Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.316
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 566(7744): 403-406, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30728499

RESUMEN

Most tumours have an aberrantly activated lipid metabolism1,2 that enables them to synthesize, elongate and desaturate fatty acids to support proliferation. However, only particular subsets of cancer cells are sensitive to approaches that target fatty acid metabolism and, in particular, fatty acid desaturation3. This suggests that many cancer cells contain an unexplored plasticity in their fatty acid metabolism. Here we show that some cancer cells can exploit an alternative fatty acid desaturation pathway. We identify various cancer cell lines, mouse hepatocellular carcinomas, and primary human liver and lung carcinomas that desaturate palmitate to the unusual fatty acid sapienate to support membrane biosynthesis during proliferation. Accordingly, we found that sapienate biosynthesis enables cancer cells to bypass the known fatty acid desaturation pathway that is dependent on stearoyl-CoA desaturase. Thus, only by targeting both desaturation pathways is the in vitro and in vivo proliferation of cancer cells that synthesize sapienate impaired. Our discovery explains metabolic plasticity in fatty acid desaturation and constitutes an unexplored metabolic rewiring in cancers.


Asunto(s)
Ácidos Grasos/química , Ácidos Grasos/metabolismo , Redes y Vías Metabólicas , Neoplasias/metabolismo , Neoplasias/patología , Animales , Línea Celular Tumoral , Membrana Celular/metabolismo , Proliferación Celular , Ácido Graso Desaturasas/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ácidos Oléicos/metabolismo , Palmitatos/metabolismo , Ácidos Palmíticos/metabolismo , Estearoil-CoA Desaturasa/metabolismo
2.
Cell Mol Life Sci ; 81(1): 85, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38345762

RESUMEN

The pathogenesis of renal calcium-oxalate (CaOx) stones is complex and influenced by various metabolic factors. In parallel, palmitic acid (PA) has been identified as an upregulated lipid metabolite in the urine and serum of patients with renal CaOx stones via untargeted metabolomics. Thus, this study aimed to mechanistically assess whether PA is involved in stone formation. Lipidomics analysis of PA-treated renal tubular epithelial cells compared with the control samples revealed that α-linoleic acid and α-linolenic acid were desaturated and elongated, resulting in the formation of downstream polyunsaturated fatty acids (PUFAs). In correlation, the levels of fatty acid desaturase 1 and 2 (FADS1 and FADS2) and peroxisome proliferator-activated receptor α (PPARα) in these cells treated with PA were increased relative to the control levels, suggesting that PA-induced upregulation of PPARα, which in turn upregulated these two enzymes, forming the observed PUFAs. Lipid peroxidation occurred in these downstream PUFAs under oxidative stress and Fenton Reaction. Furthermore, transcriptomics analysis revealed significant changes in the expression levels of ferroptosis-related genes in PA-treated renal tubular epithelial cells, induced by PUFA peroxides. In addition, phosphatidyl ethanolamine binding protein 1 (PEBP1) formed a complex with 15-lipoxygenase (15-LO) to exacerbate PUFA peroxidation under protein kinase C ζ (PKC ζ) phosphorylation, and PKC ζ was activated by phosphatidic acid derived from PA. In conclusion, this study found that the formation of renal CaOx stones is promoted by ferroptosis of renal tubular epithelial cells resulting from PA-induced dysregulation of PUFA and phosphatidic acid metabolism, and PA can promote the renal adhesion and deposition of CaOx crystals by injuring renal tubular epithelial cells, consequently upregulating adhesion molecules. Accordingly, this study provides a new theoretical basis for understanding the correlation between fatty acid metabolism and the formation of renal CaOx stones, offering potential targets for clinical applications.


Asunto(s)
Calcio , Ferroptosis , Humanos , Oxalato de Calcio/química , PPAR alfa , Ácidos Grasos Insaturados , Ácidos Palmíticos
3.
BMC Med ; 22(1): 33, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273283

RESUMEN

BACKGROUND: The endocannabinoid (eCB) system and the serotonin (5-HT) are both implicated in the severity of the depression. 5-HT is synthesized from the amino acid tryptophan (Trp), which is also a precursor for kynurenine (Kyn) whose production is increased at the expense of 5-HT in depressed patients. No clinical studies have investigated the crosstalk between the eCB system and the Trp/5-HT/Kyn pathways. Here, we hypothesized that the eCB system is associated with an enhanced Kyn production in relation to the severity of depressive symptoms. METHODS: Eighty-two subjects (51 patients with a diagnosis of depressive disorder (DSM-5) and 31 healthy volunteers), were assessed with the Montgomery-Åsberg Depression Rating Scale (MADRS), Beck Depression Scale, and Global Clinical Impression. Serum concentrations of eCBs (N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG)); structurally related fatty acyl compounds 2-oleoylglycerol (2-OG), oleoylethanolamide (OEA), and palmitoylethanolamide (PEA); Trp, Kyn, Kyn/Trp ratio (an index of Trp degradation into Kyn) and 5-HT were also determined. RESULTS: Following a principal component analysis including the severity of depression, Kyn and the Kyn/Trp ratio appear to be directly associated with 2-AG, AEA, and PEA. Interestingly, these biomarkers also permitted to distinguish the population into two main clusters: one of individuals having mild/severe depressive symptoms and the other with an absence of depressive symptoms. Using parametric analysis, higher serum levels of 2-AG, Kyn, and the ratio Kyn/Trp and lower levels of Trp and 5-HT were found in individuals with mild/severe depressive symptoms than in those without depressive symptoms. While in asymptomatic people, PEA was directly associated to Trp, and OEA indirectly linked to 5-HT, in individuals with depressive symptoms, these correlations were lost, and instead, positive correlations between AEA and 2-AG, PEA and AEA, and PEA vs 2-AG and OEA concentrations were found. CONCLUSIONS: Parametric and non-parametric analyses suggest a possible association between eCBs, tryptophan/kynurenine biomarkers, and severity of depression, confirming a likely interplay among inflammation, stress, and depression. The enhanced relationships among the biomarkers of the 2-AG and AEA pathways and related lipids seen in individuals with depressive symptoms, but not in asymptomatics, suggest an altered metabolism of the eCB system in depression.


Asunto(s)
Amidas , Etanolaminas , Quinurenina , Ácidos Palmíticos , Triptófano , Humanos , Triptófano/metabolismo , Quinurenina/metabolismo , Depresión/diagnóstico , Endocannabinoides , Serotonina , Biomarcadores
4.
J Transl Med ; 22(1): 82, 2024 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245790

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a liver disorder characterized by the ac-cumulation of fat in hepatocytes without alcohol consumption. Mitochondrial dysfunction and endoplasmic reticulum (ER) stress play significant roles in NAFLD pathogenesis. The unfolded protein response in mitochondria (UPRmt) is an adaptive mechanism that aims to restore mitochondrial protein homeostasis and mitigate cellular stress. This study aimed to investigate the effects of ( +)-Lipoic acid (ALA) on UPRmt, inflammation, and oxidative stress in an in vitro model of NAFLD using HepG2 cells treated with palmitic acid and oleic acid to induce steatosis. RESULTS: Treatment with palmitic and oleic acids increased UPRmt-related proteins HSP90 and HSP60 (heat shock protein), and decreased CLPP (caseinolytic protease P), indicating ER stress activation. ALA treatment at 1 µM and 5 µM restored UPRmt-related protein levels. PA:OA (palmitic acid:oleic acid)-induced ER stress markers IRE1α (Inositol requiring enzyme-1), CHOP (C/EBP Homologous Protein), BIP (Binding Immunoglobulin Protein), and BAX (Bcl-2-associated X protein) were significantly reduced by ALA treatment. ALA also enhanced ER-mediated protein glycosylation and reduced oxidative stress, as evidenced by decreased GPX1 (Glutathione peroxidase 1), GSTP1 (glutathione S-transferase pi 1), and GSR (glutathione-disulfide reductase) expression and increased GSH (Glutathione) levels, and improved cellular senescence as shown by the markers ß-galactosidase, γH2Ax and Klotho-beta. CONCLUSIONS: In conclusion, ALA ameliorated ER stress, oxidative stress, and inflammation in HepG2 cells treated with palmitic and oleic acids, potentially offering therapeutic benefits for NAFLD providing a possible biochemical mechanism underlying ALA beneficial effects.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ácido Tióctico , Humanos , Enfermedad del Hígado Graso no Alcohólico/patología , Ácido Tióctico/farmacología , Ácido Tióctico/uso terapéutico , Ácido Tióctico/metabolismo , Endorribonucleasas/metabolismo , Ácido Oléico/farmacología , Ácido Oléico/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Respuesta de Proteína Desplegada , Estrés Oxidativo , Estrés del Retículo Endoplásmico , Hepatocitos/patología , Senescencia Celular , Inflamación/patología , Ácidos Palmíticos/metabolismo , Ácidos Palmíticos/farmacología , Hígado/patología , Ácido Palmítico/farmacología , Ácido Palmítico/metabolismo
5.
Arch Biochem Biophys ; 752: 109883, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38211638

RESUMEN

Free fatty acids, like palmitic acid (PA), and xanthophyll pigments, like lutein (LUT) are the natural membrane compounds in plants. To study the effect of PA on LUT and their organization, a model membrane of 1,2-dimyristoyl-sn-glycerol-3-phosphocholine (DMPC) enriched with 2 mol% PA and 1 mol% LUT was formed. Molecular mechanisms underlying the interaction between these two compounds were examined with application of molecular spectroscopy techniques, e.g., visible spectroscopy, electron paramagnetic resonance and Fourier transform infrared. We determined the monomeric/dimeric organization of LUT in the membrane. We proved that the presence of PA in the lipid phase facilitated and stabilized the formation of LUT structures in the membrane. Lutein with PA did not form strong molecular aggregates like H- and J-structures. We presented the simplified model membrane that could be a suitable representation of the physiological process of de-esterification of PA from LUT appearing in natural biomembranes in humans.


Asunto(s)
Luteína , Xantófilas , Humanos , Luteína/farmacología , Luteína/química , Espectroscopía de Resonancia por Spin del Electrón , Ácidos Palmíticos , Lípidos , Membrana Dobles de Lípidos/química , Dimiristoilfosfatidilcolina/química
6.
Nutr J ; 23(1): 61, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38862960

RESUMEN

BACKGROUND: The Mediterranean diet (MedDiet) has demonstrated efficacy in preventing age-related cognitive decline and modulating plasma concentrations of endocannabinoids (eCBs) and N-acylethanolamines (NAEs, or eCB-like compounds), which are lipid mediators involved in multiple neurological disorders and metabolic processes. Hypothesizing that eCBs and NAEs will be biomarkers of a MedDiet intervention and will be related to the cognitive response, we investigated this relationship according to sex and apolipoprotein E (APOE) genotype, which may affect eCBs and cognitive performance. METHODS: This was a prospective cohort study of 102 participants (53.9% women, 18.8% APOE-ɛ4 carriers, aged 65.6 ± 4.5 years) from the PREDIMED-Plus-Cognition substudy, who were recruited at the Hospital del Mar Research Institute (Barcelona). All of them presented metabolic syndrome plus overweight/obesity (inclusion criteria of the PREDIMED-Plus) and normal cognitive performance at baseline (inclusion criteria of this substudy). A comprehensive battery of neuropsychological tests was administered at baseline and after 1 and 3 years. Plasma concentrations of eCBs and NAEs, including 2-arachidonoylglycerol (2-AG), anandamide (AEA), oleoylethanolamide (OEA), palmitoylethanolamide (PEA), and N-docosahexaenoylethanolamine (DHEA), were also monitored. Baseline cognition, cognitive changes, and the association between eCBs/NAEs and cognition were evaluated according to gender (crude models), sex (adjusted models), and APOE genotype. RESULTS: At baseline, men had better executive function and global cognition than women (the effect size of gender differences was - 0.49, p = 0.015; and - 0.42, p = 0.036); however, these differences became nonsignificant in models of sex differences. After 3 years of MedDiet intervention, participants exhibited modest improvements in memory and global cognition. However, greater memory changes were observed in men than in women (Cohen's d of 0.40 vs. 0.25; p = 0.017). In men and APOE-ε4 carriers, 2-AG concentrations were inversely associated with baseline cognition and cognitive changes, while in women, cognitive changes were positively linked to changes in DHEA and the DHEA/AEA ratio. In men, changes in the OEA/AEA and OEA/PEA ratios were positively associated with cognitive changes. CONCLUSIONS: The MedDiet improved participants' cognitive performance but the effect size was small and negatively influenced by female sex. Changes in 2-AG, DHEA, the OEA/AEA, the OEA/PEA and the DHEA/AEA ratios were associated with cognitive changes in a sex- and APOE-dependent fashion. These results support the modulation of the endocannabinoid system as a potential therapeutic approach to prevent cognitive decline in at-risk populations. TRIAL REGISTRATION: ISRCTN89898870.


Asunto(s)
Cognición , Dieta Mediterránea , Endocannabinoides , Genotipo , Síndrome Metabólico , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Amidas , Apolipoproteínas E/genética , Ácidos Araquidónicos/sangre , Biomarcadores/sangre , Cognición/fisiología , Dieta Mediterránea/estadística & datos numéricos , Endocannabinoides/sangre , Etanolaminas/sangre , Glicéridos/sangre , Síndrome Metabólico/genética , Ácidos Oléicos/sangre , Ácidos Palmíticos/sangre , Alcamidas Poliinsaturadas/sangre , Estudios Prospectivos , Factores Sexuales
7.
Eur Arch Otorhinolaryngol ; 281(7): 3671-3678, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38492007

RESUMEN

PURPOSE: Although COVID-19 anosmia is often transient, patients with persistent olfactory dysfunction (pOD) can experience refractory parosmia and diminished smell. This study evaluated four putative therapies for parosmia in patients with chronic COVID-19 olfactory impairment. METHODS: After screening nasal endoscopy, 85 patients (49 female, 58%) with pOD and treatment-refractory parosmia were randomized to: (1) ultramicronized palmitoylethanolamide and luteolin + olfactory training (OT) (umPEALUT group, n = 17), (2) alpha-lipoic acid + OT (ALA group, n = 21), (3) umPEALUT + ALA + OT (combination group, n = 28), or 4) olfactory training (OT) alone (control group, n = 23). Olfactory function was assessed at baseline (T0) and 6 months (T1) using a parosmia questionnaire and Sniffin' Sticks test of odor threshold, detection, and identification (TDI). Analyses included one-way ANOVA for numeric data and Chi-Square analyses for nominal data on parosmia. RESULTS: The umPEALUT group had the largest improvement in TDI scores (21.8 ± 9.4 to 29.7 ± 7.5) followed by the combination group (19.6 ± 6.29 to 27.5 ± 2.7), both p < 0.01. The control and ALA groups had no significant change. Patients in the combination and umPEALUT groups had significantly improved TDI scores compared to ALA and control groups (p < 0.001). Rates of parosmia resolution after 6 months were reported at 96% for combination, 65% for control, 53% for umPEALUT and 29% for ALA (p < 0.001). All treatment regimens were well-tolerated. CONCLUSIONS: umPEALUT and OT, with or without ALA, was associated with improvement in TDI scores and parosmia, whereas OT alone or OT with ALA were associated with little benefit.


Asunto(s)
COVID-19 , Trastornos del Olfato , Ácido Tióctico , Humanos , Femenino , COVID-19/complicaciones , Masculino , Persona de Mediana Edad , Trastornos del Olfato/etiología , Trastornos del Olfato/terapia , Trastornos del Olfato/rehabilitación , Ácido Tióctico/uso terapéutico , Ácido Tióctico/administración & dosificación , Etanolaminas/uso terapéutico , Ácidos Palmíticos/uso terapéutico , Ácidos Palmíticos/administración & dosificación , Amidas/uso terapéutico , Adulto , SARS-CoV-2 , Resultado del Tratamiento , Anciano , Anosmia/etiología , Anosmia/terapia , Olfato/fisiología , Terapia Combinada , Entrenamiento Olfativo
8.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38732008

RESUMEN

Neuropathy affects 7-10% of the general population and is caused by a lesion or disease of the somatosensory system. The limitations of current therapies highlight the necessity of a new innovative approach to treating neuropathic pain (NP) based on the close correlation between oxidative stress, inflammatory process, and antioxidant action. The advantageous outcomes of a novel combination composed of Hop extract, Propolis, Ginkgo Biloba, Vitamin B, and palmitoylethanolamide (PEA) used as a treatment was evaluated in this study. To assess the absorption and biodistribution of the combination, its bioavailability was first examined in a 3D intestinal barrier model that replicated intestinal absorption. Further, a 3D nerve tissue model was developed to study the biological impacts of the combination during the essential pathways involved in NP. Our findings show that the combination could cross the intestinal barrier and reach the peripheral nervous system, where it modulates the oxidative stress, inflammation levels, and myelination mechanism (increased NRG, MPZ, ERB, and p75 levels) under Schwann cells damaging. This study proves the effectiveness of Ginkgo Biloba, Propolis, Hop extract, Vitamin B, and PEA in avoiding nerve damage and suggests a potential alternative nutraceutical treatment for NP and neuropathies.


Asunto(s)
Amidas , Suplementos Dietéticos , Etanolaminas , Neuralgia , Ácidos Palmíticos , Plantas Medicinales , Etanolaminas/farmacología , Ácidos Palmíticos/farmacología , Ácidos Palmíticos/administración & dosificación , Animales , Neuralgia/tratamiento farmacológico , Amidas/farmacología , Amidas/química , Plantas Medicinales/química , Polifenoles/farmacología , Polifenoles/química , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ratas , Masculino , Antioxidantes/farmacología , Ginkgo biloba/química , Humanos
9.
Molecules ; 29(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38611871

RESUMEN

Oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) are endogenous lipids that act as agonists of the peroxisome proliferator-activated receptor α (PPARα). Recently, an interest in the role of these lipids in malignant tumors has emerged. Nevertheless, the effects of OEA and PEA on human neuroblastoma cells are still not documented. Type I interferons (IFNs) are immunomodulatory cytokines endowed with antiviral and anti-proliferative actions and are used in the treatment of various pathologies such as different cancer forms (i.e., non-Hodgkin's lymphoma, melanoma, leukemia), hepatitis B, hepatitis C, multiple sclerosis, and many others. In this study, we investigated the effect of OEA and PEA on human neuroblastoma SH-SY5Y cells treated with IFNß. We focused on evaluating cell viability, cell proliferation, and cell signaling. Co-exposure to either OEA or PEA along with IFNß leads to increased apoptotic cell death marked by the cleavage of caspase 3 and poly-(ADP ribose) polymerase (PARP) alongside a decrease in survivin and IKBα levels. Moreover, we found that OEA and PEA did not affect IFNß signaling through the JAK-STAT pathway and the STAT1-inducible protein kinase R (PKR). OEA and PEA also increased the phosphorylation of p38 MAP kinase and programmed death-ligand 1 (PD-L1) expression both in full cell lysate and surface membranes. Furthermore, GW6471, a PPARα inhibitor, and the genetic silencing of the receptor were shown to lower PD-L1 and cleaved PARP levels. These results reveal the presence of a novel mechanism, independent of the IFNß-prompted pathway, by which OEA and PEA can directly impair cell survival, proliferation, and clonogenicity through modulating and potentiating the intrinsic apoptotic pathway in human SH-SY5Y cells.


Asunto(s)
Amidas , Endocannabinoides , Etanolaminas , Neuroblastoma , Ácidos Oléicos , Humanos , Neuroblastoma/tratamiento farmacológico , Antígeno B7-H1 , Quinasas Janus , PPAR alfa , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Factores de Transcripción STAT , Transducción de Señal , Apoptosis , Ácidos Palmíticos/farmacología
10.
Proteins ; 91(11): 1525-1534, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37462340

RESUMEN

Fatty acid binding proteins (FABPs) are responsible for the long-chain fatty acids (FAs) transport inside the cell. However, despite the years, since their structure is known and the many studies published, there is no definitive answer about the stages of the lipid entry-exit mechanism. Their structure forms a ß -barrel of 10 anti-parallel strands with a cap in a helix-turn-helix motif, and there is some consensus on the role of the so-called portal region, involving the second α -helix from the cap ( α 2), ß C- ß D, and ß E- ß F turns in FAs exchange. To test the idea of a lid that opens, we performed a soaking experiment on an h-FABP crystal in which the cap is part of the packing contacts, and its movement is strongly restricted. Even in these conditions, we observed the replacement of palmitic acid by 2-Bromohexadecanoic acid (Br-palmitic acid). Our MD simulations reveal a two-step lipid entry process: (i) The travel of the lipid head through the cavity in the order of tens of nanoseconds, and (ii) The accommodation of its hydrophobic tail in hundreds to thousands of nanoseconds. We observed this even in the cases in which the FAs enter the cavity by their tail. During this process, the FAs do not follow a single trajectory, but multiple ones through which they get into the protein cavity. Thanks to the complementary views between experiment and simulation, we can give an approach to a mechanistic view of the exchange process.


Asunto(s)
Proteínas de Unión a Ácidos Grasos , Simulación de Dinámica Molecular , Proteínas de Unión a Ácidos Grasos/química , Proteínas de Unión a Ácidos Grasos/metabolismo , Rayos X , Conformación Proteica , Ácidos Palmíticos/metabolismo , Lípidos , Ácidos Grasos
11.
Genes Cells ; 27(7): 493-504, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35485445

RESUMEN

Lipid mediators are known to play crucial roles not only in the onset of the inflammatory response but also in the induction of resolution of inflammation. Here, we report that palmitoylethanolamide (PEA), an endogenous N-acylethanolamine, can suppress the inflammation induced by Toll-like receptor (TLR) signaling both in vitro and in vivo. PEA was found to be significantly reduced in the serum and spleen of lupus-prone MRL/lpr mice analyzed by lipidomics. PEA suppressed pro-inflammatory cytokine production in a mouse macrophage cell line stimulated with TLR ligands such as lipopolysaccharide, peptidoglycan, poly (I:C), imiquimod, and CpG-ODN. PEA also inhibited both mRNA and protein levels of IL-6 in bone marrow-derived dendritic cells (BMDCs) and B cells stimulated with CpG-ODN. Augmentation of cell surface CD86 and CD40 on BMDCs and B cells, IgM production, and cell proliferation of B cells in response to CpG-ODN were attenuated by PEA. Moreover, PEA treatment significantly reduced mortality and serum IL-6 levels in mice injected with CpG-ODN plus D-galactosamine. Taken together, PEA ameliorates inflammation induced by TLR signaling, which could be a novel therapeutic target for inflammatory disorders.


Asunto(s)
Interleucina-6 , Receptor Toll-Like 9 , Amidas , Animales , Cromatografía Liquida , Etanolaminas , Inflamación/tratamiento farmacológico , Interleucina-6/metabolismo , Lipidómica , Ratones , Ratones Endogámicos MRL lpr , Ácidos Palmíticos , Espectrometría de Masas en Tándem , Receptores Toll-Like
12.
Br J Nutr ; 129(10): 1657-1666, 2023 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34556193

RESUMEN

Angiopoietin-like 4 (ANGPTL4) is a potent regulator of TAG metabolism, but knowledge of the mechanisms underlying ANGPTL4 transcription in response to fatty acids is still limited in teleost. In the current study, we explored the molecular characterisation of ANGPTL4 and regulatory mechanisms of ANGPTL4 in response to fatty acids in large yellow croaker (Larimichthys crocea). Here, croaker angptl4 contained a 1416 bp open reading frame encoding a protein of 471 amino acids with highly conserved 12-amino acid consensus motif. Angptl4 was widely expressed in croaker, with the highest expression in the liver. In vitro, oleic and palmitic acids (OA and PA) treatments strongly increased angptl4 mRNA expression in croaker hepatocytes. Moreover, angptl4 expression was positively regulated by PPAR family (PPAR-α, ß and γ), and expression of PPARγ was also significantly increased in response to OA and PA. Moreover, inhibition of PPARγ abrogated OA- or PA-induced angptl4 mRNA expression. Beyond that, PA might increase angptl4 expression partly via the insulin signalling. Overall, the expression of ANGPTL4 is strongly upregulated by OA and PA via PPARγ in the liver of croaker, which contributes to improve the understanding of the regulatory mechanisms of ANGPTL4 in fish.


Asunto(s)
Ácidos Palmíticos , Perciformes , Animales , Ácidos Palmíticos/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Secuencia de Aminoácidos , Ácidos Grasos/metabolismo , Hígado/metabolismo , Perciformes/genética , Perciformes/metabolismo , ARN Mensajero/metabolismo , Angiopoyetinas/genética , Angiopoyetinas/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo
13.
J Periodontal Res ; 58(3): 575-587, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36807310

RESUMEN

BACKGROUND AND OBJECTIVE: G protein-coupled receptor 40 (GPR40) is a receptor for medium- and long-chain free fatty acids (FFAs). GPR40 activation improves type 2 diabetes mellitus (T2DM), metabolic syndrome (MetS), and the complications of T2DM and MetS. Periodontitis, a common oral inflammatory disease initiated by periodontal pathogens, is another complication of T2DM and MetS. Since FFAs play a key role in the pathogenesis of MetS which exacerbates periodontal inflammation and GPR40 is a FFA receptor with anti-inflammatory properties, it is important to define the role of GPR40 in MetS-associated periodontitis. MATERIALS AND METHODS: We induced MetS and periodontitis by high-fat diet and periodontal injection of lipopolysaccharide (LPS), respectively, in wild-type and GPR40-deficient mice and determined alveolar bone loss and periodontal inflammation using micro-computed tomography, histology, and osteoclast staining. We also performed in vitro study to determine the role of GPR40 in the expression of proinflammatory genes. RESULTS: The primary outcome of the study is that GPR40 deficiency increased alveolar bone loss and enhanced osteoclastogenesis in control mice and the mice with both MetS and periodontitis. GPR40 deficiency also augmented periodontal inflammation in control mice and the mice with both MetS and periodontitis. Furthermore, GPR40 deficiency led to increased plasma lipids and insulin resistance in control mice but had no effect on the metabolic parameters in mice with MetS alone. For mice with both MetS and periodontitis, GPR40 deficiency increased insulin resistance. Finally, in vitro studies with macrophages showed that deficiency or inhibition of GPR40 upregulated proinflammatory genes while activation of GPR40 downregulated proinflammatory gene expression stimulated synergistically by LPS and palmitic acid. CONCLUSION: GPR40 deficiency worsens alveolar bone loss and periodontal inflammation in mice with both periodontitis and MetS, suggesting that GPR40 plays a favorable role in MetS-associated periodontitis. Furthermore, GPR40 deficiency or inhibition in macrophages further upregulated proinflammatory and pro-osteoclastogenic genes induced by LPS and palmitic acid, suggesting that GPR40 has anti-inflammatory and anti-osteoclastogenic properties.


Asunto(s)
Pérdida de Hueso Alveolar , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Síndrome Metabólico , Periodontitis , Ratones , Animales , Síndrome Metabólico/complicaciones , Síndrome Metabólico/metabolismo , Pérdida de Hueso Alveolar/patología , Diabetes Mellitus Tipo 2/complicaciones , Lipopolisacáridos/efectos adversos , Microtomografía por Rayos X , Periodontitis/metabolismo , Inflamación , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Antiinflamatorios , Ácidos Grasos no Esterificados , Ácidos Palmíticos/efectos adversos
14.
Cell ; 135(5): 813-24, 2008 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-19041747

RESUMEN

N-acylphosphatidylethanolamines (NAPEs) are a relatively abundant group of plasma lipids of unknown physiological significance. Here, we show that NAPEs are secreted into circulation from the small intestine in response to ingested fat and that systemic administration of the most abundant circulating NAPE, at physiologic doses, decreases food intake in rats without causing conditioned taste aversion. Furthermore, (14)C-radiolabeled NAPE enters the brain and is particularly concentrated in the hypothalamus, and intracerebroventricular infusions of nanomolar amounts of NAPE reduce food intake, collectively suggesting that its effects may be mediated through direct interactions with the central nervous system. Finally, chronic NAPE infusion results in a reduction of both food intake and body weight, suggesting that NAPE and long-acting NAPE analogs may be novel therapeutic targets for the treatment of obesity.


Asunto(s)
Regulación del Apetito , Fosfatidiletanolaminas/fisiología , Amidas , Animales , Peso Corporal , Grasas de la Dieta/metabolismo , Endocannabinoides , Etanolaminas , Hipotálamo/metabolismo , Intestino Delgado/metabolismo , Ratones , Ratones Obesos , Actividad Motora , Obesidad/metabolismo , Ácidos Palmíticos/metabolismo , Fosfatidiletanolaminas/sangre , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Espectrometría de Masas en Tándem
15.
Skin Pharmacol Physiol ; 36(6): 288-295, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38408443

RESUMEN

INTRODUCTION: Eczema is a debilitating skin disorder clinically characterised by the development of itchy, dry, rough, and scaling skin caused by a series of rudimentary clinical phenotypes. METHODS: This double-blind, randomised, comparator-controlled trial evaluated the effectiveness of topical application of a novel palmitoylethanolamide formulation (Levagen+) compared with a standard moisturiser (comparator) to reduce eczema severity and improve patient outcomes. Seventy-two participants aged over 18 years old with atopic eczema (symptoms including redness, dry skin, scaling, and/or itchiness) on their hands or arm were recruited. Participants were randomly allocated to one of two treatment groups (Levagen + or comparator). Treatment was applied to the affected area twice daily for 4 weeks. Outcome measures included Self-Assessed Eczema Area Severity Index (SA-EASI) scoring and Patient-Oriented Eczema Measure (POEM) from baseline to week 4. RESULTS: Levagen+ was effective at alleviating symptom severity of eczema over 4 weeks. Levagen+ significantly reduced redness, dryness, and total POEM score compared to a comparator cream. CONCLUSION: Levagen+ can significantly reduce eczema symptom severity compared to a comparator product, supporting its use as a potential treatment for eczema. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT05003453.


Asunto(s)
Dermatitis Atópica , Eccema , Ácidos Palmíticos , Adulto , Humanos , Amidas/uso terapéutico , Dermatitis Atópica/tratamiento farmacológico , Método Doble Ciego , Eccema/tratamiento farmacológico , Etanolaminas/uso terapéutico , Índice de Severidad de la Enfermedad , Resultado del Tratamiento
16.
ScientificWorldJournal ; 2023: 9919814, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36890980

RESUMEN

In this study, Arthrospira fusiformis previously isolated from Lake Mariout (Alexandria, Egypt) was cultivated in the laboratory using a medium for pharmaceutical grade Arthrospira, named as Amara and Steinbüchel medium. Hot water extract of the Egyptian Spirulina was prepared by autoclaving dried biomass in distilled water at 121°C for 15 min. This algal water extract was analyzed by GC-MS to evaluate its volatile compounds and fatty acids composition. The antimicrobial activity of phycobiliprotein extract from Arthrospira fusiformis using phosphate buffer was evaluated against thirteen microbial strains (two Gram-positive bacteria, eight Gram-negative bacteria, one yeast, and two filamentous fungi). The major components of fatty acids in the hot extract of Egyptian A. fusiformis were hexadecanoic acid (palmitic acid, 55.19%) and octadecanoic acid (stearic acid, 27.14%). The main constituents of its volatile compounds were acetic acid (43.33%) and oxalic acid (47.98%). The most potent antimicrobial effect of phycobiliprotein extract was obtained against two Gram-negative bacteria Salmonella typhi and Proteus vulgaris, filamentous fungus Aspergillus niger, and the pathogenic yeast Candida albicans (all of which showed MIC values of 58.1 µg/ml). Escherichia coli and Salmonella typhimurium come second in their susceptibility to the phycobiliprotein extract from Arthrospira fusiformis and Serratia marcescens and Aspergillus flavus are the least in susceptibility, with MIC values of 116.2 and 232.5 µg/ml, respectively, while phycobiliprotein extract has no antibacterial effect on methicillin-resistant as well as susceptible Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Shigella sonnei. These findings confirmed the nutritional value of Egyptian A. fusiformis isolated from Lake Mariout and suggest the potential use of this strain as an ingredient in the cooking of some foods to increase the level of stearic acid and palmitic acid. Moreover, its effective antibacterial activities against some important and highly resistant to antibiotics bacterial pathogens in addition to its antifungal effects recommend the therapeutic use of its biomass.


Asunto(s)
Spirulina , Egipto , Ácidos Grasos/farmacología , Lagos , Antifúngicos/farmacología , Antibacterianos/farmacología , Bacterias Gramnegativas , Levaduras , Candida albicans , Agua/farmacología , Ácidos Esteáricos/farmacología , Ácidos Palmíticos/farmacología , Pruebas de Sensibilidad Microbiana
17.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38203336

RESUMEN

Improving clinical outcomes and delaying disease recrudescence in Ulcerative Colitis (UC) patients is crucial for clinicians. In addition to traditional and new pharmacological therapies that utilize biological drugs, the development of medical devices that can ameliorate UC and facilitate the remission phase should not be overlooked. Drug-based therapy requires time to be personalized and to evaluate the benefit/risk ratio. However, the increasing number of diagnosed UC cases worldwide necessitates the exploration of new strategies to enhance clinical outcomes. By incorporating medical devices alongside pharmacological treatments, clinicians can provide additional support to UC patients, potentially improving their condition and slowing down the recurrence of symptoms. Chemically identified as an azelaic acid derivative and palmitoylethanolamide (PEA) analog, adelmidrol is a potent anti-inflammatory and antioxidant compound. In this study, we aimed to evaluate the effect of an intrarectal administration of 2% adelmidrol (Ade) and 0.1% hyaluronic acid (HA) gel formulation in both the acute and resolution phase of a mouse model of colitis induced via DNBS enema. We also investigated its activity in cultured human colon biopsies isolated from UC patients in the remission phase at follow-up when exposed in vitro to a cytomix challenge. Simultaneously, with its capacity to effectively alleviate chronic painful inflammatory cystitis when administered intravesically to urological patients such as Vessilen, the intrarectal administration of Ade/HA gel has shown remarkable potential in improving the course of colitis. This treatment approach has demonstrated a reduction in the histological damage score and an increase in the expression of ZO-1 and occludin tight junctions in both in vivo studies and human specimens. By acting independently on endogenous PEA levels and without any noticeable systemic absorption, the effectiveness of Ade/HA gel is reliant on a local antioxidant mechanism that functions as a "barrier effect" in the inflamed gut. Building on the findings of this preliminary study, we are confident that the Ade/HA gel medical device holds promise as a valuable adjunct in supporting traditional anti-UC therapies.


Asunto(s)
Colitis Ulcerosa , Colitis , Cistitis , Ácidos Dicarboxílicos , Ácidos Palmíticos , Humanos , Animales , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Ácido Hialurónico , Antioxidantes , Biopsia
18.
J Sci Food Agric ; 103(1): 83-91, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35792714

RESUMEN

BACKGROUND: Worldwide, fried food has a huge demand and good development prospects. Low oil in foods is the standard that everyone is now pursuing for a healthy diet. RESULTS: The oil absorption behavior of rice starch during frying was investigated in the presence or absence of fatty acids or fatty acid esters with different carbon chain lengths. The complex formed between starch and fatty acids or fatty acid esters was dependent on lipid chain length, which was confirmed by X-ray diffraction and complexing index. The formation of starch-lipid complexes could significantly reduce the oil absorption of starch, and the complexes with higher complexing index had lower oil absorption. The starch-palmitic acid complex showed the lowest oil absorption after frying, which was 14.06 g per 100 g lower than that of gelatinized starch. This was attributed to the ability of the palmitic acid to increase the density of starch crystalline polymorphs as well as their ability to complex with the amylose spiral cavity. CONCLUSION: These results may be useful for development of healthier fried starch-based foods with reduced oil contents. © 2022 Society of Chemical Industry.


Asunto(s)
Amilosa , Almidón , Almidón/química , Amilosa/química , Ácidos Grasos/química , Ácidos Palmíticos , Ésteres
19.
Mol Plant Microbe Interact ; 35(6): 464-476, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35285673

RESUMEN

Arbuscular mycorrhizal fungi (AMF) colonize roots, where they provide nutrients in exchange for sugars and lipids. Because AMF lack genes for cytosolic fatty acid de novo synthase (FAS), they depend on host-derived fatty acids. AMF colonization is accompanied by expression of specific lipid genes and synthesis of sn-2 monoacylglycerols (MAGs). It is unknown how host-derived fatty acids are taken up by AMF. We describe the characterization of two AMP-binding domain protein genes from Rhizophagus irregularis, RiFAT1 and RiFAT2, with sequence similarity to Saccharomyces cerevisiae fatty acid transporter 1 (FAT1). Uptake of 13C-myristic acid (14:0) and, to a lesser extent, 13C-palmitic acid (16:0) was enhanced after expression of RiFAT1 or RiFAT2 in S. cerevisiae Δfat1 cells. The uptake of 2H-labeled fatty acids from 2H-myristoylglycerol or 2H-palmitoylglycerol was also increased after RiFAT1 and RiFAT2 expression in Δfat, but intact 2H-MAGs were not detected. RiFAT1 and RiFAT2 expression was induced in colonized roots compared with extraradical mycelium. 13C-label in the AMF-specific palmitvaccenic acid (16:1Δ11) and eicosatrienoic acid (20:3) were detected in colonized roots only when 13C2-acetate was supplemented but not 13C-fatty acids, demonstrating that de novo synthesized, host-derived fatty acids are rapidly taken up by R. irregularis from the roots. The results show that RiFAT1 and RiFAT2 are involved in the uptake of myristic acid (14:0) and palmitic acid (16:0), while fatty acids from MAGs are only taken up after hydrolysis. Therefore, the two proteins might be involved in fatty acid import into the fungal arbuscules in colonized roots.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Glomeromycota , Micorrizas , Proteínas de Saccharomyces cerevisiae , Adenosina Monofosfato/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Transporte de Ácidos Grasos/metabolismo , Ácidos Grasos/metabolismo , Hongos , Glomeromycota/genética , Glomeromycota/metabolismo , Ácidos Mirísticos/metabolismo , Ácidos Palmíticos/metabolismo , Raíces de Plantas/microbiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Mol Microbiol ; 116(6): 1464-1475, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34687258

RESUMEN

Invasion of the intestinal epithelium is an essential but energetically expensive survival strategy and is, therefore, tightly regulated by using specific cues from the environment. The enteric pathogen Salmonella controls its invasion machinery through the elegant coordination of three AraC-type transcription activators, HilD, HilC, and RtsA. Most environmental signals target HilD to control invasion, whereas HilC and RtsA are known only to augment these effects on HilD. Here we show that a fatty acid found in the murine colon, cis-2-hexadecenoic acid (c2-HDA), represses Salmonella invasion by directly targeting HilC and RtsA, in addition to HilD. c2-HDA directly binds each of these regulators and inhibits their attachment to DNA targets, repressing invasion even in the absence of HilD. Fatty acid binding, however, does not affect HilC and RtsA protein stability, unlike HilD. Importantly, we show that HilC and RtsA are highly effective in restoring HilD production and invasion gene expression after elimination of the repressive fatty acid c2-HDA. Together, these results illuminate a precise mechanism by which HilC and RtsA may modulate invasion as Salmonella navigates through different regions of the intestine, contributing to our understanding of how this enteric pathogen senses and adapts to a diverse intestinal environment while maintaining its virulence.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Intestinos/metabolismo , Ácidos Palmíticos/metabolismo , Infecciones por Salmonella/metabolismo , Infecciones por Salmonella/microbiología , Salmonella typhimurium/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas Bacterianas/genética , Islas Genómicas , Interacciones Huésped-Patógeno , Humanos , Intestinos/microbiología , Ratones , Unión Proteica , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidad , Factores de Transcripción/genética , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA