Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(13): 7437-7446, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38908029

RESUMEN

Formamidopyrimidine (Fapy•dG) is a major lesion arising from oxidation of dG that is produced from a common chemical precursor of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodGuo). In human cells, replication of single-stranded shuttle vectors containing Fapy•dG is more mutagenic than 8-OxodGuo. Here, we present the first data regarding promoter dependent RNA polymerase II bypass of Fapy•dG. 8-OxodGuo bypass was examined side-by-side. Experiments were carried out using double-stranded shuttle vectors in HeLa cell nuclear lysates and in HEK 293T cells. The lesions do not significantly block transcriptional bypass efficiency. Less than 2% adenosine incorporation occurred in cells when the lesions were base paired with dC. Inhibiting base excision repair in HEK 293T cells significantly increased adenosine incorporation, particularly from Fapy•dG:dC bypass which yielded ∼25% adenosine incorporation. No effect was detected upon transcriptional bypass of either lesion in nucleotide excision repair deficient cells. Transcriptional mutagenesis was significantly higher when shuttle vectors containing dA opposite one of the lesions were employed. For Fapy•dG:dA bypass, adenosine incorporation was greater than 85%; whereas 8-OxodGuo:dA yielded >20% point mutations. The combination of more frequent replication mistakes and greater error-prone Pol II bypass suggest that Fapy•dG is more mutagenic than 8-OxodGuo.


Asunto(s)
8-Hidroxi-2'-Desoxicoguanosina , Daño del ADN , Desoxiguanosina , Regiones Promotoras Genéticas , ARN Polimerasa II , Humanos , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Células HEK293 , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Células HeLa , Reparación del ADN , Transcripción Genética , Pirimidinas , Dímeros de Pirimidina/metabolismo , Dímeros de Pirimidina/genética
2.
J Biol Chem ; 300(9): 107719, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39214306

RESUMEN

Fapy•dG (N6-(2-deoxy-α,ß-D-erythro-pentofuranosyl)-2,6-diamino-4-hydroxy-5-formamidopyrimidine) and 8-OxodGuo (8-oxo-7,8-dihydro-2'-deoxyguanosine) are major products of 2'-deoxyguanosine oxidation. Fapy•dG is unusual in that it exists as a dynamic mixture of anomers. Much less is known about the effects of Fapy•dG than 8-OxodGuo on transcriptional bypass. The data presented here indicate that T7 RNA polymerase (T7 RNAP) bypass of Fapy•dG is more complex than that of 8-OxodGuo. Primer-dependent transcriptional bypass of Fapy•dG by T7 RNAP is hindered compared to 2'-deoxyguanosine. T7 RNAP incorporates cytidine opposite Fapy•dG in a miniscaffold at least 13-fold more rapidly than A, G, or U. Fitting of reaction data indicates that Fapy•dG anomers are kinetically distinguishable. Extension of a nascent transcript past Fapy•dG is weakly dependent on the nucleotide opposite the lesion. The rate constants describing extension past fast- or slow-reacting base pairs vary less than twofold as a function of the nucleotide opposite the lesion. Promoter-dependent T7 RNAP bypass of Fapy•dG and 8-OxodGuo was carried out side by side. 8-OxodGuo bypass results in >55% A opposite it. When the shuttle vector contains a Fapy•dG:dA base pair, as high as 20% point mutations and 9% single-nucleotide deletions are produced upon Fapy•dG bypass. Error-prone bypass of a Fapy•dG:dC base pair accounts for ∼9% of the transcripts. Transcriptional bypass mutation frequencies of Fapy•dG and 8-OxodGuo measured in RNA products are comparable to or greater than replication errors, suggesting that these lesions could contribute to mutations significantly through transcription.


Asunto(s)
8-Hidroxi-2'-Desoxicoguanosina , ARN Polimerasas Dirigidas por ADN , Desoxiguanosina , Transcripción Genética , Proteínas Virales , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/química , Desoxiguanosina/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , 8-Hidroxi-2'-Desoxicoguanosina/química , Proteínas Virales/metabolismo , Proteínas Virales/genética , Proteínas Virales/química , Pirimidinas/química , Pirimidinas/metabolismo , Bacteriófago T7/enzimología , Bacteriófago T7/genética , Bacteriófago T7/metabolismo , Daño del ADN
3.
J Cell Mol Med ; 28(14): e18536, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39044341

RESUMEN

Low-dose 5-aminolevulinic acid photodynamic therapy (ALA-PDT) has been used to cope with skin photoaging, and is thought to involve DNA damage repair responses. However, it is still unknown how low-dose ALA-PDT regulates DNA damage repair to curb skin photoaging. We established a photoaging model using human dermal fibroblasts (HDFs) and rat skin. RNA-sequencing (RNA-seq) analysis was conducted to identify differentially expressed genes (DEGs) in HDFs before and after low-dose ALA-PDT treatment, followed by bioinformatics analysis. Senescence-associated ß-galactosidase (SA-ß-gal) staining was employed to assess skin aging-related manifestations and Western blotting to evaluate the expression of associated proteins. A comet assay was used to detect cellular DNA damage, while immunofluorescence to examine the expression of 8-hydroxy-2'-deoxyguanosine (8-oxo-dG) in cells and skin tissues. In both in vivo and in vitro models, low-dose ALA-PDT alleviated the manifestations of ultraviolet B (UVB)-induced skin photoaging. Low-dose ALA-PDT significantly reduced DNA damage in photoaged HDFs. Furthermore, low-dose ALA-PDT accelerated the clearance of the photoproduct 8-oxo-dG in photoaged HDFs and superficial dermis of photoaged rat skin. RNA-seq analysis suggested that low-dose ALA-PDT upregulated the expression of key genes in the base excision repair (BER) pathway. Further functional validation showed that inhibition on BER expression by using UPF1069 significantly suppressed SA-ß-gal activity, G2/M phase ratio, expression of aging-associated proteins P16, P21, P53, and MUTYH proteins, as well as clearance of the photoproduct 8-oxo-dG in photoaged HDFs. Low-dose ALA-PDT exerts anti-photoaging effects by activating the BER signalling pathway.


Asunto(s)
Ácido Aminolevulínico , Daño del ADN , Reparación del ADN , Fibroblastos , Fotoquimioterapia , Transducción de Señal , Envejecimiento de la Piel , Rayos Ultravioleta , Ácido Aminolevulínico/farmacología , Reparación del ADN/efectos de los fármacos , Animales , Rayos Ultravioleta/efectos adversos , Humanos , Envejecimiento de la Piel/efectos de los fármacos , Envejecimiento de la Piel/efectos de la radiación , Transducción de Señal/efectos de los fármacos , Fotoquimioterapia/métodos , Ratas , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/efectos de la radiación , Daño del ADN/efectos de los fármacos , Piel/efectos de los fármacos , Piel/metabolismo , Piel/efectos de la radiación , Piel/patología , Masculino , Fármacos Fotosensibilizantes/farmacología , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo
4.
Stroke ; 55(4): 1090-1093, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38299349

RESUMEN

BACKGROUND: Air pollution particulate matter exposure and chronic cerebral hypoperfusion (CCH) contribute to white matter toxicity through shared mechanisms of neuroinflammation, oxidative stress, and myelin breakdown. Prior studies showed that exposure of mice to joint particulate matter and CCH caused supra-additive injury to corpus callosum white matter. This study examines the role of TLR4 (toll-like receptor 4) signaling in mediating neurotoxicity and myelin damage observed in joint particulate matter and CCH exposures. METHODS: Experiments utilized a novel murine model of inducible monocyte/microglia-specific TLR4 knockout (i-mTLR4-ko). Bilateral carotid artery stenosis (BCAS) was induced surgically to model CCH. TLR4-intact (control) and i-mTLR4-ko mice were exposed to 8 weeks of either aerosolized diesel exhaust particulate (DEP) or filtered air (FA) in 8 experimental groups: (1) control/FA (n=10), (2) control/DEP (n=10), (3) control/FA+BCAS (n=9), (4) control/DEP+BCAS (n=10), (5) i-mTLR4-ko/FA (n=9), (6) i-mTLR4-ko/DEP (n=8), (7) i-mTLR4-ko/FA+BCAS (n=8), and (8) i-mTLR4-ko/DEP+BCAS (n=10). Corpus callosum levels of 4-hydroxynonenal, 8-Oxo-2'-deoxyguanosine, Iba-1 (ionized calcium-binding adapter molecule 1), and dMBP (degraded myelin basic protein) were assayed via immunofluorescence to measure oxidative stress, neuroinflammation, and myelin breakdown, respectively. RESULTS: Compared with control/FA mice, control/DEP+BCAS mice exhibited increased dMBP (41%; P<0.01), Iba-1 (51%; P<0.0001), 4-hydroxynonenal (100%; P<0.0001), and 8-Oxo-2'-deoxyguanosine (65%; P<0.05). I-mTLR4 knockout attenuated responses to DEP/BCAS for all markers. CONCLUSIONS: i-mTLR4-ko markedly reduced neuroinflammation and oxidative stress and attenuated white matter degradation following DEP and CCH exposures. This suggests a potential role for targeting TLR4 signaling in individuals with vascular cognitive impairment, particularly those exposed to substantial ambient air pollution.


Asunto(s)
Aldehídos , Isquemia Encefálica , Estenosis Carotídea , Sustancia Blanca , Animales , Ratones , Microglía/metabolismo , Sustancia Blanca/metabolismo , Emisiones de Vehículos/toxicidad , Enfermedades Neuroinflamatorias , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Isquemia Encefálica/metabolismo , Material Particulado/toxicidad , Estenosis Carotídea/metabolismo , Ratones Endogámicos C57BL
5.
BMC Cancer ; 24(1): 960, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107689

RESUMEN

BACKGROUND: DNA is an important target for oxidative attack and its modification may increase the risk of mutagenesis. The aim of this study was to evaluate and compare salivary levels of the oxidative stress biomarker 8-hydroxy-2'-deoxyguanosine (8-OHdG) in patients with oral cancer (OC) compared to the control group by a comprehensive search of the available literature. METHODS: The present systematic review and meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines and was registered in Open Science Framework (OSF): https://doi.org/10.17605/OSF.IO/X3YMR. Four electronic databases were used to identify studies for this systematic review: PubMed, Scopus, ScienceDirect, and Web of Science from January 15, 2005, to April 15, 2021. The Joanna Briggs Institute (JBI) tool was used to assess article quality. RESULTS: Of the 166 articles identified, 130 articles were excluded on the basis of title and abstract screening (duplicates, reviews, etc.). Thirty-six articles were evaluated at full text and 7 articles met the inclusion criteria. Of these, only 5 studies had compatible data for quantitative analysis. An increase in salivary 8-OHdG levels was found in patients with OC compared to healthy subjects, but without statistical significance. 8-OHdG: SMD = 2,72 (95%CI= -0.25-5.70); *p = 0.07. CONCLUSIONS: This systematic review and meta-analysis suggests a clear trend of increased 8-OHdG levels in saliva of OC patients compared to the control group. However, further studies are required to clarify and understand the altered levels of this oxidative stress marker.


Asunto(s)
8-Hidroxi-2'-Desoxicoguanosina , Neoplasias de la Boca , Estrés Oxidativo , Saliva , Humanos , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Neoplasias de la Boca/metabolismo , Saliva/metabolismo , Saliva/química , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/análisis
6.
Chem Res Toxicol ; 37(8): 1445-1452, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39041427

RESUMEN

Tandem lesions, which are defined by two or more contiguously damaged nucleotides, are a hallmark of ionizing radiation. Recently, tandem lesions containing 5-formyl-2'-deoxyuridine (5-fdU) flanked by a 5'-8-OxodGuo or Fapy•dG were discovered, and they are more mutagenic in human cells than the isolated lesions. In the current study, we examined replication of these tandem lesions in Escherichia coli. Bypass efficiency of both tandem lesions was reduced by 30-40% compared to the isolated lesions. Mutation frequencies (MFs) of isolated 8-OxodGuo and Fapy•dG were low, and no mutants were isolated from replication of a 5-fdU construct. The types of mutations from 8-OxodGuo were targeted G → T transversion, whereas Fapy•dG predominantly gave G → T and G deletion. 5'-8-OxodGuo-5-fdU also gave exclusively G → T mutation, which was 3-fold and 11-fold greater, without and with SOS induction, respectively, compared to that of an isolated 8-OxodGuo. In mutY/mutM cells, the MF of 8-OxodGuo and 5'-8-OxodGuo-5-fdU increased 13-fold and 7-fold, respectively. The MF of 5'-8-OxodGuo-5-fdU increased 2-fold and 3-fold in Pol II- and Pol IV-deficient cells, respectively, suggesting that these polymerases carry out largely error-free bypass. The MF of 5'- Fapy•dG-5-fdU was similar without (13 ± 1%) and with (16 ± 2%) SOS induction. Unlike the complex mutation spectrum reported earlier in human cells for 5'- Fapy•dG-5-fdU, with G → T as the major type of errors, in E. coli, the mutations were predominantly from deletion of 5-fdU. We postulate that removal of adenine-incorporated opposite 8-OxodGuo by Fpg and MutY repair proteins is partially impaired in the tandem 5'-8-OxodGuo-5-fdU, resulting in an increase in the G → T mutations, whereas a slippage mechanism may be operating in the 5'- Fapy•dG-5-fdU mutagenesis. This study showed that not only are these tandem lesions more mutagenic than the isolated lesions but they may also exhibit different types of mutations in different organisms.


Asunto(s)
8-Hidroxi-2'-Desoxicoguanosina , Escherichia coli , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Desoxiuridina/análogos & derivados , Desoxiuridina/química , Desoxiuridina/farmacología , Mutágenos/toxicidad , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Mutación , Mutagénesis , Daño del ADN
7.
Mol Biol Rep ; 51(1): 953, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230767

RESUMEN

BACKGROUND: Atherosclerosis, serving as the primary pathological mechanism at the core of cardiovascular disease, is now widely acknowledged to be associated with DNA damage and repair, contributing to atherosclerotic plaque formation. Therefore, molecules involved in the DNA repair process may play an important role in the progression of atherosclerosis. Our research endeavors to explore the contributions of specific and interrelated molecules involved in DNA repair (APE1, BRCA1, ERCC2, miR-221-3p, miR-145-5p, and miR-155-5p) to the development of atherosclerotic plaque and their interactions with each other. METHODS & RESULTS: Gene expression study was conducted using the real-time polymerase chain reaction (qRT-PCR) method on samples from carotid artery atherosclerotic plaques and nonatherosclerotic internal mammary arteries obtained from 50 patients diagnosed with coronary artery disease and carotid artery disease. Additionally, 50 healthy controls were included for the determination of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Although no difference was observed in mRNA gene expressions, we noted a decrease in miR-155-5p gene expression (p = 0.003) and an increase in miR-221-3p gene expression (p = 0.015) in plaque samples, while miR-145-5p gene expression remained unchanged (p = 0.57). Regarding serum 8-OHdG levels, patients exhibited significantly higher levels (1111.82 ± 28.64) compared to controls (636.23 ± 24.23) (p < 0.0001). CONCLUSIONS: In our study demonstrating the role of miR-155-5p and miR-221-3p in atherosclerosis, we propose that these molecules are potential biomarkers and therapeutic targets for coronary artery diseases and carotid artery disease.


Asunto(s)
Reparación del ADN , MicroARNs , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Femenino , Masculino , Persona de Mediana Edad , Reparación del ADN/genética , MicroARNs/genética , MicroARNs/metabolismo , Anciano , Estudios Transversales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Daño del ADN/genética , Regulación de la Expresión Génica/genética , Enfermedades de las Arterias Carótidas/genética , Enfermedades de las Arterias Carótidas/metabolismo , Arterias Carótidas/metabolismo , Arterias Carótidas/patología , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo
8.
BMC Ophthalmol ; 24(1): 237, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844903

RESUMEN

BACKGROUND: The purpose of this study was to investigate the photoprotection effect of peroxiredoxin 1 (PRDX1) protein in ultraviolet B (UVB) irradiation-induced damage of retinal pigment epithelium (RPE) and its possible molecular mechanism. METHODS: ARPE-19 cell viability and apoptosis were assessed by MTT assay and flow cytometry, respectively. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect the PRDX1 expression. The corresponding kits were employed to measure the levels or activities of lactate dehydrogenase (LDH), 8-hydroxy-2-deoxyguanosine (8-OHdG), reactive oxygen species (ROS), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD). Western blotting was applied to examine PRDX1 expression and mitogen-activated protein kinase (MAPK) signaling pathway-related proteins. RESULTS: After exposure to 20 mJ/cm2 intensity of UVB irradiation for 24 h, ARPE-19 cells viability was decreased, the leakage degree of LDH and 8-OHdG were increased, and cell apoptosis was elevated. The expression of PRDX1 was significantly down-regulated in UVB-induced ARPE-19 cells. The low expression of PRDX1 was involved in high irradiation intensity. Overexpression of PRDX1 increased cell activity, decreased cell apoptosis, and LDH as well as 8-OHdG leakage in UVB-induced ARPE-19 cells. In addition to alleviating UVB-induced cell damage, PRDX1 overexpression also inhibited UVB-induced oxidative stress (down-regulation of ROS and MDA levels, up-regulation of GSH-Px and SOD activities) and the activation of MAPK signaling pathway in ARPE-19 cells. CONCLUSION: PRDX1 exerts a photoprotection effect on RPE by attenuating UVB-induced cell damage and inhibiting oxidative stress, which can be attributed to the inhibition of MAPK signaling pathway activation.


Asunto(s)
Apoptosis , Supervivencia Celular , Estrés Oxidativo , Peroxirredoxinas , Especies Reactivas de Oxígeno , Epitelio Pigmentado de la Retina , Rayos Ultravioleta , Humanos , Epitelio Pigmentado de la Retina/efectos de la radiación , Epitelio Pigmentado de la Retina/metabolismo , Peroxirredoxinas/metabolismo , Rayos Ultravioleta/efectos adversos , Especies Reactivas de Oxígeno/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Línea Celular , Western Blotting , Células Cultivadas , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Transducción de Señal
9.
Nucleic Acids Res ; 50(6): 3292-3306, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35234932

RESUMEN

8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a major product of the DNA oxidization process, has been proposed to have an epigenetic function in gene regulation and has been associated with genome instability. NGS-based methodologies are contributing to the characterization of the 8-oxodG function in the genome. However, the 8-oxodG epigenetic role at a genomic level and the mechanisms controlling the genomic 8-oxodG accumulation/maintenance have not yet been fully characterized. In this study, we report the identification and characterization of a set of enhancer regions accumulating 8-oxodG in human epithelial cells. We found that these oxidized enhancers are mainly super-enhancers and are associated with bidirectional-transcribed enhancer RNAs and DNA Damage Response activation. Moreover, using ChIA-PET and HiC data, we identified specific CTCF-mediated chromatin loops in which the oxidized enhancer and promoter regions physically associate. Oxidized enhancers and their associated chromatin loops accumulate endogenous double-strand breaks which are in turn repaired by NHEJ pathway through a transcription-dependent mechanism. Our work suggests that 8-oxodG accumulation in enhancers-promoters pairs occurs in a transcription-dependent manner and provides novel mechanistic insights on the intrinsic fragility of chromatin loops containing oxidized enhancers-promoters interactions.


Asunto(s)
8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Factor de Unión a CCCTC/metabolismo , Elementos de Facilitación Genéticos , Epigénesis Genética , Cromatina/genética , ADN , Inestabilidad Genómica , Humanos , Regiones Promotoras Genéticas , Transcripción Genética
10.
Ecotoxicol Environ Saf ; 271: 116007, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38280339

RESUMEN

Fenpropathrin (FEN) is an extensively utilized synthetic pyrethroid insecticide frequently found in aquatic ecosystems. However, the adverse effects and potential mechanisms of FEN on aquatic species are poorly understood. In this work, common carp were treated with FEN at concentrations of 0.45 and 1.35 µg/L FEN for 14 days, after which the tissue structure, physiological alterations, and mRNA transcriptome of the gills were evaluated. Specifically, FEN exposure caused pathological damage to the gills of carp, downregulated the levels of claudin-1, occludin, and zonula occluden-1 (ZO-1), and inhibited Na+-K+-ATPase activity in the gills. In addition, FEN exposure promoted an increase in reactive oxygen species (ROS) levels and significantly upregulated the levels of malondialdehyde (MDA), 8-hydroxy-2 deoxyguanosine (8-OHdG), and protein carbonyl (PC) in the gills. Moreover, the inflammation-related indices (TNF-α, IL-1ß, and IFN-γ) and the apoptosis-related parameter caspase-3 were generally increased, especially in the 1.35 µg/L FEN group, and these indices were significantly greater than those in the control group. These findings suggest that FEN exposure can cause oxidative stress, the inflammatory response, and apoptosis in carp gills. Importantly, the results of RNA-seq analysis showed that 0.45 and 1.35 µg/L FEN could significantly interfere with multiple immune and metabolic pathways, including the phagosome, NOD-like receptor (NLR) signalling pathway, Toll-like receptor (TLR) signalling pathway, necroptosis, and arachidonic acid metabolism pathways, indicating that the effects of FEN on the gills of fish are intricate. In summary, our findings confirm the toxic effects of FEN on common carp gills and provide additional comprehensive information for evaluating the toxicity and underlying molecular mechanisms of FEN in aquatic organisms.


Asunto(s)
Carpas , Piretrinas , Animales , Carpas/genética , Carpas/metabolismo , Branquias , Ecosistema , Estrés Oxidativo , Piretrinas/farmacología , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Apoptosis
11.
Ecotoxicol Environ Saf ; 274: 116216, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38503103

RESUMEN

Phthalic acid esters (PAEs) are widely used as plasticizers and have been suggested to engender adverse effects on glucose metabolism. However, epidemiological data regarding the PAE mixture on type 2 diabetes (T2DM), as well as the mediating role of oxidative stress are scarce. This case-control study enrolled 206 T2DM cases and 206 matched controls in Guangdong Province, southern China. The concentrations of eleven phthalate metabolites (mPAEs) and the oxidative stress biomarker 8-hydroxy-2'-deoxyguanosine (8-OHdG) in urine were determined. Additionally, biomarkers of T2DM in paired serum were measured to assess glycemic status and levels of insulin resistance. Significantly positive associations were observed for mono-(2-ethylhexyl) phthalate (MEHP) and Mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) with T2DM (P < 0.001). Restricted cubic spline modeling revealed a non-linear dose-response relationship between MEHHP and T2DM (Pnon-linear = 0.001). The Bayesian kernel machine regression and quantile g-computation analyses demonstrated a significant positive joint effect of PAE exposure on T2DM risk, with MEHHP being the most significant contributor. The mediation analysis revealed marginal evidence that oxidative stress mediated the association between the mPAEs mixture and T2DM, while 8-OHdG respectively mediated 26.88 % and 12.24 % of MEHP and MEHHP on T2DM risk individually (Pmediation < 0.05). Di(2-ethylhexyl) phthalate (DEHP, the parent compound for MEHP and MEHHP) was used to further examine the potential molecular mechanisms by in silico analysis. Oxidative stress may be crucial in the link between DEHP and T2DM, particularly in the reactive oxygen species metabolic process and glucose import/metabolism. Molecular simulation docking experiments further demonstrated the core role of Peroxisome Proliferator Activated Receptor alpha (PPARα) among the DEHP-induced T2DM. These findings suggest that PAE exposure can alter oxidative stress via PPARα, thereby increasing T2DM risk.


Asunto(s)
Diabetes Mellitus Tipo 2 , Dietilhexil Ftalato , Dietilhexil Ftalato/análogos & derivados , Ácidos Ftálicos , Humanos , Dietilhexil Ftalato/toxicidad , Dietilhexil Ftalato/metabolismo , Diabetes Mellitus Tipo 2/epidemiología , Estudios de Casos y Controles , Teorema de Bayes , PPAR alfa/metabolismo , Ácidos Ftálicos/orina , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Estrés Oxidativo , Biomarcadores/metabolismo , Exposición a Riesgos Ambientales/efectos adversos
12.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38928358

RESUMEN

Myeloproliferative neoplasms (MPNs), namely, polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), are clonal stem cell disorders defined by an excessive production of functionally mature and terminally differentiated myeloid cells. MPNs can transform into secondary acute myeloid leukemia (sAML/blast phase MPN) and are linked to alterations in the redox balance, i.e., elevated concentrations of reactive oxygen species and markers of oxidative stress (OS), and changes in antioxidant systems. We evaluated OS in 117 chronic phase MPNs and 21 sAML cases versus controls by measuring total antioxidant capacity (TAC) and 8-hydroxy-2'-deoxy-guanosine (8-OHdG) concentrations. TAC was higher in MPNs than controls (p = 0.03), particularly in ET (p = 0.04) and PMF (p = 0.01). MPL W515L-positive MPNs had higher TAC than controls (p = 0.002) and triple-negative MPNs (p = 0.01). PMF patients who had treatment expressed lower TAC than therapy-free subjects (p = 0.03). 8-OHdG concentrations were similar between controls and MPNs, controls and sAML, and MPNs and sAML. We noted associations between TAC and MPNs (OR = 1.82; p = 0.05), i.e., ET (OR = 2.36; p = 0.03) and PMF (OR = 2.11; p = 0.03), but not sAML. 8-OHdG concentrations were not associated with MPNs (OR = 1.73; p = 0.62) or sAML (OR = 1.89; p = 0.49). In conclusion, we detected redox imbalances in MPNs based on disease subtype, driver mutations, and treatment history.


Asunto(s)
8-Hidroxi-2'-Desoxicoguanosina , Antioxidantes , Trastornos Mieloproliferativos , Humanos , Masculino , Femenino , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Persona de Mediana Edad , Anciano , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/metabolismo , Trastornos Mieloproliferativos/patología , Antioxidantes/metabolismo , Adulto , Estrés Oxidativo , Anciano de 80 o más Años , Crisis Blástica/metabolismo , Crisis Blástica/genética , Crisis Blástica/patología , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Mielofibrosis Primaria/genética , Mielofibrosis Primaria/metabolismo , Mielofibrosis Primaria/patología
13.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38928440

RESUMEN

Water is a major requirement for our bodies, and alkaline water has induced an antioxidant response in a model of natural aging. A series of recent reports have shown that aging is related to reduced water intake. Hydrogen-rich water has been suggested to exert a general antioxidant effect in relation to both improving lifestyle and preventing a series of diseases. Here, we wanted to investigate the effect of the daily intake of hydrogen-rich alkaline water (HAW) in counteracting the redox imbalance induced in a model of H2O2-treated mice. Mice were treated with H2O2 for two weeks and either left untreated or supplied with HAW. The results show that HAW induced a reduction in the ROS plasmatic levels that was consistent with the increase in the circulating glutathione. At the same time, the reduction in plasmatic 8-hydroxy-2'-deoxyguanosine was associated with reduced DNA damage in the whole body. Further analysis of the spleen and bone marrow cells showed a reduced ROS content consistent with a significantly reduced mitochondrial membrane potential and superoxide accumulation and an increase in spontaneous proliferation. This study provides evidence for a clear preventive and curative effect of HAW in a condition of systemic toxic condition and redox imbalance.


Asunto(s)
Peróxido de Hidrógeno , Hidrógeno , Oxidación-Reducción , Especies Reactivas de Oxígeno , Agua , Animales , Ratones , Peróxido de Hidrógeno/metabolismo , Hidrógeno/farmacología , Oxidación-Reducción/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Agua/química , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Daño del ADN/efectos de los fármacos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Glutatión/metabolismo , Suplementos Dietéticos
14.
Int J Mol Sci ; 25(18)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39337548

RESUMEN

Cancer-promoting proinflammatory microenvironment influences colorectal cancer (CRC) development. We examined the biomarkers of inflammation, intestinal differentiation, and DNA activity correlated with the clinical parameters to observe progression and prognosis in the adenocarcinoma subtype of CRC. Their immunohistology, immunoblotting, and RT-PCR analyses were performed in the adenocarcinoma and neighboring healthy tissues of 64 patients with CRC after routine colorectal surgery. Proinflammatory nuclear factor kappa B (NFκB) signaling as well as interleukin 6 (IL-6) and S100 protein levels were upregulated in adenocarcinoma compared with nearby healthy colon tissue. In contrast to nitrotyrosine expression, the oxidative stress marker 8-Hydroxy-2'-deoxyguanosine (8-OHdG) was increased in adenocarcinoma tissue. Biomarkers of intestinal differentiation ß-catenin and mucin 2 (MUC2) were inversely regulated, with the former upregulated in adenocarcinoma tissue and positively correlated with tumor marker CA19-9. Downregulation of MUC2 expression correlated with the increased 2-year survival rate of patients with CRC. Proliferation-related mammalian target of rapamycin (mTOR) signaling was activated, and Ki67 frequency was three-fold augmented in positive correlation with metastasis and cancer stage, respectively. Conclusion: We demonstrated a parallel induction of oxidative stress and inflammation biomarkers in adenocarcinoma tissue that was not reflected in the neighboring healthy colon tissue of CRC. The expansiveness of colorectal adenocarcinoma was confirmed by irregular intestinal differentiation and elevated proliferation biomarkers, predominantly Ki67. The origin of the linked inflammatory factors was in adenocarcinoma tissue, with an accompanying systemic immune response.


Asunto(s)
Adenocarcinoma , Biomarcadores de Tumor , Neoplasias Colorrectales , Mucina 2 , Estrés Oxidativo , Microambiente Tumoral , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Adenocarcinoma/patología , Adenocarcinoma/metabolismo , Adenocarcinoma/genética , Masculino , Femenino , Persona de Mediana Edad , Anciano , Mucina 2/metabolismo , Mucina 2/genética , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Inflamación/metabolismo , Inflamación/patología , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , beta Catenina/metabolismo , beta Catenina/genética , FN-kappa B/metabolismo , Transducción de Señal , Interleucina-6/metabolismo , Interleucina-6/genética , Pronóstico , Adulto , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo
15.
Mol Biol (Mosk) ; 58(1): 3-21, 2024.
Artículo en Ruso | MEDLINE | ID: mdl-38943577

RESUMEN

Photochemical reactions in cell DNA are induced in various organisms by solar UV radiation and may lead to a series of biological responses to DNA damage, including apoptosis, mutagenesis, and carcinogenesis. The chemical nature and the amount of DNA lesions depend on the wavelength of UV radiation. UV type B (UVB, 290-320 nm) causes two main lesions, cyclobutane pyrimidine dimers (CPDs) and, with a lower yield, pyrimidine (6-4) pyrimidone photoproducts (6-4PPs). Their formation is a result of direct UVB photon absorption by DNA bases. UV type A (UVA, 320-400 nm) induces only cyclobutane dimers, which most likely arise via triplet-triplet energy transfer (TTET) from cell chromophores to DNA thymine bases. UVA is much more effective than UVB in inducing sensitized oxidative DNA lesions, such as single-strand breaks and oxidized bases. Of the latter, 8-oxo-dihydroguanine (8-oxodG) is the most frequent, being produced in several oxidation processes. Many recent studies reported novel, more detailed information about the molecular mechanisms of the photochemical reactions that underlie the formation of various DNA lesions. The information is mostly summarized and analyzed in the review. Special attention is paid to the oxidation reactions that are initiated by reactive oxygen species (ROS) and radicals generated by potential endogenous photosensitizers, such as pterins, riboflavin, protoporphyrin IX, NADH, and melanin. The review discusses the role that specific DNA photoproducts play in genotoxic processes induced in living systems by UV radiation of various wavelengths, including human skin carcinogenesis.


Asunto(s)
Daño del ADN , Dímeros de Pirimidina , Rayos Ultravioleta , Rayos Ultravioleta/efectos adversos , Humanos , Daño del ADN/efectos de la radiación , Dímeros de Pirimidina/metabolismo , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , ADN/efectos de la radiación , ADN/metabolismo , ADN/genética , Animales , Apoptosis/efectos de la radiación , Oxidación-Reducción/efectos de la radiación , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo
16.
BMC Cancer ; 23(1): 990, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848855

RESUMEN

BACKGROUND: To investigate how Fusobacterium nucleatum (Fn) promotes oxidative stress and mediates proliferation and autophagy in hypopharyngeal squamous cell carcinoma (HPSCC). METHODS: The prognosis for 82 HPSCC cases was retrospectively analyzed. HPSCC cell line FaDu was co-cultured with Fn. Knockdown of NUDT1 (shNUDT1 group) was done after observing DNA damage response. CCK8 and tumorigenesis assays for proliferation observation, mitochondria ROS (MitoROS) measurement to examine intracellular oxidative stress, and ELISA to analyze concentration of 8-oxo-2'-deoxyguanosine (8-oxo-dG) in cells. Dual-luciferase reporter assays clarified miR-361-3p connection with NUDT1. Autophagy flow was observed using electron microscopy and related proteins. RESULTS: Fn was highly associated with NUDT1. The shNUDT1 group experienced lower proliferation compared with normal FaDu (NC group) in vivo and in vitro. The shNUDT1 group showed 8-oxo-dG and γH2AX to be elevated. Intracellular ROS decreased in shNUDT1Fn group when compared to Fn group. Upregulating miR-361-3p could suppress NUDT1 expression and downstream proliferation and autophagy. Fn modulated miR-361-3p via OH-, which could be proven by H2O2 assay and N-acetylcysteine. CONCLUSIONS: Higher Fn in HPSCC patients suggests poorer prognosis. NUDT1 might affect cell proliferation and autophagy and modulate DNA damage response. The oxidative stress induced miR-361-3p/NUDT1 axis is first introduced in microbiome-carcinoma research.


Asunto(s)
Neoplasias de Cabeza y Cuello , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Fusobacterium nucleatum/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Peróxido de Hidrógeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estudios Retrospectivos , Línea Celular Tumoral , Proliferación Celular/genética , Estrés Oxidativo/genética , Neoplasias de Cabeza y Cuello/genética , Autofagia/genética , Regulación Neoplásica de la Expresión Génica
17.
Photochem Photobiol Sci ; 22(8): 1889-1899, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37193818

RESUMEN

The exposure to UVA (320-400 nm) irradiation is a major threat to human skin concerning photoaging and carcinogenesis. It has been shown that UVA irradiation can induce reactive oxygen species (ROS) and DNA mutations, such as 8-hydroxydeoxyguanosine. Furthermore, UVA induces the expression of photoaging-associated matrix metalloproteases (MMPs), especially of matrix metalloprotease 1 (MMP 1) and matrix metalloprotease 3 (MMP 3). In addition to this, it was recently shown that UVA-induced ROS also increase glucose metabolism of melanoma cells, however, the influence of UVA on the glucose metabolism of non-malignant cells of the human skin has, so far, not been investigated in detail. Here, we investigated the UVA-induced changes in glucose metabolism and the functional relevance of these changes in primary fibroblasts-normal non-malignant cells of the skin. These cells showed an UVA-induced enhanced glucose consumption and lactate production and changes in pyruvate production. As it has been proposed that pyruvate could have antioxidant properties we tested the functional relevance of pyruvate as protective agent against UVA-induced ROS. Our initial experiments support earlier publications, demonstrating that pyruvate treated with H2O2 is non-enzymatically transformed to acetate. Furthermore, we show that this decarboxylation of pyruvate to acetate also occurs upon UVA irradiation. In addition to this, we could show that in fibroblasts pyruvate has antioxidant properties as enhanced levels of pyruvate protect cells from UVA-induced ROS and partially from a DNA mutation by the modified base 8-hydroxydeoxyguanosine. Furthermore, we describe for the first time, that the interaction of UVA with pyruvate is relevant for the regulation of photoaging-associated MMP 1 and MMP 3 expression.


Asunto(s)
Antioxidantes , Envejecimiento de la Piel , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Metaloproteinasa 1 de la Matriz/genética , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Especies Reactivas de Oxígeno/metabolismo , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Peróxido de Hidrógeno/metabolismo , Piel/efectos de la radiación , Glucosa , Piruvatos/farmacología , Piruvatos/metabolismo , Rayos Ultravioleta , Fibroblastos/metabolismo , Células Cultivadas
18.
Mol Biol Rep ; 50(11): 9315-9322, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37812355

RESUMEN

BACKGROUND: Oxidative stress has a critical effect on both persistent pain states and periodontal disease. Voltage-gated sodium NaV1.7 (SCN9A), and transient receptor potential ankyrin 1 (TRPA1) are pain genes. The goal of this study was to investigate oxidative stress markers, periodontal status, SCN9A, and TRPA1 channel expression in periodontal tissues of rats with paclitaxel-induced neuropathic pain-like behavior (NPLB). METHODS AND RESULTS: Totally 16 male Sprague Dawley rats were used: control (n = 8) and paclitaxel-induced pain (PTX) (n = 8). The alveolar bone loss and 8-hydroxy-2-deoxyguanosine (8-OHdG) levels were analyzed histometrically and immunohistochemically. Gingival superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities (spectrophotometric assay) were measured. The relative TRPA1 and SCN9A genes expression levels were evaluated using quantitative real-time PCR (qPCR) in the tissues of gingiva and brain. The PTX group had significantly higher alveolar bone loss and 8-OHdG compared to the control. The PTX group had significantly lower gingival SOD, GPx and CAT activity than the control groups. The PTX group had significantly higher relative gene expression of SCN9A (p = 0.0002) and TRPA1 (p = 0.0002) than the control in gingival tissues. Increased nociceptive susceptibility may affect the increase in oxidative stress and periodontal destruction. CONCLUSIONS: Chronic pain conditions may increase TRPA1 and SCN9A gene expression in the periodontium. The data of the current study may help develop novel approaches both to maintain periodontal health and alleviate pain in patients suffering from orofacial pain.


Asunto(s)
Pérdida de Hueso Alveolar , Neuralgia , Humanos , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Estrés Oxidativo , Antioxidantes/metabolismo , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Paclitaxel/farmacología , Neuralgia/genética , Neuralgia/metabolismo , Ligamento Periodontal/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo
19.
Nutr Metab Cardiovasc Dis ; 33(8): 1529-1538, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37263914

RESUMEN

BACKGROUND AND AIMS: Elevated LDL-C, lipoprotein(a) [Lp(a)], and inflammation are associated with greater risk for atherosclerotic cardiovascular events. Consumption of individual nut types decreases these risk factors but knowledge about the effect of mixed nuts on Lp(a) is limited. The objective of this study was to determine the effects of consuming 42.5 g/day of mixed nuts on LDL-C, Lp(a), and inflammatory markers in individuals with overweight or obesity. METHODS AND RESULTS: In a 16-week randomized control trial, 29 participants with overweight or obesity (BMI 25-40 kg/m2) consumed either 42.5 g/day of mixed nuts (cashews, almonds, macadamia nuts, Brazil nuts, pecans, pistachios, walnuts, and peanuts) or 69 g/day isocaloric pretzels. Blood samples were collected at baseline, week 8, and week 16 for analysis on total cholesterol (TC), LDL-C, Lp(a), inflammation markers, glucose, insulin, adiponectin and liver function enzymes. No significant differences were seen in TC, LDL-C, HDL-C, Lp(a), or liver function enzymes between the two groups. Participants consuming mixed nuts had significantly lower body fat percentage and diastolic blood pressure, and higher adiponectin (all P ≤ 0.05). C-reactive protein (CRP) and 8-oxo-deoxyguanosis (8-oxodG) showed non-significant decreasing trends and total antioxidant capacity (TAC) had a non-significant increasing trend in the mixed nut group. CONCLUSION: Consumption of mixed nuts had no evidence of an effect on LDL-C or Lp(a) throughout the intervention. Notably, mixed nut consumption lowered body fat percentage without significant changes in body weight or BMI. Future studies with larger sample sizes investigating the changing trends of CRP, 8-oxodG, and TAC are warranted. CLINICAL TRIAL REGISTER: NCT03375866.


Asunto(s)
Nueces , Sobrepeso , Humanos , Adulto , LDL-Colesterol , Sobrepeso/diagnóstico , Factores de Riesgo Cardiometabólico , Lipoproteína(a) , Adiponectina , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Obesidad/diagnóstico , Obesidad/metabolismo , Factores de Riesgo , Inflamación/diagnóstico , Inflamación/prevención & control , Inflamación/metabolismo
20.
Nucleic Acids Res ; 49(1): 257-268, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33290564

RESUMEN

8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) is a biomarker of oxidative DNA damage and can be repaired by hOGG1 and APE1 via the base excision repair (BER) pathway. In this work, we studied coordinated BER of 8-oxodGuo by hOGG1 and APE1 in nucleosome core particles and found that histones transiently formed DNA-protein cross-links (DPCs) with active repair intermediates such as 3'-phospho-α,ß-unsaturated aldehyde (PUA) and 5'-deoxyribosephosphate (dRP). The effects of histone participation could be beneficial or deleterious to the BER process, depending on the circumstances. In the absence of APE1, histones enhanced the AP lyase activity of hOGG1 by cross-linking with 3'-PUA. However, the formed histone-PUA DPCs hampered the subsequent repair process. In the presence of APE1, both the AP lyase activity of hOGG1 and the formation of histone-PUA DPCs were suppressed. In this case, histones could catalyse removal of the 5'-dRP by transiently cross-linking with the active intermediate. That is, histones promoted the repair by acting as 5'-dRP lyases. Our findings demonstrate that histones participate in multiple steps of 8-oxodGuo repair in nucleosome core particles, highlighting the diverse roles that histones may play during DNA repair in eukaryotic cells.


Asunto(s)
8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Reparación del ADN/fisiología , Histonas/fisiología , Nucleosomas/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , ADN Glicosilasas/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Nucleosomas/ultraestructura , Conformación Proteica , Ribosamonofosfatos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA