breast carcinoma and predicts poor prognosis. In the present study, we investigated whether chlorogenic acid (CA) can inhibit the EMT of breast cancer cells and underlying molecular mechanism. We found that CA treatment transformed MCF-7 cell morphology from spindle shape (mesenchymal phenotype) to spherical shape (epithelial phenotype). CA clearly increased epithelial biomarkers' expression (E-cadherin and ZO-1) but decreased mesenchymal proteins' expression (ZEB1, N-cadherin, vimentin, snail, and slug). In addition, CA attenuated MMP-2 and MMP-9 activities and inhibited cell migration and invasion. CA downregulated the expression of LRP6 in MCF-7 cells. Knockdown LRP6 with siRNA repressed cell mobility and invasion, wheras overexpression of LRP6 promoted EMT and antagonized the EMT inhibitory effect of CA on MCF-7 cells. Furthermore, CA directly interacted with Wnt/ß-catenin signaling coreceptor LRP6 and reduced LRP6, p-LRP6, and ß-catenin expression levels in MCF-7 cells. In vivo study revealed that CA notably reduced tumor volume and tumor weight. CA decreased the expression of LRP6, N-cadherin, ZEB1, vimentin, MMP2, MMP9, and increased the expression of E-cadherin and ZO-1. In conclusion, CA inhibited EMT and invasion of breast cancer by targeting LRP6. SIGNIFICANCE STATEMENT: CA, the familiar polyphenol compound in traditional Chinese medicine, repressed EMT and weakened cellular mobility and invasion in MCF-7 cells. The mechanism studies demonstrated that CA could inhibit EMT and invasion of MCF-7 cells via targeting LRP6. Additionally, CA restrained tumor growth and xenograft tumor EMT in vivo. The EMT inhibitory property of CA warrants further studies of CA as a drug candidate for the therapy of metastatic breast carcinoma.


Asunto(s)
Neoplasias de la Mama , beta Catenina , Humanos , Femenino , beta Catenina/metabolismo , beta Catenina/farmacología , Vimentina/farmacología , Ácido Clorogénico/farmacología , Ácido Clorogénico/uso terapéutico , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad , Neoplasias de la Mama/genética , Movimiento Celular , Cadherinas
7.
J Virol ; 96(7): e0054221, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35319229

RESUMEN

While infections by enterovirus A71 (EV-A71) are generally self-limiting, they can occasionally lead to serious neurological complications and death. No licensed therapies against EV-A71 currently exist. Using anti-virus-induced cytopathic effect assays, 3,4-dicaffeoylquinic acid (3,4-DCQA) from Ilex kaushue extracts was found to exert significant anti-EV-A71 activity, with a broad inhibitory spectrum against different EV-A71 genotypes. Time-of-drug-addition assays revealed that 3,4-DCQA affects the initial phase (entry step) of EV-A71 infection by directly targeting viral particles and disrupting viral attachment to host cells. Using resistant virus selection experiments, we found that 3,4-DCQA targets the glutamic acid residue at position 98 (E98) and the proline residue at position 246 (P246) in the 5-fold axis located within the VP1 structural protein. Recombinant viruses harboring the two mutations were resistant to 3,4-DCQA-elicited inhibition of virus attachment and penetration into human rhabdomyosarcoma (RD) cells. Finally, we showed that 3,4-DCQA specifically inhibited the attachment of EV-A71 to the host receptor heparan sulfate (HS), but not to the scavenger receptor class B member 2 (SCARB2) and P-selectin glycoprotein ligand-1 (PSGL1). Molecular docking analysis confirmed that 3,4-DCQA targets the 5-fold axis to form a stable structure with the E98 and P246 residues through noncovalent and van der Waals interactions. The targeting of E98 and P246 by 3,4-DCQA was found to be specific; accordingly, HS binding of viruses carrying the K242A or K244A mutations in the 5-fold axis was successfully inhibited by 3,4-DCQA.The clinical utility of 3,4-DCQA in the prevention or treatment of EV-A71 infections warrants further scrutiny. IMPORTANCE The canyon region and the 5-fold axis of the EV-A71 viral particle located within the VP1 protein mediate the interaction of the virus with host surface receptors. The three most extensively investigated cellular receptors for EV-A71 include SCARB2, PSGL1, and cell surface heparan sulfate. In the current study, a RD cell-based anti-cytopathic effect assay was used to investigate the potential broad spectrum inhibitory activity of 3,4-DCQA against different EV-A71 strains. Mechanistically, we demonstrate that 3,4-DCQA disrupts the interaction between the 5-fold axis of EV-A71 and its heparan sulfate receptor; however, no effect was seen on the SCARB2 or PSGL1 receptors. Taken together, our findings show that this natural product may pave the way to novel anti-EV-A71 therapeutic strategies.


Asunto(s)
Ácido Clorogénico/análogos & derivados , Enterovirus Humano A , Infecciones por Enterovirus , Ilex , Plantas Medicinales , Antivirales/uso terapéutico , Línea Celular Tumoral , Ácido Clorogénico/uso terapéutico , Enterovirus Humano A/genética , Infecciones por Enterovirus/tratamiento farmacológico , Heparitina Sulfato/metabolismo , Humanos , Ilex/química , Simulación del Acoplamiento Molecular , Extractos Vegetales/uso terapéutico , Plantas Medicinales/química
8.
Int J Med Microbiol ; 313(2): 151576, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36812841

RESUMEN

INTRODUCTION: Pneumonia is an inflammation-related respiratory infection and chlorogenic acid (CGA) possesses a wide variety of bioactive properties, such as anti-inflammation and anti-bacteria. AIM: This study explored the anti-inflammatory mechanism of CGA in Klebsiella pneumoniae (Kp)-induced rats with severe pneumonia. METHODS: The pneumonia rat models were established by infection with Kp and treated with CGA. Survival rates, bacterial load, lung water content, and cell numbers in the bronchoalveolar lavage fluid were recorded, lung pathological changes were scored, and levels of inflammatory cytokines were determined by enzyme-linked immunosorbent assay. RLE6TN cells were infected with Kp and treated with CGA. The expression levels of microRNA (miR)-124-3p, p38, and mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MK2) in lung tissues and RLE6TN cells were quantified by real-time quantitative polymerase chain reaction or Western blotting. The binding of miR-124-3p to p38 was validated by the dual-luciferase and RNA pull-down assays. In vitro, the functional rescue experiments were performed using miR-124-3p inhibitor or p38 agonist. RESULTS: Kp-induced pneumonia rats presented high mortality, increased lung inflammatory infiltration and the release of inflammatory cytokines, and enhanced bacterial load, while CGA treatment improved rat survival rates and the above situations. CGA increased miR-124-3p expression, and miR-124-3p inhibited p38 expression and inactivated the p38MAPK pathway. Inhibition of miR-124-3p or activation of the p38MAPK pathway reversed the alleviative effect of CGA on pneumonia in vitro. CONCLUSION: CGA upregulated miR-124-3p expression and inactivated the p38MAPK pathway to downregulate inflammatory levels, facilitating the recovery of Kp-induced pneumonia rats.


Asunto(s)
MicroARNs , Neumonía , Ratas , Animales , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/uso terapéutico , Klebsiella pneumoniae/genética , Ácido Clorogénico/farmacología , Ácido Clorogénico/uso terapéutico , Klebsiella/genética , Klebsiella/metabolismo , MicroARNs/genética , Neumonía/tratamiento farmacológico , Neumonía/microbiología , Citocinas/metabolismo , Antiinflamatorios/farmacología
9.
Clin Sci (Lond) ; 137(10): 785-805, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36951146

RESUMEN

Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a life-threatening condition caused due to significant pulmonary and systemic inflammation. Chlorogenic acid (CGA) has been shown to possess potent antioxidant, anti-inflammatory, and immunoprotective properties. However, the protective effect of CGA on viral and bacterial-induced ALI/ARDS is not yet explored. Hence, the current study is aimed to evaluate the preclinical efficacy of CGA in lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid (POLY I:C)-induced ALI/ARDS models in vitro and in vivo. Human airway epithelial (BEAS-2B) cells exposed to LPS+POLY I:C significantly elevated oxidative stress and inflammatory signaling. Co-treatment with CGA (10 and 50 µM) prevented inflammation and oxidative stress mediated by TLR4/TLR3 and NLRP3 inflammasome axis. BALB/c mice, when chronically challenged with LPS+POLY I:C showed a significant influx of immune cells, up-regulation of pro-inflammatory cytokines, namely: IL-6, IL-1ß, and TNF-α, and treatment with intranasal CGA (1 and 5 mg/kg) normalized the elevated levels of immune cell infiltration as well as pro-inflammatory cytokines. D-Dimer, the serum marker for intravascular coagulation, was significantly increased in LPS+ POLY I:C challenged animals which was reduced with CGA treatment. Further, CGA treatment also has a beneficial effect on the lung and heart, as shown by improving lung physiological and cardiac functional parameters accompanied by the elevated antioxidant response and simultaneous reduction in tissue damage caused by LPS+POLY I:C co-infection. In summary, these comprehensive, in vitro and in vivo studies suggest that CGA may be a viable therapeutic option for bacterial and viral-induced ALI-ARDS-like pathology.


Asunto(s)
FN-kappa B , Síndrome de Dificultad Respiratoria , Ratones , Animales , Humanos , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR , Ácido Clorogénico/farmacología , Ácido Clorogénico/uso terapéutico , Receptor Toll-Like 4/metabolismo , Antioxidantes/farmacología , Estrés Oxidativo , Citocinas/metabolismo , Inflamación/tratamiento farmacológico , Poli I/farmacología
10.
Biol Pharm Bull ; 46(7): 929-938, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37394644

RESUMEN

Chlorogenic acid (CGA), derived from dicotyledons and ferns, has been demonstrated with anti-inflammatory, anti-bacterial, and free radical-scavenging effects and can be used to treat pulmonary fibrosis (PF). However, the specific mechanism by which CGA treats PF needs to be further investigated. In this study, in vivo experiment was firstly performed to evaluate the effects of CGA on epithelial-mesenchymal transition (EMT) and autophagy in bleomycin (BLM)-induced PF mice. Then, the effects of CGA on EMT and autophagy was assessed using transforming growth factor beta (TGF-ß) 1-induced EMT model in vitro. Furthermore, autophagy inhibitor (3-methyladenine) was used to verify that the inhibitory mechanism of CGA on EMT was associated with activating autophagy. Our results found that 60 mg/kg of CGA treatment significantly ameliorated lung inflammation and fibrosis in mice with BLM-induced PF. Besides, CGA inhibited EMT and promoted autophagy in mice with PF. In vitro studies also demonstrated that 50 µM of CGA treatment inhibited EMT and induced autophagy related factors in TGF-ß1-induced EMT cell model. Moreover, the inhibitory effect of CGA on autophagy and EMT in vitro was abolished after using autophagy inhibitor. In conclusion, CGA could inhibit EMT to treat BLM-induced PF in mice through, activating autophagy.


Asunto(s)
Fibrosis Pulmonar , Ratones , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Ácido Clorogénico/farmacología , Ácido Clorogénico/uso terapéutico , Transición Epitelial-Mesenquimal , Factor de Crecimiento Transformador beta1/metabolismo , Células Epiteliales , Autofagia , Bleomicina/efectos adversos
11.
Planta Med ; 89(2): 183-193, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36220097

RESUMEN

Lychnophora is a genus of South American flowering plants in the daisy family, popularly known as "Brazilian arnica". It is used in traditional medicine as an anti-inflammatory and analgesic agent, whose active components are derived from chlorogenic acid (CGA) and C-flavonoids. Since the drugs currently used are ineffective to treat glaucoma, agents with antioxidant and anti-inflammatory properties may represent new alternatives in preventing cellular lesions in retinal ischemia. In this study, we report the neuroprotective effects of CGA and 4,5-di-O-[E]-caffeoylquinic (CQA) acid, isolated from Lychnophora plants, in a rodent glaucoma model. Wistar rats were administered intravitreally with 10 µg CGA or CGA, and then subjected to acute retinal ischemia (ISC) by increasing intraocular pressure (IPO) for 45 minutes followed (or not) by 15 minutes of reperfusion (I/R). Qualitative and quantitative analyses of neurodegeneration were performed using hematoxylin-eosin or Fluoro-Jade C staining protocols. All retinas submitted to ISC or I/R exhibited matrix disorganization, pyknotic nuclei, and pronounced vacuolization of the cytoplasm in the ganglion cell layer (GCL) and inner nuclear layer (INL). Pretreatment with CGA or CQA resulted in the protection of the retinal layers against matrix disorganization and a reduction in the number of vacuolized cells and pyknotic nuclei. Also, pretreatment with CGA or CQA resulted in a significant reduction in neuronal death in the GCL, the INL, and the outer nuclear layer (ONL) after ischemic insult. Our study demonstrated that CGA and CQA exhibit neuroprotective activities in retinas subjected to ISC and I/R induced by IPO in Wistar rats.


Asunto(s)
Arnica , Glaucoma , Fármacos Neuroprotectores , Enfermedades de la Retina , Ratas , Animales , Ácido Clorogénico/farmacología , Ácido Clorogénico/uso terapéutico , Ratas Wistar , Brasil , Enfermedades de la Retina/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Antiinflamatorios , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Glaucoma/tratamiento farmacológico
12.
Med J Malaysia ; 78(4): 476-483, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37518915

RESUMEN

INTRODUCTION: Diabetes Mellitus (DM) is a chronic disease with many complications, one of which is diabetic encephalopathy which is characterised by memory dysfunction. Hyperglycaemia that occurs in DM will activate inflammatory pathways in neurons, including NF-κB pathway. Activation of this pathway produce proinflammatory agents such as MCP-1 and IL-6, which activate glial cells. Activation of glial cells is characterised by Glial Fibrillary Acid Protein (GFAP). Chlorogenic acid (CGA) has been reported to have anti-inflammatory effects and can improve memory function. This research aimed to determine the effect of CGA as anti-inflammation, its effect on memory function, mRNA expression of NF-κB, MCP-1, IL- 6, and GFAP of frontal lobe. MATERIALS AND METHODS: A total of 24 male rats were randomly divided into six groups: control, DM 1.5 month (DM1.5), DM 2 months (DM2) and the group with three different doses of CGA 12.5 (CGA1), 25 (CGA2), and 50 (CGA3) mg/KgBW. Frontal lobe tissue is taken for analysis of mRNA expression for NF-κB, MCP-1, IL-6, and GFAP using Reverse Transcriptase PCR (RT-PCR). Samples were also taken for histopathology preparation and stained by immunohistochemistry method using anti-GFAP antibodies to observe glial cell activation in frontal lobe tissue. RESULTS: The group that was given CGA at all doses have statistically significant better memory function, i.e. DM2 versus CGA1 (p = 0.036), CGA2 (p = 0.040), and CGA3 (p = 0.021). The result of mRNA expression in NF-κB was lower in the group given CGA, i.e. DM2 compared to CGA2 (p = 0.007). mRNA expression of MCP-1 was significantly lower in all CGA treatment groups compared to the non-CGA group (p = 0.000). IL-6 mRNA expression was lower than the group not given CGA, DM compared to CGA2 (p = 0.028). GFAP mRNA expression was lower than the group given CGA in DM, DM2 group compared to CGA1 (p = 0.04) and CGA3 (p = 0.004). CONCLUSION: Administration of CGA can improve memory function at all doses given, and can reduce brain inflammatory activity, especially in the CGA2 group.


Asunto(s)
Diabetes Mellitus , FN-kappa B , Ratas , Masculino , Animales , FN-kappa B/metabolismo , Ácido Clorogénico/farmacología , Ácido Clorogénico/uso terapéutico , Interleucina-6 , Lóbulo Frontal/metabolismo , ARN Mensajero/metabolismo
13.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(10): 1611-1620, 2023 Oct 28.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-38432890

RESUMEN

Long-term inflammation will develop into chronic inflammation and become inflammatory diseases. Antibiotics are commonly used in clinical practice to treat inflammatory diseases. But patients are prone to drug resistance. So we need to find new treatment. Chlorogenic acid is an organic compound extracted from honeysuckle and other plants. Its anti-inflammatory activity is strong, and it has a significant anti-inflammatory effect on inflammatory diseases in various systems. It has been shown that chlorogenic acid can regulate inflammation-related signaling pathways, such as nuclear factor κB (NF-κB) canonical signaling pathway, NF-κB atypical signaling pathway, nuclear factor-erythroid 2-related factor 2 (Nrf2) canonical signaling pathway, and Nrf2 atypical signaling pathway, etc. It can up-regulate the expression of anti-inflammatory cytokines such as interleukin (IL)-4, IL-10, IL-13 and down-regulate the expression of pro-inflammatory cytokine such as IL-1ß, IL-6, and IL-8. Although chlorogenic acid has a strong anti-inflammatory effect, but clinical trials and application still face many difficulties. In the future, the anti-inflammatory molecular mechanism of chlorogenic acid should be further studied to explore its clinical application value and improve new ideas for the treatment of inflammatory diseases.


Asunto(s)
Ácido Clorogénico , FN-kappa B , Humanos , Ácido Clorogénico/farmacología , Ácido Clorogénico/uso terapéutico , Factor 2 Relacionado con NF-E2 , Citocinas , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
14.
Cell Commun Signal ; 20(1): 84, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35689269

RESUMEN

BACKGROUND: Neonatal hypoxic-ischemic brain injury (HIE) is caused by perinatal asphyxia, which is associated with various confounding factors. Although studies on the pathogenesis and treatment of HIE have matured, sub-hypothermia is the only clinical treatment available for HIE. Previous evidence indicates that chlorogenic acid (CGA) exerts a potential neuroprotective effect on brain injury. However, the role of CGA on neonatal HI brain damage and the exact mechanism remains elusive. Here, we investigate the effects of CGA on HI models in vivo and in vitro and explore the underlying mechanism. METHODS: In the in vivo experiment, we ligated the left common carotid artery of 7-day-old rats and placed the rats in a hypoxic box for 2 h. We did not ligate the common carotid artery of the pups in the sham group since they did not have hypoxia. Brain atrophy and infarct size were evaluated by Nissl staining, HE staining and 2,3,5-triphenyltetrazolium chloride monohydrate (TTC) staining. Morris Water Maze test (MWM) was used to evaluate neurobehavioral disorders. Western-blotting and immunofluorescence were used to detect the cell signaling pathway. Malondialdehyde (MDA) content test, catalase (CAT) activity detection and Elisa Assay was used to detect levels of inflammation and oxidative stress. in vitro experiments were performed on isolated primary neurons. RESULT: In our study, pretreatment with CGA significantly decreased the infarct volume of neonatal rats after HI, alleviated brain edema, and improved tissue structure in vivo. Moreover, we used the Morris water maze to verify CGA's effects on enhancing the learning and cognitive ability and helping to maintain the long-term spatial memory after HI injury. However, Sirt1 inhibitor EX-527 partially reversed these therapeutic effects. CGA pretreatment inhibited neuronal apoptosis induced by HI by reducing inflammation and oxidative stress. The findings suggest that CGA potentially activates Sirt1 to regulate the Nrf2-NF-κB signaling pathway by forming complexes thereby protecting primary neurons from oxygen-glucose deprivation (OGD) damage. Also, CGA treatment significantly suppresses HI-induced proliferation of glial. CONCLUSION: Collectively, this study uncovered the underlying mechanism of CGA on neonatal HI brain damage. CGA holds promise as an effective neuroprotective agent to promote neonatal brain recovery from HI-induced injury. Video Abstract.


Asunto(s)
Lesiones Encefálicas , Hipoxia-Isquemia Encefálica , Fármacos Neuroprotectores , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Ácido Clorogénico/metabolismo , Ácido Clorogénico/farmacología , Ácido Clorogénico/uso terapéutico , Hipoxia-Isquemia Encefálica/complicaciones , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/metabolismo , Infarto/tratamiento farmacológico , Infarto/metabolismo , Infarto/patología , Inflamación/metabolismo , Isquemia/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Sirtuina 1/metabolismo
15.
Pharmacol Res ; 186: 106505, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36243332

RESUMEN

Chlorogenic acid (CA), also known as 5-O-caffeoylquinic acid, is a dietary phenolic acid produced by various plant species. CA, is the most ubiquitous compound among the phenolic acid group, is also present in tea and green coffee extracts. Its consumption reduces the risk of numerous diseases as validated by preclinical and clinical studies. CA possesses a wide range of pharmacological properties, such as hepatoprotective, antimicrobial, immunomodulatory, antioxidant, antidiabetic, and anticancer activities. It has been extensively used in the food, chemical, medicine, and health care industries. Available reports revealed that CA can exert anticancer activity by inhibiting the cell cycle, triggering apoptosis, and suppressing the proliferation of cancer cells. It upregulates the expression of nuclear factor of activated T cells 2 (NFATC2) and NFATC3 genes involved in immune pathway and downregulates B cell-specific moloney murine leukemia virus integration site 1 protein and SRY-box transcription factor 2 gene expression to facilitate tumor cell destruction. It promotes intracellular DNA impairment and topoisomerase I- and topoisomerase-II-DNA complex formation that perform a key function in apoptosis. In addition, CA has been documented to be an effective natural anticancer drug and was approved by the China Food and Drug Administration. Several previously published reports have provided fragmented summary of various anticancer activities of CA. Therefore, this review aims to deliver up-to-date and comprehensive assessment about the natural sources of CA, its bioavailability, metabolism, and anticancer property with an emphasis on the molecular mechanisms associated with several signaling pathways in tumor cells.


Asunto(s)
Ácido Clorogénico , Neoplasias , Estados Unidos , Ratones , Animales , Ácido Clorogénico/farmacología , Ácido Clorogénico/uso terapéutico , Hidroxibenzoatos/farmacología , Antioxidantes/farmacología , Apoptosis , Neoplasias/tratamiento farmacológico , Neoplasias/prevención & control
16.
Pharmacol Res ; 176: 106077, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35026404

RESUMEN

Heart failure (HF), the main cause of death in patients with many cardiovascular diseases, has been reported to be closely related to the complicated pathogenesis of autophagy, apoptosis, and inflammation. Notably, Si-Miao-Yong-An decoction (SMYAD) is a traditional Chinese medicine (TCM) used to treat cardiovascular disease; however, the main active components and their relevant mechanisms remain to be discovered. Based on our previous ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) results, we identified angoriside C (AC) and 3,5-dicaffeoylquinic acid (3,5-DiCQA) as the main active components of SMYAD. In vivo results showed that AC and 3,5-DiCQA effectively improved cardiac function, reduced the fibrotic area, and alleviated isoproterenol (ISO)-induced myocarditis in rats. Moreover, AC and 3,5-DiCQA inhibited ISO-induced autophagic cell death by inhibiting the PDE5A/AKT/mTOR/ULK1 pathway and inhibited ISO-induced apoptosis by inhibiting the TLR4/NOX4/BAX pathway. In addition, the autophagy inhibitor 3-MA was shown to reduce ISO-induced apoptosis, indicating that ISO-induced autophagic cell death leads to excess apoptosis. Taken together, the main active components AC and 3,5-DiCQA of SMYAD inhibit the excessive autophagic cell death and apoptosis induced by ISO by inhibiting the PDE5A-AKT and TLR4-NOX4 pathways, thereby reducing myocardial inflammation and improving heart function to alleviate and treat a rat ISO-induced heart failure model and cell heart failure models. More importantly, the main active components of SMYAD will provide new insights into a promising strategy that will promote the discovery of more main active components of SMYAD for therapeutic purposes in the future.


Asunto(s)
Ácido Clorogénico/análogos & derivados , Ácidos Cumáricos/uso terapéutico , Medicamentos Herbarios Chinos , Insuficiencia Cardíaca/tratamiento farmacológico , Trisacáridos/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ácido Clorogénico/farmacología , Ácido Clorogénico/uso terapéutico , Ácidos Cumáricos/farmacología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Isoproterenol , Masculino , Mioblastos/efectos de los fármacos , Miocardio/metabolismo , Miocardio/patología , NADPH Oxidasa 4/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Trisacáridos/farmacología
17.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36293162

RESUMEN

Dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS) cause serious public health problems, with nearly 390 million people affected and 20,000 deaths per year in tropical and subtropical countries. Despite numerous attempts, no antiviral drug or vaccine is currently available to combat the manifestation. The challenge of discovering an efficient vaccine is enhanced by the surplus presence of efficient vectors and drug resistance from the virus. For centuries, papaya (Carica papaya) extracts have been traditionally used to treat DF, DHF, and DSS. In the present study, we systematically investigated seven compounds isolated from papaya leaf extract with regard to their potential as inhibitors for non-structural (NS) proteins, NS3 and NS5, which play a crucial role in viral RNA replication. The computational tools applied stretched across classical molecular docking, molecular dynamics (MD) simulations and SwissADME used to calculate binding affinities; binding free energies; Absorption, Distribution, Metabolism, and Excretion (ADME); and drug-likeness properties, thus, identifying Kaempferol, Chlorogenic acid, and Quercetin as potential candidates, with Kaempferol and Quercetin scoring best. Therefore, for the Kaempferol and Quercetin complexes, hybrid quantum mechanical/molecular mechanical (QM/MM) geometry and frequency calculations were performed, followed by the local mode analysis developed in our group to quantify Kaempferol-NS and Quercetin-NS hydrogen bonding. Given the non-toxic nature and the wide availability of the Kaempferol and Quercetin papaya extract in almost all of the susceptible regions, and our results showing high NS3 and NS5 binding affinities and energies, strong hydrogen bonding with both NS3 and NS5, and excellent ADME properties, we suggest Kaempferol and Quercetin as a strong NS3 and NS5 inhibitor to be further investigated in vitro.


Asunto(s)
Carica , Virus del Dengue , Dengue , Humanos , Carica/química , Dengue/tratamiento farmacológico , Quempferoles/uso terapéutico , Simulación del Acoplamiento Molecular , Quercetina/uso terapéutico , Ácido Clorogénico/uso terapéutico , ARN Viral , Antivirales/farmacología , Antivirales/uso terapéutico , Antivirales/química , Extractos Vegetales/uso terapéutico , Proteínas no Estructurales Virales/química
18.
Int J Mol Sci ; 23(11)2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35682971

RESUMEN

Colorectal cancer (CRC) is one of most common cancers worldwide, with high rates of mortality. Epidemiological findings demonstrate that coffee consumption reduces the risk of developing CRC by ~13%. In general, in vivo and in vitro findings demonstrate the antiproliferative, antioxidant and proapoptotic effects of brewed coffee or major bioavailable coffee compounds. Thus, it was assessed whether caffeine (CAF) and/or chlorogenic acid (CGA) attenuates the early-stage of chemically induced mouse colon carcinogenesis. Male Swiss mice were submitted to a 1,2-dimethylhydrazine/deoxycholic acid (DMH/DCA)-induced colon carcinogenesis model. These animals received CAF (50 mg/kg), CGA (25 mg/kg) or CAF+CGA (50 + 25 mg/kg) intragastrically for five times/week for ten weeks. CAF+CGA had the most pronounced effects on decreasing epithelial cell proliferation (Ki-67) and increasing apoptosis (cleaved caspase-3) in colonic crypts. This treatment also decreased the levels of proinflammatory cytokines IL-6, IL-17 and TNF-α, and downregulated the oncomiR miR-21a-5p in the colon. Accordingly, the analysis of miR-21a-5p targets demonstrated the genes involved in the negative regulation of proliferation and inflammation, and the positive regulation of apoptosis. Ultimately, CAF+CGA attenuated preneoplastic aberrant crypt foci (ACF) development. Our findings suggest that a combination of coffee compounds reduces early-stage colon carcinogenesis by the modulation of miR-21a-5p expression, highlighting the importance of coffee intake to prevent CRC.


Asunto(s)
Neoplasias del Colon , MicroARNs , 1,2-Dimetilhidrazina , Animales , Cafeína/farmacología , Carcinogénesis , Ácido Clorogénico/farmacología , Ácido Clorogénico/uso terapéutico , Café , Colon/metabolismo , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Masculino , Ratones , MicroARNs/genética , MicroARNs/farmacología
19.
Pharm Biol ; 60(1): 2110-2123, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36269045

RESUMEN

CONTEXT: Jingchuan tablet (JCT) is a Chinese medicine prescription for treating ischaemic cerebral stroke (ICS). However, its relevant mechanisms remain unclear. OBJECTIVE: To unravel the intrinsic mechanisms of JCT anti-ICS. MATERIALS AND METHODS: 'Hongjingtian', 'chuanxiong', 'yanhusuo', 'bingpian', 'cerebral infarction', 'cerebral ischemia' or 'stroke' were used as keywords, and then components, targets and underlying mechanisms of JCT anti-ICS were analysed in TCMSP, TTD, DrugBank, STRING and Metascape databases up to June 2020. Male Sprague-Dawley rats under permanent middle cerebral artery occlusion (pMCAO) model, randomly assigned as: model, sham, nimodipine (0.012 g/kg/d) and JCT (0.78, 1.56 and 3.12 g/kg/d) groups, received oral gavage administration for a week. Therapeutic effects were evaluated by detecting the proportion of cerebral infarction, neuronal apoptosis and neurological deficits. Bioactive components were detected by HPLC-MS. Molecular biology and computational docking were used to verify the underlying mechanisms. RESULTS: Eighty-one components, 166 targets and HIF-1α/EPO/VEGFA pathway contributed to the anti-ICS effect of JCT. JCT treatment effectively reduced the proportion of cerebral infarction (33.13%), apoptosis rate (14.80%) and neurobehavioural score (2.00). JCT increased the protein levels of HIF-1α (0.84), EPO (0.64) and VEGFA (0.69), respectively (p < 0.05). Gallic acid, salidroside, chlorogenic acid, ethyl gallate, ferulic acid and tetrahydropalmatine detected by HPLC-MS showed good interaction and binding with HIF-1α/EPO/VEGFA. CONCLUSIONS: Our study demonstrated the mechanisms of JCT anti-ICS associated with the activation of the HIF-1α/EPO/VEGFA pathway, which provided a pharmacological basis for expanding the clinical application and some scientific ideas for further research into the material basis JCT anti-ICS.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Masculino , Ratas , Isquemia Encefálica/tratamiento farmacológico , Ácido Clorogénico/uso terapéutico , Modelos Animales de Enfermedad , Ácido Gálico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Nimodipina/uso terapéutico , Ratas Sprague-Dawley , Accidente Cerebrovascular/tratamiento farmacológico , Comprimidos/uso terapéutico
20.
Phytother Res ; 35(3): 1416-1431, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33037751

RESUMEN

Defective degradation of intracellular lipids induced by autophagy is causally linked to the development of non-alcoholic fatty liver disease (NAFLD). Natural agents that can restore autophagy could therefore have the potentials for clinical applications for this public health issue. Herein, we investigated the effects of apple polyphenol extract (APE) on fatty acid-induced lipids depositions in HepG2 cells. APE treatment alleviated palmitic acid and oleic acid-induced intracellular lipid accumulation, concomitant with the increased autophagy, restored lysosomal acidification, inhibited lipid synthesis and slight promotion of fatty acid oxidation. Mechanistically, APE up-regulated the expression of SIRT1, activated LKB1/AMPK pathway and inhibited mTOR signaling. Over-expressed or knock-down SIRT1 positively regulated AMPK and ATG7 expressions. SIRT1 and ATG7 knock-down impaired APE induction of improved lipid accumulation, increased intracellular TG content. Thus, APE induction of autophagy to ameliorate fatty acid-induced lipid deposition is SIRT1 dependent, APE conserved preventive potentials for clinical hepatosteatosis.


Asunto(s)
Autofagia/efectos de los fármacos , Ácido Clorogénico/uso terapéutico , Flavonoides/uso terapéutico , Células Hep G2/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Sirtuina 1/metabolismo , Taninos/uso terapéutico , Ácido Clorogénico/farmacología , Flavonoides/farmacología , Humanos , Transducción de Señal , Taninos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA