Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 602(7895): 117-122, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34987226

RESUMEN

During conversation, people take turns speaking by rapidly responding to their partners while simultaneously avoiding interruption1,2. Such interactions display a remarkable degree of coordination, as gaps between turns are typically about 200 milliseconds3-approximately the duration of an eyeblink4. These latencies are considerably shorter than those observed in simple word-production tasks, which indicates that speakers often plan their responses while listening to their partners2. Although a distributed network of brain regions has been implicated in speech planning5-9, the neural dynamics underlying the specific preparatory processes that enable rapid turn-taking are poorly understood. Here we use intracranial electrocorticography to precisely measure neural activity as participants perform interactive tasks, and we observe a functionally and anatomically distinct class of planning-related cortical dynamics. We localize these responses to a frontotemporal circuit centred on the language-critical caudal inferior frontal cortex10 (Broca's region) and the caudal middle frontal gyrus-a region not normally implicated in speech planning11-13. Using a series of motor tasks, we then show that this planning network is more active when preparing speech as opposed to non-linguistic actions. Finally, we delineate planning-related circuitry during natural conversation that is nearly identical to the network mapped with our interactive tasks, and we find this circuit to be most active before participant speech during unconstrained turn-taking. Therefore, we have identified a speech planning network that is central to natural language generation during social interaction.


Asunto(s)
Conducta Social , Habla/fisiología , Adulto , Anciano , Área de Broca/fisiología , Electrocorticografía , Función Ejecutiva , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vías Nerviosas , Factores de Tiempo
2.
Cereb Cortex ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38566508

RESUMEN

Physical activity and sedentary behavior, both distinct lifestyle behaviors associated with brain health, have an unclear potential relationship with brain cortical structure. This study aimed to determine the causal link between physical activity, sedentary behavior, and brain cortical structure (cortical surface area and thickness) through Mendelian randomization analysis. The inverse-variance weighted method was primarily utilized, accompanied by sensitivity analyses, to confirm the results' robustness and accuracy. Analysis revealed nominally significant findings, indicating a potential positive influence of physical activity on cortical thickness in the bankssts (ß = 0.002 mm, P = 0.043) and the fusiform (ß = 0.002 mm, P = 0.018), and a potential negative association of sedentary behavior with cortical surface area in the caudal middle frontal (ß = -34.181 mm2, P = 0.038) and the pars opercularis (ß = -33.069 mm2, P = 0.002), alongside a nominally positive correlation with the cortical surface area of the inferior parietal (ß = 58.332 mm2, P = 0.035). Additionally, a nominally significant negative correlation was observed between sedentary behavior and cortical thickness in the paracentral (ß = -0.014 mm, P = 0.042). These findings offer insights into how lifestyle behaviors may influence brain cortical structures, advancing our understanding of their interaction with brain health.


Asunto(s)
Encéfalo , Análisis de la Aleatorización Mendeliana , Encéfalo/diagnóstico por imagen , Ejercicio Físico , Área de Broca , Estudio de Asociación del Genoma Completo
3.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38212288

RESUMEN

Resting heart rate (RHR) has been linked to impaired cortical structure in observational studies. However, the extent to which this association is potentially causal has not been determined. Using genetic data, this study aimed to reveal the causal effect of RHR on brain cortical structure. A Two-Sample Mendelian randomization (MR) analysis was conducted. Sensitivity analyses, weighted median, MR Pleiotropy residual sum and outlier, and MR-Egger regression were conducted to evaluate heterogeneity and pleiotropy. A causal relationship between RHR and cortical structures was identified by MR analysis. On the global scale, elevated RHR was found to decrease global surface area (SA; P < 0.0125). On a regional scale, the elevated RHR significantly decreased the SA of pars triangularis without global weighted (P = 1.58 × 10-4) and the thickness (TH) of the paracentral with global weighted (P = 3.56 × 10-5), whereas it increased the TH of banks of the superior temporal sulcus in the presence of global weighted (P = 1.04 × 10-4). MR study provided evidence that RHR might be causally linked to brain cortical structure, which offers a different way to understand the heart-brain axis theory.


Asunto(s)
Encéfalo , Análisis de la Aleatorización Mendeliana , Frecuencia Cardíaca , Encéfalo/diagnóstico por imagen , Corteza Prefrontal , Área de Broca , Estudio de Asociación del Genoma Completo
4.
Brain ; 146(5): 1775-1790, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36746488

RESUMEN

Classical neural architecture models of speech production propose a single system centred on Broca's area coordinating all the vocal articulators from lips to larynx. Modern evidence has challenged both the idea that Broca's area is involved in motor speech coordination and that there is only one coordination network. Drawing on a wide range of evidence, here we propose a dual speech coordination model in which laryngeal control of pitch-related aspects of prosody and song are coordinated by a hierarchically organized dorsolateral system while supralaryngeal articulation at the phonetic/syllabic level is coordinated by a more ventral system posterior to Broca's area. We argue further that these two speech production subsystems have distinguishable evolutionary histories and discuss the implications for models of language evolution.


Asunto(s)
Habla , Voz , Humanos , Área de Broca , Fonética , Lenguaje
5.
Cereb Cortex ; 33(7): 4085-4100, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36057839

RESUMEN

Inferior frontal cortex pars opercularis (IFCop) features a distinct cerebral dominance and vast functional heterogeneity. Left and right IFCop are implicated in developmental stuttering. Weak left IFCop connections and divergent connectivity of hyperactive right IFCop regions have been related to impeded speech. Here, we reanalyzed diffusion magnetic resonance imaging data from 83 children (41 stuttering). We generated connection probability maps of functionally segregated area 44 parcels and calculated hemisphere-wise analyses of variance. Children who stutter showed reduced connectivity of executive, rostral-motor, and caudal-motor corticostriatal projections from the left IFCop. We discuss this finding in the context of tracing studies from the macaque area 44, which leads to the need to reconsider current models of speech motor control. Unlike the left, the right IFCop revealed increased connectivity of the inferior posterior ventral parcel and decreased connectivity of the posterior dorsal parcel with the anterior insula, particularly in stuttering boys. This divergent connectivity pattern in young children adds to the debate on potential core deficits in stuttering and challenges the theory that right hemisphere differences might exclusively indicate compensatory changes that evolve from lifelong exposure. Instead, early right prefrontal connectivity differences may reflect additional brain signatures of aberrant cognition-emotion-action influencing speech motor control.


Asunto(s)
Tartamudeo , Humanos , Tartamudeo/diagnóstico por imagen , Imagen por Resonancia Magnética , Mapeo Encefálico/métodos , Habla , Área de Broca
6.
Cereb Cortex ; 33(9): 5426-5435, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36408641

RESUMEN

Within the first years of life, children learn major aspects of their native language. However, the ability to process complex sentence structures, a core faculty in human language called syntax, emerges only slowly. A milestone in syntax acquisition is reached around the age of 4 years, when children learn a variety of syntactic concepts. Here, we ask which maturational changes in the child's brain underlie the emergence of syntactically complex sentence processing around this critical age. We relate markers of cortical brain maturation to 3- and 4-year-olds' sentence processing in contrast to other language abilities. Our results show that distinct cortical brain areas support sentence processing in the two age groups. Sentence production abilities at 3 years were associated with increased surface area in the most posterior part of the left superior temporal sulcus, whereas 4-year-olds showed an association with cortical thickness in the left posterior part of Broca's area, i.e. BA44. The present findings suggest that sentence processing abilities rely on the maturation of distinct cortical regions in 3- compared to 4-year-olds. The observed shift to more mature regions involved in processing syntactically complex sentences may underlie behavioral milestones in syntax acquisition at around 4 years.


Asunto(s)
Lenguaje , Imagen por Resonancia Magnética , Humanos , Niño , Preescolar , Área de Broca , Encéfalo , Lóbulo Temporal , Mapeo Encefálico , Comprensión
7.
Cereb Cortex ; 33(12): 7904-7929, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37005063

RESUMEN

Language and music are two human-unique capacities whose relationship remains debated. Some have argued for overlap in processing mechanisms, especially for structure processing. Such claims often concern the inferior frontal component of the language system located within "Broca's area." However, others have failed to find overlap. Using a robust individual-subject fMRI approach, we examined the responses of language brain regions to music stimuli, and probed the musical abilities of individuals with severe aphasia. Across 4 experiments, we obtained a clear answer: music perception does not engage the language system, and judgments about music structure are possible even in the presence of severe damage to the language network. In particular, the language regions' responses to music are generally low, often below the fixation baseline, and never exceed responses elicited by nonmusic auditory conditions, like animal sounds. Furthermore, the language regions are not sensitive to music structure: they show low responses to both intact and structure-scrambled music, and to melodies with vs. without structural violations. Finally, in line with past patient investigations, individuals with aphasia, who cannot judge sentence grammaticality, perform well on melody well-formedness judgments. Thus, the mechanisms that process structure in language do not appear to process music, including music syntax.


Asunto(s)
Afasia , Música , Humanos , Área de Broca , Lenguaje , Imagen por Resonancia Magnética , Mapeo Encefálico , Percepción
8.
Cereb Cortex ; 33(16): 9554-9565, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37386707

RESUMEN

Phonological working memory (PWM) is important for language learning and processing. The most studied language brain regions are the classical Broca's area on the inferior frontal gyrus and Wernicke's area on the posterior temporal region and their anatomical connection via the classic arcuate fasciculus (AF) referred to here as the ventral AF (AFv). However, areas on the middle frontal gyrus (MFG) are essential for PWM processes. There is also a dorsal branch of the AF (AFd) that specifically links the posterior temporal region with the MFG. Furthermore, there is the temporo-frontal extreme capsule fasciculus (TFexcF) that courses ventrally and links intermediate temporal areas with the lateral prefrontal cortex. The AFv, AFd and TFexcF were dissected virtually in the same participants who performed a PWM task in a functional magnetic resonance imaging study. The results showed that good performance on the PWM task was exclusively related to the properties of the left AFd, which specifically links area 8A (known to be involved in attentional aspects of executive control) with the posterior temporal region. The TFexcF, consistent with its known anatomical connection, was related to brain activation in area 9/46v of the MFG that is critical for monitoring the information in memory.


Asunto(s)
Memoria a Corto Plazo , Lóbulo Temporal , Humanos , Lóbulo Temporal/diagnóstico por imagen , Lenguaje , Imagen por Resonancia Magnética , Área de Broca , Vías Nerviosas/fisiología
9.
J Neurosci ; 42(15): 3216-3227, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35232761

RESUMEN

The ability to comprehend phrases is an essential integrative property of the brain. Here, we evaluate the neural processes that enable the transition from single-word processing to a minimal compositional scheme. Previous research has reported conflicting timing effects of composition, and disagreement persists with respect to inferior frontal and posterior temporal contributions. To address these issues, 19 patients (10 male, 9 female) implanted with penetrating depth or surface subdural intracranial electrodes, heard auditory recordings of adjective-noun, pseudoword-noun, and adjective-pseudoword phrases and judged whether the phrase matched a picture. Stimulus-dependent alterations in broadband gamma activity, low-frequency power, and phase-locking values across the language-dominant left hemisphere were derived. This revealed a mosaic located on the lower bank of the posterior superior temporal sulcus (pSTS), in which closely neighboring cortical sites displayed exclusive sensitivity to either lexicality or phrase structure, but not both. Distinct timings were found for effects of phrase composition (210-300 ms) and pseudoword processing (∼300-700 ms), and these were localized to neighboring electrodes in pSTS. The pars triangularis and temporal pole encoded anticipation of composition in broadband low frequencies, and both regions exhibited greater functional connectivity with pSTS during phrase composition. Our results suggest that the pSTS is a highly specialized region composed of sparsely interwoven heterogeneous constituents that encodes both lower and higher level linguistic features. This hub in pSTS for minimal phrase processing may form the neural basis for the human-specific computational capacity for forming hierarchically organized linguistic structures.SIGNIFICANCE STATEMENT Linguists have claimed that the integration of multiple words into a phrase demands a computational procedure distinct from single-word processing. Here, we provide intracranial recordings from a large patient cohort, with high spatiotemporal resolution, to track the cortical dynamics of phrase composition. Epileptic patients volunteered to participate in a task in which they listened to phrases (red boat), word-pseudoword or pseudoword-word pairs (e.g., red fulg). At the onset of the second word in phrases, greater broadband high gamma activity was found in posterior superior temporal sulcus in electrodes that exclusively indexed phrasal meaning and not lexical meaning. These results provide direct, high-resolution signatures of minimal phrase composition in humans, a potentially species-specific computational capacity.


Asunto(s)
Área de Broca , Lenguaje , Encéfalo , Mapeo Encefálico , Femenino , Humanos , Lingüística , Masculino , Semántica
10.
J Neurosci ; 42(45): 8416-8426, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36351829

RESUMEN

Classical models have traditionally focused on the left posterior inferior frontal gyrus (Broca's area) as a key region for motor planning of speech production. However, converging evidence suggests that it is not critical for either speech motor planning or execution. Alternative cortical areas supporting high-level speech motor planning have yet to be defined. In this review, we focus on the precentral gyrus, whose role in speech production is often thought to be limited to lower-level articulatory muscle control. In particular, we highlight neurosurgical investigations that have shed light on a cortical region anatomically located near the midpoint of the precentral gyrus, hence called the middle precentral gyrus (midPrCG). The midPrCG is functionally located between dorsal hand and ventral orofacial cortical representations and exhibits unique sensorimotor and multisensory functions relevant for speech processing. This includes motor control of the larynx, auditory processing, as well as a role in reading and writing. Furthermore, direct electrical stimulation of midPrCG can evoke complex movements, such as vocalization, and selective injury can cause deficits in verbal fluency, such as pure apraxia of speech. Based on these findings, we propose that midPrCG is essential to phonological-motoric aspects of speech production, especially syllabic-level speech sequencing, a role traditionally ascribed to Broca's area. The midPrCG is a cortical brain area that should be included in contemporary models of speech production with a unique role in speech motor planning and execution.


Asunto(s)
Corteza Motora , Habla , Habla/fisiología , Mapeo Encefálico , Lóbulo Frontal/fisiología , Área de Broca , Encéfalo , Imagen por Resonancia Magnética
11.
Hum Brain Mapp ; 44(3): 1062-1069, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36314860

RESUMEN

Low-beta (13-23 Hz) event-related desynchrony (ERD), a neural signature of expressive language, lateralizes from bilateral to left hemisphere in development. In contrast, low-beta event-related synchrony (ERS), thought to reflect inhibition, lateralizes from bilateral to the right hemisphere across development. Using whole-brain directed connectivity analyses, we aimed to characterize hemispheric and regional contributions to expressive language, in childhood. We studied 80 children and adolescents, 4 to less than 19 years of age, performing covert auditory verb generation in magnetoencephalography. Outdegree, indegree, and betweenness centrality were used to differentiate regions acting as drivers, receivers, and bridging hubs, respectively. The number of suprathreshold connections significantly increased with age for delta band (p < .01). Delta outflow was mapped to left inferior frontal gyrus (IFG), while regions of right hemisphere, including right IFG, showed significant inflow. The right parietal cortex showed significant ERS, but without corresponding outdegree or indegree. Betweenness mapped to midline cortical and subcortical structures. Results suggest Broca's area develops a driving role in the language network, while Broca's homologue receives information without necessarily propagating it. Subcortical and midline hubs act as intrahemispheric relays. Findings suggest that Broca's homologue is inhibited during expressive language, in development.


Asunto(s)
Mapeo Encefálico , Encéfalo , Niño , Adolescente , Humanos , Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Lenguaje , Magnetoencefalografía/métodos , Área de Broca , Imagen por Resonancia Magnética/métodos
12.
Brain ; 145(3): 1177-1188, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35296891

RESUMEN

Developmental stuttering is a condition of speech dysfluency, characterized by pauses, blocks, prolongations and sound or syllable repetitions. It affects around 1% of the population, with potential detrimental effects on mental health and long-term employment. Accumulating evidence points to a genetic aetiology, yet gene-brain associations remain poorly understood due to a lack of MRI studies in affected families. Here we report the first neuroimaging study of developmental stuttering in a family with autosomal dominant inheritance of persistent stuttering. We studied a four-generation family, 16 family members were included in genotyping analysis. T1-weighted and diffusion-weighted MRI scans were conducted on seven family members (six male; aged 9-63 years) with two age and sex matched controls without stuttering (n = 14). Using Freesurfer, we analysed cortical morphology (cortical thickness, surface area and local gyrification index) and basal ganglia volumes. White matter integrity in key speech and language tracts (i.e. frontal aslant tract and arcuate fasciculus) was also analysed using MRtrix and probabilistic tractography. We identified a significant age by group interaction effect for cortical thickness in the left hemisphere pars opercularis (Broca's area). In affected family members this region failed to follow the typical trajectory of age-related thinning observed in controls. Surface area analysis revealed the middle frontal gyrus region was reduced bilaterally in the family (all cortical morphometry significance levels set at a vertex-wise threshold of P < 0.01, corrected for multiple comparisons). Both the left and right globus pallidus were larger in the family than in the control group (left P = 0.017; right P = 0.037), and a larger right globus pallidus was associated with more severe stuttering (rho = 0.86, P = 0.01). No white matter differences were identified. Genotyping identified novel loci on chromosomes 1 and 4 that map with the stuttering phenotype. Our findings denote disruption within the cortico-basal ganglia-thalamo-cortical network. The lack of typical development of these structures reflects the anatomical basis of the abnormal inhibitory control network between Broca's area and the striatum underpinning stuttering in these individuals. This is the first evidence of a neural phenotype in a family with an autosomal dominantly inherited stuttering.


Asunto(s)
Tartamudeo , Sustancia Blanca , Área de Broca/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética , Masculino , Tartamudeo/diagnóstico por imagen , Tartamudeo/genética
13.
Proc Natl Acad Sci U S A ; 117(38): 23477-23483, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32900940

RESUMEN

We have long known that language is lateralized to the left hemisphere (LH) in most neurologically healthy adults. In contrast, findings on lateralization of function during development are more complex. As in adults, anatomical, electrophysiological, and neuroimaging studies in infants and children indicate LH lateralization for language. However, in very young children, lesions to either hemisphere are equally likely to result in language deficits, suggesting that language is distributed symmetrically early in life. We address this apparent contradiction by examining patterns of functional MRI (fMRI) language activation in children (ages 4 through 13) and adults (ages 18 through 29). In contrast to previous studies, we focus not on lateralization per se but rather on patterns of left-hemisphere (LH) and right-hemisphere (RH) activation across individual participants over age. Our analyses show significant activation not only in the LH language network but also in their RH homologs in all of the youngest children (ages 4 through 6). The proportion of participants showing significant RH activation decreases over age, with over 60% of adults lacking any significant RH activation. A whole-brain correlation analysis revealed an age-related decrease in language activation only in the RH homolog of Broca's area. This correlation was independent of task difficulty. We conclude that, while language is left-lateralized throughout life, the RH contribution to language processing is also strong early in life and decreases through childhood. Importantly, this early RH language activation may represent a developmental mechanism for recovery following early LH injury.


Asunto(s)
Encéfalo/fisiología , Desarrollo del Lenguaje , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Área de Broca/diagnóstico por imagen , Área de Broca/fisiología , Niño , Preescolar , Electroencefalografía , Femenino , Lateralidad Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
14.
Proc Natl Acad Sci U S A ; 117(9): 4994-5005, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32060124

RESUMEN

In the primate brain, a set of areas in the ventrolateral frontal (VLF) cortex and the dorsomedial frontal (DMF) cortex appear to control vocalizations. The basic role of this network in the human brain and how it may have evolved to enable complex speech remain unknown. In the present functional neuroimaging study of the human brain, a multidomain protocol was utilized to investigate the roles of the various areas that comprise the VLF-DMF network in learning rule-based cognitive selections between different types of motor actions: manual, orofacial, nonspeech vocal, and speech vocal actions. Ventrolateral area 44 (a key component of the Broca's language production region in the human brain) is involved in the cognitive selection of orofacial, as well as, speech and nonspeech vocal responses; and the midcingulate cortex is involved in the analysis of speech and nonspeech vocal feedback driving adaptation of these responses. By contrast, the cognitive selection of speech vocal information requires this former network and the additional recruitment of area 45 and the presupplementary motor area. We propose that the basic function expressed by the VLF-DMF network is to exert cognitive control of orofacial and vocal acts and, in the language dominant hemisphere of the human brain, has been adapted to serve higher speech function. These results pave the way to understand the potential changes that could have occurred in this network across primate evolution to enable speech production.


Asunto(s)
Cognición/fisiología , Lóbulo Frontal/fisiología , Corteza Motora/fisiología , Pliegues Vocales/fisiología , Voz/fisiología , Adulto , Animales , Evolución Biológica , Encéfalo , Mapeo Encefálico , Área de Broca , Femenino , Humanos , Lenguaje , Aprendizaje , Masculino , Red Nerviosa , Primates , Habla/fisiología , Vocalización Animal/fisiología , Adulto Joven
15.
Bull Exp Biol Med ; 175(6): 726-729, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37978151

RESUMEN

In this article, we studied individual features of the macroscopic structure of Broca's area of the brains in 9 women (18 hemispheres) aged from 20 to 30 years, without any mental or neurological disorders. By using MRI, the structures of the sulci and gyri of the pars triangularis and pars opercularis of Broca's area were studied: the anterior and ascending rami of the lateral sulcus, the radial, diagonal, precentral, inferior frontal, and lateral sulci. We also studied the relationship between the pars triangularis and pars opercularis as well as their relationships with neighboring cortical structures. We measured the volume of the pars triangularis and pars opercularis and the thickness of their cortex. Significant individual variability in the location and relationships between the anterior ramus of the lateral sulcus and the ascending ramus of the lateral sulcus, as well as structural features of the pars triangularis and pars opercularis of Broca's area were demonstrated.


Asunto(s)
Área de Broca , Corteza Cerebral , Humanos , Femenino , Área de Broca/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Membrana Celular , Lóbulo Frontal/diagnóstico por imagen , Mapeo Encefálico
16.
Neurobiol Learn Mem ; 192: 107622, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35462028

RESUMEN

Broca's area in the left hemisphere of the human neocortex has been suggested as a major hub for acquisition, storage, and access of linguistic information, abstract words in particular. Direct causal evidence for the latter, however, is still scarce; filling this gap was the goal of the present study. Using transcranial direct current stimulation (tDCS) of Broca's region, we aimed to delineate the involvement of this area in abstract and concrete word acquisition. The experiment used a between-subject design and involved 15 min of anodal or cathodal tDCS over Broca's area, or a sham/placebo control condition. The stimulation procedure was followed by a contextual learning session, in which participants were exposed to new concrete and abstract words embedded into short five-sentence texts. Finally, a set of behavioural assessment tasks was run to assess the learning outcomes immediately after the training (Day 1) and with a 24-hour delay (Day 2). The results showed that participants recognised novel abstract words more accurately after both anodal and cathodal tDCS in comparison with the sham condition on Day 1, which was also accompanied by longer recognition times (presumably due to deeper lexico-semantic processing), supporting the role of Broca's region in acquisition of abstract semantics. They were also more successful when recalling concrete words after cathodal tDCS, which indicates a degree of Broca's area involvement in forming memory circuits for concrete words as well. A decrease in the accuracy of recall of word forms and their meanings, as well as in recognition, was observed for all stimulation groups and both types of semantics on Day 2. The results suggest that both anodal and cathodal tDCS of Broca's area improves immediate contextual learning of novel vocabulary, predominantly affecting abstract semantics.


Asunto(s)
Área de Broca , Estimulación Transcraneal de Corriente Directa , Área de Broca/fisiología , Humanos , Lenguaje , Semántica , Estimulación Transcraneal de Corriente Directa/métodos , Vocabulario
17.
Brain ; 144(3): 817-832, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33517378

RESUMEN

Broca's area in the posterior half of the left inferior frontal gyrus has long been thought to be critical for speech production. The current view is that long-term speech production outcome in patients with Broca's area damage is best explained by the combination of damage to Broca's area and neighbouring regions including the underlying white matter, which was also damaged in Paul Broca's two historic cases. Here, we dissociate the effect of damage to Broca's area from the effect of damage to surrounding areas by studying long-term speech production outcome in 134 stroke survivors with relatively circumscribed left frontal lobe lesions that spared posterior speech production areas in lateral inferior parietal and superior temporal association cortices. Collectively, these patients had varying degrees of damage to one or more of nine atlas-based grey or white matter regions: Brodmann areas 44 and 45 (together known as Broca's area), ventral premotor cortex, primary motor cortex, insula, putamen, the anterior segment of the arcuate fasciculus, uncinate fasciculus and frontal aslant tract. Spoken picture description scores from the Comprehensive Aphasia Test were used as the outcome measure. Multiple regression analyses allowed us to tease apart the contribution of other variables influencing speech production abilities such as total lesion volume and time post-stroke. We found that, in our sample of patients with left frontal damage, long-term speech production impairments (lasting beyond 3 months post-stroke) were solely predicted by the degree of damage to white matter, directly above the insula, in the vicinity of the anterior part of the arcuate fasciculus, with no contribution from the degree of damage to Broca's area (as confirmed with Bayesian statistics). The effect of white matter damage cannot be explained by a disconnection of Broca's area, because speech production scores were worse after damage to the anterior arcuate fasciculus with relative sparing of Broca's area than after damage to Broca's area with relative sparing of the anterior arcuate fasciculus. Our findings provide evidence for three novel conclusions: (i) Broca's area damage does not contribute to long-term speech production outcome after left frontal lobe strokes; (ii) persistent speech production impairments after damage to the anterior arcuate fasciculus cannot be explained by a disconnection of Broca's area; and (iii) the prior association between persistent speech production impairments and Broca's area damage can be explained by co-occurring white matter damage, above the insula, in the vicinity of the anterior part of the arcuate fasciculus.


Asunto(s)
Afasia de Broca/patología , Área de Broca/patología , Lóbulo Frontal/patología , Accidente Cerebrovascular/patología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Accidente Cerebrovascular/complicaciones
18.
Cereb Cortex ; 31(4): 2058-2070, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33283856

RESUMEN

Speaking in sentences requires selection from contextually determined lexical representations. Although posterior temporal cortex (PTC) and Broca's areas play important roles in storage and selection, respectively, of lexical representations, there has been no direct evidence for physiological interactions between these areas on time scales typical of lexical selection. Using intracranial recordings of cortical population activity indexed by high-gamma power (70-150 Hz) modulations, we studied the causal dynamics of cortical language networks while epilepsy surgery patients performed a sentence completion task in which the number of potential lexical responses was systematically varied. Prior to completion of sentences with more response possibilities, Broca's area was not only more active, but also exhibited more local network interactions with and greater top-down influences on PTC, consistent with activation of, and competition between, more lexical representations. These findings provide the most direct experimental support yet for network dynamics playing a role in lexical selection among competing alternatives during speech production.


Asunto(s)
Área de Broca/fisiología , Electrocorticografía/métodos , Ritmo Gamma/fisiología , Lenguaje , Habla/fisiología , Lóbulo Temporal/fisiología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estimulación Luminosa/métodos , Tiempo de Reacción/fisiología
19.
Cereb Cortex ; 31(8): 3723-3731, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33825880

RESUMEN

Apraxia of speech is a motor disorder characterized by the impaired ability to coordinate the sequential articulatory movements necessary to produce speech. The critical cortical area(s) involved in speech apraxia remain controversial because many of the previously reported cases had additional aphasic impairments, preventing localization of the specific cortical circuit necessary for the somatomotor execution of speech. Four patients with "pure speech apraxia" (i.e., who had no aphasic and orofacial motor impairments) are reported here. The critical lesion in all four patients involved, in the left hemisphere, the precentral gyrus of the insula (gyrus brevis III) and, to a lesser extent, the nearby areas with which it is strongly connected: the adjacent subcentral opercular cortex (part of secondary somatosensory cortex) and the most inferior part of the central sulcus where the orofacial musculature is represented. There was no damage to rostrally adjacent Broca's area in the inferior frontal gyrus. The present study demonstrates the critical circuit for the coordination of complex articulatory movements prior to and during the execution of the motor speech plans. Importantly, this specific cortical circuit is different from those that relate to the cognitive aspects of language production (e.g., Broca's area on the inferior frontal gyrus).


Asunto(s)
Trastornos de la Articulación/fisiopatología , Corteza Insular/fisiopatología , Red Nerviosa/fisiopatología , Anciano , Anciano de 80 o más Años , Apraxias , Trastornos de la Articulación/rehabilitación , Mapeo Encefálico , Área de Broca , Discinesias/diagnóstico , Discinesias/fisiopatología , Femenino , Humanos , Lenguaje , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Desempeño Psicomotor , Pruebas de Articulación del Habla , Accidente Cerebrovascular/complicaciones , Rehabilitación de Accidente Cerebrovascular
20.
Adv Tech Stand Neurosurg ; 45: 35-96, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35976447

RESUMEN

In the surgery of gliomas, recent years have witnessed unprecedented theoretical and technical development, which extensively increased indication to surgery. On one hand, it has been solidly demonstrated the impact of gross total resection on life expectancy. On the other hand, the paradigm shift from classical cortical localization of brain function towards connectomics caused by the resurgence of awake surgery and the advent of tractography has permitted safer surgeries focused on subcortical white matter tracts preservation and allowed for surgical resections within regions, such as Broca's area or the primary motor cortex, which were previously deemed inoperable. Furthermore, new asleep electrophysiological techniques have been developed whenever awake surgery is not an option, such as operating in situations of poor compliance (including paediatric patients) or pre-existing neurological deficits. One such strategy is the use of intraoperative neurophysiological monitoring (IONM), enabling the identification and preservation of functionally defined, but anatomically ambiguous, cortico-subcortical structures through mapping and monitoring techniques. These advances tie in with novel challenges, specifically risk prediction and the impact of neuroplasticity, the indication for tumour resection beyond visible borders, or supratotal resection, and most of all, a reappraisal of the importance of the right hemisphere from early psychosurgery to mapping and preservation of social behaviour, executive control, and decision making.Here we review current advances and future perspectives in a functional approach to glioma surgery.


Asunto(s)
Neoplasias Encefálicas , Glioma , Mapeo Encefálico/métodos , Neoplasias Encefálicas/cirugía , Área de Broca/patología , Niño , Glioma/diagnóstico por imagen , Humanos , Procedimientos Neuroquirúrgicos/métodos , Vigilia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA