Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.603
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cell ; 84(18): 3513-3529.e5, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39255795

RESUMEN

Innate immunity serves as the primary defense against viral and microbial infections in humans. The precise influence of cellular metabolites, especially fatty acids, on antiviral innate immunity remains largely elusive. Here, through screening a metabolite library, palmitic acid (PA) has been identified as a key modulator of antiviral infections in human cells. Mechanistically, PA induces mitochondrial antiviral signaling protein (MAVS) palmitoylation, aggregation, and subsequent activation, thereby enhancing the innate immune response. The palmitoyl-transferase ZDHHC24 catalyzes MAVS palmitoylation, thereby boosting the TBK1-IRF3-interferon (IFN) pathway, particularly under conditions of PA stimulation or high-fat-diet-fed mouse models, leading to antiviral immune responses. Additionally, APT2 de-palmitoylates MAVS, thus inhibiting antiviral signaling, suggesting that its inhibitors, such as ML349, effectively reverse MAVS activation in response to antiviral infections. These findings underscore the critical role of PA in regulating antiviral innate immunity through MAVS palmitoylation and provide strategies for enhancing PA intake or targeting APT2 for combating viral infections.


Asunto(s)
Aciltransferasas , Proteínas Adaptadoras Transductoras de Señales , Inmunidad Innata , Factor 3 Regulador del Interferón , Lipoilación , Ácido Palmítico , Transducción de Señal , Inmunidad Innata/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/inmunología , Humanos , Animales , Ácido Palmítico/farmacología , Ratones , Células HEK293 , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/inmunología , Aciltransferasas/genética , Aciltransferasas/inmunología , Aciltransferasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ratones Endogámicos C57BL , Antivirales/farmacología , Proteínas de Neoplasias , Péptidos y Proteínas de Señalización Intracelular
2.
Nature ; 618(7964): 374-382, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225988

RESUMEN

Cancer alters the function of multiple organs beyond those targeted by metastasis1,2. Here we show that inflammation, fatty liver and dysregulated metabolism are hallmarks of systemically affected livers in mouse models and in patients with extrahepatic metastasis. We identified tumour-derived extracellular vesicles and particles (EVPs) as crucial mediators of cancer-induced hepatic reprogramming, which could be reversed by reducing tumour EVP secretion via depletion of Rab27a. All EVP subpopulations, exosomes and principally exomeres, could dysregulate hepatic function. The fatty acid cargo of tumour EVPs-particularly palmitic acid-induced secretion of tumour necrosis factor (TNF) by Kupffer cells, generating a pro-inflammatory microenvironment, suppressing fatty acid metabolism and oxidative phosphorylation, and promoting fatty liver formation. Notably, Kupffer cell ablation or TNF blockade markedly decreased tumour-induced fatty liver generation. Tumour implantation or pre-treatment with tumour EVPs diminished cytochrome P450 gene expression and attenuated drug metabolism in a TNF-dependent manner. We also observed fatty liver and decreased cytochrome P450 expression at diagnosis in tumour-free livers of patients with pancreatic cancer who later developed extrahepatic metastasis, highlighting the clinical relevance of our findings. Notably, tumour EVP education enhanced side effects of chemotherapy, including bone marrow suppression and cardiotoxicity, suggesting that metabolic reprogramming of the liver by tumour-derived EVPs may limit chemotherapy tolerance in patients with cancer. Our results reveal how tumour-derived EVPs dysregulate hepatic function and their targetable potential, alongside TNF inhibition, for preventing fatty liver formation and enhancing the efficacy of chemotherapy.


Asunto(s)
Vesículas Extracelulares , Ácidos Grasos , Hígado Graso , Hígado , Neoplasias Pancreáticas , Animales , Ratones , Sistema Enzimático del Citocromo P-450/genética , Vesículas Extracelulares/metabolismo , Ácidos Grasos/metabolismo , Hígado Graso/tratamiento farmacológico , Hígado Graso/etiología , Hígado Graso/metabolismo , Hígado Graso/prevención & control , Hígado/metabolismo , Hígado/patología , Hígado/fisiopatología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Microambiente Tumoral , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo , Neoplasias Hepáticas/secundario , Humanos , Inflamación/metabolismo , Ácido Palmítico/metabolismo , Macrófagos del Hígado , Fosforilación Oxidativa , Proteínas rab27 de Unión a GTP/deficiencia
3.
Nature ; 599(7885): 485-490, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34759321

RESUMEN

Fatty acid uptake and altered metabolism constitute hallmarks of metastasis1,2, yet evidence of the underlying biology, as well as whether all dietary fatty acids are prometastatic, is lacking. Here we show that dietary palmitic acid (PA), but not oleic acid or linoleic acid, promotes metastasis in oral carcinomas and melanoma in mice. Tumours from mice that were fed a short-term palm-oil-rich diet (PA), or tumour cells that were briefly exposed to PA in vitro, remained highly metastatic even after being serially transplanted (without further exposure to high levels of PA). This PA-induced prometastatic memory requires the fatty acid transporter CD36 and is associated with the stable deposition of histone H3 lysine 4 trimethylation by the methyltransferase Set1A (as part of the COMPASS complex (Set1A/COMPASS)). Bulk, single-cell and positional RNA-sequencing analyses indicate that genes with this prometastatic memory predominantly relate to a neural signature that stimulates intratumoural Schwann cells and innervation, two parameters that are strongly correlated with metastasis but are aetiologically poorly understood3,4. Mechanistically, tumour-associated Schwann cells secrete a specialized proregenerative extracellular matrix, the ablation of which inhibits metastasis initiation. Both the PA-induced memory of this proneural signature and its long-term boost in metastasis require the transcription factor EGR2 and the glial-cell-stimulating peptide galanin. In summary, we provide evidence that a dietary metabolite induces stable transcriptional and chromatin changes that lead to a long-term stimulation of metastasis, and that this is related to a proregenerative state of tumour-activated Schwann cells.


Asunto(s)
Grasas de la Dieta/farmacología , Metástasis de la Neoplasia , Ácido Palmítico/farmacología , Células de Schwann/efectos de los fármacos , Animales , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Grasas de la Dieta/administración & dosificación , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Femenino , Galanina/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Masculino , Ratones , Ácido Palmítico/administración & dosificación , Células de Schwann/metabolismo
4.
Mol Cell ; 74(1): 45-58.e7, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30846317

RESUMEN

Cells require a constant supply of fatty acids to survive and proliferate. Fatty acids incorporate into membrane and storage glycerolipids through a series of endoplasmic reticulum (ER) enzymes, but how these enzymes are regulated is not well understood. Here, using a combination of CRISPR-based genetic screens and unbiased lipidomics, we identified calcineurin B homologous protein 1 (CHP1) as a major regulator of ER glycerolipid synthesis. Loss of CHP1 severely reduces fatty acid incorporation and storage in mammalian cells and invertebrates. Mechanistically, CHP1 binds and activates GPAT4, which catalyzes the initial rate-limiting step in glycerolipid synthesis. GPAT4 activity requires CHP1 to be N-myristoylated, forming a key molecular interface between the two proteins. Interestingly, upon CHP1 loss, the peroxisomal enzyme, GNPAT, partially compensates for the loss of ER lipid synthesis, enabling cell proliferation. Thus, our work identifies a conserved regulator of glycerolipid metabolism and reveals plasticity in lipid synthesis of proliferating cells.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Retículo Endoplásmico/enzimología , Glicéridos/biosíntesis , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Lipogénesis , Células 3T3 , Aciltransferasas/genética , Aciltransferasas/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al Calcio/genética , Proliferación Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/patología , Activación Enzimática , Regulación Enzimológica de la Expresión Génica , Glicerol-3-Fosfato O-Aciltransferasa/genética , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Células Jurkat , Lipogénesis/efectos de los fármacos , Lipogénesis/genética , Ratones , Ácido Palmítico/toxicidad , Unión Proteica
5.
Mol Cell ; 74(1): 32-44.e8, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30846318

RESUMEN

Excessive levels of saturated fatty acids are toxic to cells, although the basis for this lipotoxicity remains incompletely understood. Here, we analyzed the transcriptome, lipidome, and genetic interactions of human leukemia cells exposed to palmitate. Palmitate treatment increased saturated glycerolipids, accompanied by a transcriptional stress response, including upregulation of the endoplasmic reticulum (ER) stress response. A comprehensive genome-wide short hairpin RNA (shRNA) screen identified >350 genes modulating lipotoxicity. Among previously unknown genetic modifiers of lipotoxicity, depletion of RNF213, a putative ubiquitin ligase mutated in Moyamoya vascular disease, protected cells from lipotoxicity. On a broader level, integration of our comprehensive datasets revealed that changes in di-saturated glycerolipids, but not other lipid classes, are central to lipotoxicity in this model. Consistent with this, inhibition of ER-localized glycerol-3-phosphate acyltransferase activity protected from all aspects of lipotoxicity. Identification of genes modulating the response to saturated fatty acids may reveal novel therapeutic strategies for treating metabolic diseases linked to lipotoxicity.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Glicéridos/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Ácido Palmítico/toxicidad , Aciltransferasas/genética , Aciltransferasas/metabolismo , Adenosina Trifosfatasas/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Estrés del Retículo Endoplásmico/genética , Regulación Enzimológica de la Expresión Génica , Células HeLa , Células Hep G2 , Humanos , Células K562 , Metabolismo de los Lípidos/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Transcriptoma , Ubiquitina-Proteína Ligasas/metabolismo
6.
Proc Natl Acad Sci U S A ; 121(28): e2318691121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968121

RESUMEN

Dietary lipids play an essential role in regulating the function of the gut microbiota and gastrointestinal tract, and these luminal interactions contribute to mediating host metabolism. Palmitic Acid Hydroxy Stearic Acids (PAHSAs) are a family of lipids with antidiabetic and anti-inflammatory properties, but whether the gut microbiota contributes to their beneficial effects on host metabolism is unknown. Here, we report that treating chow-fed female and male germ-free (GF) mice with PAHSAs improves glucose tolerance, but these effects are lost upon high fat diet (HFD) feeding. However, transfer of feces from PAHSA-treated, but not vehicle-treated, chow-fed conventional mice increases insulin sensitivity in HFD-fed GF mice. Thus, the gut microbiota is necessary for, and can transmit, the insulin-sensitizing effects of PAHSAs in HFD-fed GF male mice. Analyses of the cecal metagenome and lipidome of PAHSA-treated mice identified multiple lipid species that associate with the gut commensal Bacteroides thetaiotaomicron (Bt) and with insulin sensitivity resulting from PAHSA treatment. Supplementing live, and to some degree, heat-killed Bt to HFD-fed female mice prevented weight gain, reduced adiposity, improved glucose tolerance, fortified the colonic mucus barrier and reduced systemic inflammation compared to HFD-fed controls. These effects were not observed in HFD-fed male mice. Furthermore, ovariectomy partially reversed the beneficial Bt effects on host metabolism, indicating a role for sex hormones in mediating the Bt probiotic effects. Altogether, these studies highlight the fact that PAHSAs can modulate the gut microbiota and that the microbiota is necessary for the beneficial metabolic effects of PAHSAs in HFD-fed mice.


Asunto(s)
Dieta Alta en Grasa , Microbioma Gastrointestinal , Resistencia a la Insulina , Obesidad , Animales , Masculino , Femenino , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Obesidad/metabolismo , Obesidad/microbiología , Obesidad/etiología , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Ácidos Esteáricos/metabolismo , Ácido Palmítico/metabolismo , Heces/microbiología , Ratones Obesos
7.
Mol Cell ; 69(5): 729-743.e7, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29499131

RESUMEN

MCL-1 is a BCL-2 family protein implicated in the development and chemoresistance of human cancer. Unlike its anti-apoptotic homologs, Mcl-1 deletion has profound physiologic consequences, indicative of a broader role in homeostasis. We report that the BCL-2 homology 3 (BH3) α helix of MCL-1 can directly engage very long-chain acyl-CoA dehydrogenase (VLCAD), a key enzyme of the mitochondrial fatty acid ß-oxidation (FAO) pathway. Proteomic analysis confirmed that the mitochondrial matrix isoform of MCL-1 (MCL-1Matrix) interacts with VLCAD. Mcl-1 deletion, or eliminating MCL-1Matrix alone, selectively deregulated long-chain FAO, causing increased flux through the pathway in response to nutrient deprivation. Transient elevation in MCL-1 upon serum withdrawal, a striking increase in MCL-1 BH3/VLCAD interaction upon palmitic acid titration, and direct modulation of enzymatic activity by the MCL-1 BH3 α helix are consistent with dynamic regulation. Thus, the MCL-1 BH3 interaction with VLCAD revealed a separable, gain-of-function role for MCL-1 in the regulation of lipid metabolism.


Asunto(s)
Acil-CoA Deshidrogenasa de Cadena Larga/metabolismo , Metabolismo de los Lípidos/fisiología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Ácido Palmítico/metabolismo , Acil-CoA Deshidrogenasa de Cadena Larga/genética , Animales , Línea Celular , Ratones , Ratones Noqueados , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Oxidación-Reducción , Estructura Secundaria de Proteína
8.
Plant J ; 119(5): 2402-2422, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38990624

RESUMEN

Enhancing maize kernel oil is vital for improving the bioavailability of fat-soluble vitamins. Here, we combined favourable alleles of dgat1-2 and fatb into parental lines of four multi-nutrient-rich maize hybrids (APTQH1, APTQH4, APTQH5 and APTQH7) using marker-assisted selection (MAS). Parental lines possessed favourable alleles of crtRB1, lcyE, vte4 and opaque2 genes. Gene-specific markers enabled successful foreground selection in BC1F1, BC2F1 and BC2F2, while background selection using genome-wide microsatellite markers (127-132) achieved 93% recurrent parent genome recovery. Resulting inbreds exhibited significantly higher oil (6.93%) and oleic acid (OA, 40.49%) and lower palmitic acid (PA, 14.23%) compared to original inbreds with elevated provitamin A (11.77 ppm), vitamin E (16.01 ppm), lysine (0.331%) and tryptophan (0.085%). Oil content significantly increased from 4.80% in original hybrids to 6.73% in reconstituted hybrids, making them high-oil maize hybrids. These hybrids displayed 35.70% increment in oil content and 51.56% increase in OA with 36.32% reduction in PA compared to original hybrids, while maintaining higher provitamin A (two-fold), vitamin E (nine-fold), lysine (two-fold) and tryptophan (two-fold) compared to normal hybrids. Lipid health indices showed improved atherogenicity, thrombogenicity, cholesterolaemic, oxidability, peroxidizability and nutritive values in MAS-derived genotypes over original versions. Besides, the MAS-derived inbreds and hybrids exhibited comparable grain yield and phenotypic characteristics to the original versions. The maize hybrids developed in the study possessed high-yielding ability with high kernel oil and OA, low PA, better fatty acid health and nutritional properties, higher multi-vitamins and balanced amino acids, which hold immense significance to address malnutrition and rising demand for oil sustainably in a fast-track manner.


Asunto(s)
Aceite de Maíz , Ácidos Grasos , Zea mays , Zea mays/genética , Zea mays/metabolismo , Aceite de Maíz/metabolismo , Aceite de Maíz/genética , Ácidos Grasos/metabolismo , Genómica/métodos , Vitamina E/metabolismo , Ácido Oléico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/genética , Semillas/metabolismo , Semillas/química , Ácido Palmítico/metabolismo , Provitaminas/metabolismo , Alelos , Fitomejoramiento/métodos , Repeticiones de Microsatélite/genética
9.
J Virol ; 98(4): e0017124, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38488361

RESUMEN

The global impact of emerging viral infections emphasizes the urgent need for effective broad-spectrum antivirals. The cellular organelle, lipid droplet (LD), is utilized by many types of viruses for replication, but its reduction does not affect cell survival. Therefore, LD is a potential target for developing broad-spectrum antivirals. In this study, we found that 2-bromopalmitate (2 BP), a previously defined palmitoylation inhibitor, depletes LD across all studied cell lines and exerts remarkable antiviral effects on different coronaviruses. We comprehensively utilized 2 BP, alongside other palmitoylation inhibitors such as cerulenin and 2-fluoro palmitic acid (2-FPA), as well as the enhancer palmostatin B and evaluated their impact on LD and the replication of human coronaviruses (hCoV-229E, hCoV-Oc43) and murine hepatitis virus (MHV-A59) at non-cytotoxic concentrations. While cerulenin and 2-FPA exhibited moderate inhibition of viral replication, 2 BP exhibited a much stronger suppressive effect on MHV-A59 replication, although they share similar inhibitory effects on palmitoylation. As expected, palmostatin B significantly enhanced viral replication, it failed to rescue the inhibitory effects of 2 BP, whereas it effectively counteracted the effects of cerulenin and 2-FPA. This suggests that the mechanism that 2 BP used to inhibit viral replication is beyond palmitoylation inhibition. Further investigations unveil that 2 BP uniquely depletes LDs, a phenomenon not exhibited by 2-FPA and cerulenin. Importantly, the depletion of LDs was closely associated with the inhibition of viral replication because the addition of oleic acid to 2 BP significantly rescued LD depletion and its inhibitory effects on MHV-A59. Our findings indicate that the inhibitory effects of 2 BP on viral replication primarily stem from LD disruption rather than palmitoylation inhibition. Intriguingly, fatty acid (FA) assays demonstrated that 2 BP reduces the FA level in mitochondria while concurrently increasing FA levels in the cytoplasm. These results highlight the crucial role of LDs in viral replication and uncover a novel biological activity of 2 BP. These insights contribute to the development of broad-spectrum antiviral strategies. IMPORTANCE: In our study, we conducted a comparative investigation into the antiviral effects of palmitoylation inhibitors including 2-bromopalmitate (2-BP), 2-fluoro palmitic acid (2-FPA), and cerulenin. Surprisingly, we discovered that 2-BP has superior inhibitory effects on viral replication compared to 2-FPA and cerulenin. However, their inhibitory effects on palmitoylation were the same. Intrigued by this finding, we delved deeper into the underlying mechanism of 2-BP's potent antiviral activity, and we unveiled a novel biological activity of 2-BP: depletion of lipid droplets (LDs). Importantly, we also highlighted the crucial role of LDs in viral replication. Our insights shed new light on the antiviral mechanism of LD depletion paving the way for the development of broad-spectrum antiviral strategies by targeting LDs.


Asunto(s)
Antivirales , Coronavirus , Virus de la Hepatitis Murina , Palmitatos , Animales , Humanos , Ratones , Antivirales/farmacología , Antivirales/metabolismo , Cerulenina/metabolismo , Cerulenina/farmacología , Coronavirus/efectos de los fármacos , Coronavirus/fisiología , Gotas Lipídicas/efectos de los fármacos , Palmitatos/farmacología , Ácido Palmítico/farmacología , Ácido Palmítico/metabolismo , Propiolactona/análogos & derivados , Replicación Viral/efectos de los fármacos , Virus de la Hepatitis Murina/efectos de los fármacos , Virus de la Hepatitis Murina/fisiología
10.
FASEB J ; 38(18): e70036, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39275940

RESUMEN

Fatty acid-binding protein 1 (FABP1) plays an important role in regulating fatty acid metabolism in liver, which is a potential therapeutic target for diseases such as non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms are not well defined. Using complementary experimental models, we discovered FABP1 induction in hepatocytes as a primary mediator of lipogenesis when exposed to fatty acids, especially saturated fatty acids (SFAs). In the feeding trial, palm oil led to excess lipid accumulation in the liver of large yellow croaker (Larimichthys crocea), accompanied by significant induction of FABP1. In cultured cells, palmitic acid (PA), a kind of SFA, triggered the fabp1 expression and increased triglyceride (TG) contents. Knockdown of FABP1 dampened PA-induced TG accumulation through mitigated lipogenesis. The overexpression of FABP1 showed the opposite result. Furthermore, the inactivation of FABP1 led to induction in insulin-induced gene 1 (INSIG1) expression, which attenuated the processing of sterol regulatory element-binding protein 1 (SREBP1) by down-regulating the nuclear-localized SREBP1. These results revealed a previously unrecognized function of FABP1 in response to PA, providing additional evidence for targeting FABP1 in the treatment of NAFLD caused by SFA.


Asunto(s)
Proteínas de Unión a Ácidos Grasos , Hepatocitos , Lipogénesis , Perciformes , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Animales , Hepatocitos/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Perciformes/metabolismo , Perciformes/genética , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Triglicéridos/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Ácido Palmítico/farmacología , Células Cultivadas
11.
Exp Cell Res ; 437(1): 113998, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38513962

RESUMEN

Plasma saturated free fatty acid (FFA)-induced endothelial dysfunction (ED) contributes to the pathogenesis of atherosclerosis and cardiovascular diseases. However, the mechanism underlying saturated FFA-induced ED remains unclear. This study demonstrated that palmitic acid (PA) induced ED by activating the NADPH oxidase (NOX)/ROS signaling pathway to activate protein phosphatase 4 (PP4) and protein phosphatase 2A (PP2A), thereby reducing endothelial nitric oxide synthase (eNOS) phosphorylation at Ser633 and Ser1177, respectively. Okadaic acid (OA) and fostriecin (FST), which are inhibitors of PP2A, inhibited the PA-induced decreases in eNOS phosphorylation at Ser633 and Ser1177. The antioxidants N-acetylcysteine (NAC) and apocynin (APO) or knockdown of gp91phox or p67phox (NOX subunits) restored PA-mediated downregulation of PP4R2 protein expression and eNOS Ser633 phosphorylation. Knockdown of the PP4 catalytic subunit (PP4c) specifically increased eNOS Ser633 phosphorylation, while silencing the PP2A catalytic subunit (PP2Ac) restored only eNOS Ser1177 phosphorylation. Furthermore, PA dramatically decreased the protein expression of the PP4 regulatory subunit R2 (PP4R2) but not the other regulatory subunits. PP4R2 overexpression increased eNOS Ser633 phosphorylation, nitric oxide (NO) production, cell migration and tube formation but did not change eNOS Ser1177 phosphorylation levels. Coimmunoprecipitation (Co-IP) suggested that PP4R2 and PP4c interacted with the PP4R3α and eNOS proteins. In summary, PA decreases PP4R2 protein expression through the Nox/ROS pathway to activate PP4, which contributes to ED by dephosphorylating eNOS at Ser633. The results of this study suggest that PP4 is a novel therapeutic target for ED and ED-associated vascular diseases.


Asunto(s)
Óxido Nítrico Sintasa de Tipo III , Fosfoproteínas Fosfatasas , Enfermedades Vasculares , Humanos , Fosforilación , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ácido Palmítico/farmacología , Serina/metabolismo , Especies Reactivas de Oxígeno , Células Cultivadas , Proteína Fosfatasa 2/metabolismo , Óxido Nítrico/metabolismo
12.
Exp Cell Res ; 440(2): 114134, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38901790

RESUMEN

Individuals with type 2 diabetes mellitus frequently display heightened levels of palmitic acid (PA) in their serum, which may lead to ß-cell damage. The involvement of ferroptosis, a form of oxidative cell death in lipotoxic ß-cell injury remains uncertain. Here, we have shown that PA induces intracellular lipid peroxidation, increases intracellular Fe2+ content and decreases intracellular glutathione peroxidase 4 (GPX4) expression. Furthermore, PA causes distinct changes in pancreatic islets and INS-1 cells, such as mitochondrial atrophy and increased membrane density. Furthermore, the presence of the ferroptosis inhibitor has a significant mitigating effect on PA-induced ß-cell damage. Mechanistically, PA increased ceramide content and c-Jun N-terminal kinase (JNK) phosphorylation. The ceramide synthase inhibitor effectively attenuated PA-induced ß-cell damage and GPX4/Fe2+ abnormalities, while inhibiting JNK phosphorylation. Additionally, the JNK inhibitor SP600125 improved PA-induced cell damage. In conclusion, by promoting ceramide synthesis, PA inhibited GPX4 expression and increased intracellular Fe2+ to induce ß-cell ferroptosis. Moreover, JNK may be a downstream mechanism of ceramide-triggered lipotoxic ferroptosis in ß-cells.


Asunto(s)
Ceramidas , Ferroptosis , Células Secretoras de Insulina , Ácido Palmítico , Transducción de Señal , Ferroptosis/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Ceramidas/metabolismo , Ácido Palmítico/farmacología , Animales , Transducción de Señal/efectos de los fármacos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Ratas , Peroxidación de Lípido/efectos de los fármacos , Fosforilación/efectos de los fármacos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Hierro/metabolismo
13.
Cell Mol Life Sci ; 81(1): 295, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38977508

RESUMEN

Nod-like receptor family pyrin-containing protein 3 (NLRP3) inflammasome plays a pathologic role in metabolic dysfunction-associated steatohepatitis (MASH), but the molecular mechanism regulating the NLRP3 inflammasome activation in hepatocellular lipotoxicity remains largely unknown. Bromodomain-containing protein 4 (BRD4) has emerged as a key epigenetic reader of acetylated lysine residues in enhancer regions that control the transcription of key genes. The aim of this study is to investigate if and how BRD4 regulated the NLRP3 inflammasome activation and pyroptosis in MASH. Using the AML12 and primary mouse hepatocytes stimulated by palmitic acid (PA) as an in vitro model of hepatocellular lipotoxicity, we found that targeting BRD4 by genetic knockdown or a selective BRD4 inhibitor MS417 protected against hepatosteatosis; and this protective effect was attributed to inhibiting the activation of NLRP3 inflammasome and reducing the expression of Caspase-1, gasdermin D (GSDMD), interleukin (IL)-1ß and IL-6. Moreover, BRD4 inhibition limited the voltage-dependent anion channel-1 (VDAC1) expression and oligomerization in PA-treated AML12 hepatocytes, thereby suppressing the NLRP3 inflammasome activation. Additionally, the expression of BRD4 enhanced in MASH livers of humans. Mechanistically, BRD4 was upregulated during hepatocellular lipotoxicity that in turn modulated the active epigenetic mark H3K27ac at the promoter regions of the Vdac and Gsdmd genes, thereby enhancing the expression of VDAC and GSDMD. Altogether, our data provide novel insights into epigenetic mechanisms underlying BRD4 activating the NLRP3 inflammasome and promoting GSDMD-mediated pyroptosis in hepatocellular lipotoxicity. Thus, BRD4 might serve as a novel therapeutic target for the treatment of MASH.


Asunto(s)
Hepatocitos , Inflamasomas , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Proteínas de Unión a Fosfato , Piroptosis , Factores de Transcripción , Animales , Humanos , Masculino , Ratones , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular , Hígado Graso/metabolismo , Hígado Graso/patología , Furanos , Gasderminas , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Indenos/farmacología , Inflamasomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Nucleares , Ácido Palmítico/farmacología , Proteínas de Unión a Fosfato/metabolismo , Proteínas de Unión a Fosfato/genética , Piroptosis/efectos de los fármacos , Sulfonamidas/farmacología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
14.
Nucleic Acids Res ; 51(6): 2691-2708, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36744476

RESUMEN

Pseudomonas aeruginosa is capable of causing acute and chronic infections in various host tissues, which depends on its abilities to effectively utilize host-derived nutrients and produce protein virulence factors and toxic compounds. However, the regulatory mechanisms that direct metabolic intermediates towards production of toxic compounds are poorly understood. We previously identified a regulatory protein PvrA that controls genes involved in fatty acid catabolism by binding to palmitoyl-coenzyme A (CoA). In this study, transcriptomic analyses revealed that PvrA activates the Pseudomonas quinolone signal (PQS) synthesis genes, while suppressing genes for production of polyhydroxyalkanoates (PHAs). When palmitic acid was the sole carbon source, mutation of pvrA reduced production of pyocyanin and rhamnolipids due to defective PQS synthesis, but increased PHA production. We further solved the co-crystal structure of PvrA with palmitoyl-CoA and identified palmitoyl-CoA-binding residues. By using pvrA mutants, we verified the roles of the key palmitoyl-CoA-binding residues in gene regulation in response to palmitic acid. Since the PQS signal molecules, rhamnolipids and PHA synthesis pathways are interconnected by common metabolic intermediates, our results revealed a regulatory mechanism that directs carbon flux from carbon/energy storage to virulence factor production, which might be crucial for the pathogenesis.


Asunto(s)
Polihidroxialcanoatos , Pseudomonas aeruginosa , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Ácido Palmítico/metabolismo , Pseudomonas aeruginosa/metabolismo , Percepción de Quorum/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Polihidroxialcanoatos/metabolismo
15.
Proc Natl Acad Sci U S A ; 119(47): e2206923119, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36375063

RESUMEN

Senescence in pancreatic beta cells plays a major role in beta cell dysfunction, which leads to impaired glucose homeostasis and diabetes. Therefore, prevention of beta cell senescence could reduce the risk of diabetes. Treatment of nonobese diabetic (NOD) mice, a model of type 1 autoimmune diabetes (T1D), with palmitic acid hydroxy stearic acids (PAHSAs), a novel class of endogenous lipids with antidiabetic and antiinflammatory effects, delays the onset and reduces the incidence of T1D from 82% with vehicle treatment to 35% with PAHSAs. Here, we show that a major mechanism by which PAHSAs protect islets of the NOD mice is by directly preventing and reversing the initial steps of metabolic stress-induced senescence. In vitro PAHSAs increased Mdm2 expression, which decreases the stability of p53, a key inducer of senescence-related genes. In addition, PAHSAs enhanced expression of protective genes, such as those regulating DNA repair and glutathione metabolism and promoting autophagy. We demonstrate the translational relevance by showing that PAHSAs prevent and reverse early stages of senescence in metabolically stressed human islets by the same Mdm2 mechanism. Thus, a major mechanism for the dramatic effect of PAHSAs in reducing the incidence of type 1 diabetes in NOD mice is decreasing cellular senescence; PAHSAs may have a similar benefit in humans.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Ratones , Animales , Ácido Palmítico/farmacología , Ácidos Esteáricos , Ratones Endogámicos NOD , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/prevención & control , Proteína p53 Supresora de Tumor/genética , Senescencia Celular/genética , Estrés Fisiológico , Proteínas Proto-Oncogénicas c-mdm2/genética
16.
Gut ; 73(7): 1156-1168, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38191266

RESUMEN

OBJECTIVE: Whether and how the PI3K-AKT pathway, a central node of metabolic homeostasis, is responsible for high-fat-induced non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) remain a mystery. Characterisation of AKT regulation in this setting will provide new strategies to combat HCC. DESIGN: Metabolite library screening disclosed that palmitic acid (PA) could activate AKT. In vivo and in vitro palmitoylation assay were employed to detect AKT palmitoylation. Diverse cell and mouse models, including generation of AKT1C77S and AKT1C224S knock-in cells, Zdhhc17 and Zdhhc24 knockout mice and Akt1C224S knock-in mice were employed. Human liver tissues from patients with NASH and HCC, hydrodynamic transfection mouse model, high-fat/high-cholesterol diet (HFHCD)-induced NASH/HCC mouse model and high-fat and methionine/choline-deficient diet (HFMCD)-induced NASH mouse model were also further explored for our mechanism studies. RESULTS: By screening a metabolite library, PA has been defined to activate AKT by promoting its palmitoyl modification, an essential step for growth factor-induced AKT activation. Biologically, a high-fat diet could promote AKT kinase activity, thereby promoting NASH and liver cancer. Mechanistically, palmitoyl binding anchors AKT to the cell membrane in a PIP3-independent manner, in part by preventing AKT from assembling into an inactive polymer. The palmitoyltransferases ZDHHC17/24 were characterised to palmitoylate AKT to exert oncogenic effects. Interestingly, the anti-obesity drug orlistat or specific penetrating peptides can effectively attenuate AKT palmitoylation and activation by restricting PA synthesis or repressing AKT modification, respectively, thereby antagonising liver tumorigenesis. CONCLUSIONS: Our findings elucidate a novel fine-tuned regulation of AKT by PA-ZDHHC17/24-mediated palmitoylation, and highlight tumour therapeutic strategies by taking PA-restricted diets, limiting PA synthesis, or directly targeting AKT palmitoylation.


Asunto(s)
Carcinoma Hepatocelular , Dieta Alta en Grasa , Lipoilación , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Proteínas Proto-Oncogénicas c-akt , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/etiología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/patología , Humanos , Ácido Palmítico/metabolismo , Carcinogénesis/metabolismo , Ratones Noqueados , Modelos Animales de Enfermedad , Masculino , Transducción de Señal
17.
Am J Physiol Cell Physiol ; 326(3): C880-C892, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38223924

RESUMEN

17-ß-hydroxysteroid dehydrogenase 13 (HSD17B13), a lipid droplet-associated enzyme, is primarily expressed in the liver and plays an important role in lipid metabolism. Targeted inhibition of enzymatic function is a potential therapeutic strategy for treating steatotic liver disease (SLD). The present study is aimed at investigating the effects of the first selective HSD17B13 inhibitor, BI-3231, in a model of hepatocellular lipotoxicity using human cell lines and primary mouse hepatocytes in vitro. Lipotoxicity was induced with palmitic acid in HepG2 cells and freshly isolated mouse hepatocytes and the cells were coincubated with BI-3231 to assess the protective effects. Under lipotoxic stress, triglyceride (TG) accumulation was significantly decreased in the BI-3231-treated cells compared with that of the control untreated human and mouse hepatocytes. In addition, treatment with BI-3231 led to considerable improvement in hepatocyte proliferation, cell differentiation, and lipid homeostasis. Mechanistically, BI-3231 increased the mitochondrial respiratory function without affecting ß-oxidation. BI-3231 inhibited the lipotoxic effects of palmitic acid in hepatocytes, highlighting the potential of targeting HSD17B13 as a specific therapeutic approach in steatotic liver disease.NEW & NOTEWORTHY 17-ß-Hydroxysteroid dehydrogenase 13 (HSD17B13) is a lipid droplet protein primarily expressed in the liver hepatocytes. HSD17B13 is associated with the clinical outcome of chronic liver diseases and is therefore a target for the development of drugs. Here, we demonstrate the promising therapeutic effect of BI-3231 as a potent inhibitor of HSD17B13 based on its ability to inhibit triglyceride accumulation in lipid droplets (LDs), restore lipid metabolism and homeostasis, and increase mitochondrial activity in vitro.


Asunto(s)
Hígado Graso , Ácido Palmítico , Humanos , Animales , Ratones , Ácido Palmítico/toxicidad , Inhibidores Enzimáticos/farmacología , Hepatocitos , Triglicéridos
18.
J Biol Chem ; 299(9): 105088, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37495107

RESUMEN

S-acylation is a reversible posttranslational protein modification consisting of attachment of a fatty acid to a cysteine via a thioester bond. Research over the last few years has shown that a variety of different fatty acids, such as palmitic acid (C16:0), stearate (C18:0), or oleate (C18:1), are used in cells to S-acylate proteins. We recently showed that GNAI proteins can be acylated on a single residue, Cys3, with either C16:0 or C18:1, and that the relative proportion of acylation with these fatty acids depends on the level of the respective fatty acid in the cell's environment. This has functional consequences for GNAI proteins, with the identity of the acylating fatty acid affecting the subcellular localization of GNAIs. Unclear is whether this competitive acylation is specific to GNAI proteins or a more general phenomenon in the proteome. We perform here a proteome screen to identify proteins acylated with different fatty acids. We identify 218 proteins acylated with C16:0 and 308 proteins acylated with C18-lipids, thereby uncovering novel targets of acylation. We find that most proteins that can be acylated by C16:0 can also be acylated with C18-fatty acids. For proteins with more than one acylation site, we find that this competitive acylation occurs on each individual cysteine residue. This raises the possibility that the function of many different proteins can be regulated by the lipid environment via differential S-acylation.


Asunto(s)
Cisteína , Ácido Palmítico , Proteoma , Ácidos Esteáricos , Acilación , Cisteína/metabolismo , Ácido Palmítico/metabolismo , Proteoma/metabolismo , Células HEK293 , Células HeLa , Humanos , Ácidos Esteáricos/metabolismo
19.
J Biol Chem ; 299(11): 105315, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37797700

RESUMEN

A high-fat diet (HFD) plays a critical role in hepatocyte insulin resistance. Numerous models and factors have been proposed to elucidate the mechanism of palmitic acid (PA)-induced insulin resistance. However, proteomic studies of insulin resistance by HFD stimulation are usually performed under insulin conditions, leading to an unclear understanding of how a HFD alone affects hepatocytes. Here, we mapped the phosphorylation rewiring events in PA-stimulated HepG2 cells and found PA decreased the phosphorylation level of the eukaryotic translation initiation factor 4E-binding protein 2 (4EBP2) at S65/T70. Further experiments identified 4EBP2 as a key node of insulin resistance in either HFD mice or PA-treated cells. Reduced 4EBP2 levels increased glucose uptake and insulin sensitivity, whereas the 4EBP2_S65A/T70A mutation exacerbated PA-induced insulin resistance. Additionally, the nascent proteome revealed many glycolysis-related proteins translationally regulated by 4EBP2 such as hexokinase-2, pyruvate kinase PKM, TBC1 domain family member 4, and glucose-6-phosphate 1-dehydrogenase. In summary, we report the critical role of 4EBP2 in regulating HFD-stimulated insulin resistance in hepatocytes.


Asunto(s)
Resistencia a la Insulina , Animales , Masculino , Ratones , Proteínas Portadoras/metabolismo , Línea Celular , Dieta Alta en Grasa/efectos adversos , Hepatocitos/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Ratones Endogámicos C57BL , Ácido Palmítico/metabolismo , Biosíntesis de Proteínas , Proteómica
20.
Neurobiol Dis ; 195: 106489, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38552721

RESUMEN

Obesity and neurometabolic diseases have been linked to neurodegenerative diseases. Our hypothesis is that the endogenous estrogenic component of human astrocytes plays a critical role in cell response during lipotoxic damage, given that obesity can disrupt hormonal homeostasis and cause brain inflammation. Our findings showed that high concentrations of palmitic acid (PA) significantly reduced cell viability more in male astrocytes, indicating sex-specific vulnerabilities. PA induced a greater increase in cytosolic reactive oxygen species (ROS) production in males, while female astrocytes exhibited higher superoxide ion levels in mitochondria. In addition, female astrocytes treated with PA showed increased expression of antioxidant proteins, including catalase, Gpx-1 and Nrf2 suggesting a stronger cellular defence mechanism. Interestingly, there was a difference in the expression of estrogenic components, such as estrogen, androgens, and progesterone receptors, as well as aromatase and 5α-reductase enzymes, between males and females. PA induced their expression mainly in females, indicating a potential protective mechanism mediated by endogenous hormones. In summary, our findings highlight the impact of sex on the response of human astrocytes to lipotoxicity. Male astrocytes appear to be more susceptible to cellular damage when exposed to high concentrations of fatty acids.


Asunto(s)
Astrocitos , Glutatión Peroxidasa GPX1 , Ácido Palmítico , Especies Reactivas de Oxígeno , Caracteres Sexuales , Humanos , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Ácido Palmítico/farmacología , Ácido Palmítico/toxicidad , Femenino , Masculino , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Factor 2 Relacionado con NF-E2/metabolismo , Glutatión Peroxidasa/metabolismo , Catalasa/metabolismo , Aromatasa/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA