Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Tipo de estudio
País/Región como asunto
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38805027

RESUMEN

Strain S30A2T, isolated from the acid mine drainage sediment of Mengzi Copper Mine, Yunnan, is proposed to represent a novel species of the sulphur-oxidizing genus Acidithiobacillus. Cells were Gram-stain-negative, non-endospore forming, highly motile with one or two monopolar flagella and rod-shaped. The strain was mesophilic, growing at 30-50 °C (optimum, 38 °C), acidophilic, growing at pH 2.0-4.5 (optimum, pH 2.5), and tolerant of 0-4 % (w/v; 684 mol l-1) NaCl. The 16S rRNA gene-based sequence analysis showed that strain S30A2T belongs to the genus Acidithiobacillus and shows the largest similarity of 96.6 % to the type strain Acidithiobacillus caldus KUT. The genomic DNA G+C content of strain S30A2T was 59.25 mol%. The average nucleotide identity ANIb and ANIm values between strain S30A2T and A. caldus KUT were 70.95 and 89.78 %, respectively and the digital DNA-DNA hybridization value was 24.9 %. Strain S30A2T was strictly aerobic and could utilize elementary sulphur and tetrathionate to support chemolithotrophic growth. The major cellular fatty acid of S30A2T was C19 : 1ω7c. The respiratory quinones were ubiquinone-8 and ubiquinone-7. Based upon its phylogenetic, genetic, phenotypic, physiologic and chemotaxonomic characteristics, strain S30A2T is considered to represent a novel species of the genus Acidithiobacillus, for which the name Acidithiobacillus acidisediminis sp. nov. is proposed. The type strain is S30A2T (=CGMCC 1.17059T=KCTC 72580T).


Asunto(s)
Acidithiobacillus , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Sedimentos Geológicos , Minería , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Azufre , ARN Ribosómico 16S/genética , Azufre/metabolismo , ADN Bacteriano/genética , Ácidos Grasos/análisis , Sedimentos Geológicos/microbiología , Acidithiobacillus/clasificación , Acidithiobacillus/genética , Acidithiobacillus/aislamiento & purificación , China , Oxidación-Reducción , Crecimiento Quimioautotrófico , Ubiquinona , Cobre/metabolismo
2.
J Environ Manage ; 358: 120904, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38643624

RESUMEN

This study focused on the economic feasibility of two potential industrial-scale bioleaching technologies for metal recovery from specific metallurgical by-products, mainly basic oxygen steelmaking dust (BOS-D) and goethite. The investigation compared two bioleaching scaling technology configurations, including an aerated bioreactor and an aerated and stirred bioreactor across different scenarios. Results indicated that bioleaching using Acidithiobacillus ferrooxidans proved financially viable for copper extraction from goethite, particularly when 5% and 10% pulp densities were used in the aerated bioreactor, and when 10% pulp density was used in the aerated and stirred bioreactor. Notably, a net present value (NPV) of $1,275,499k and an internal rate of return (IRR) of 65% for Cu recovery from goethite were achieved over 20-years after project started using the aerated and stirred bioreactor plant with a capital expenditure (CAPEX) of $119,816,550 and an operational expenditure (OPEX) of $5,896,580/year. It is expected that plant will start to make profit after one year of operation. Aerated and stirred bioreactor plant appeared more reliable alternative compared to the aerated bioreactor plant as the plant consists of 12 reactors which can allow better management and operation in small volume with multiple reactors. Despite the limitations, this techno-economic assessment emphasized the significance of selective metal recovery and plant design, and underscored the major expenses associated with the process.


Asunto(s)
Acidithiobacillus , Reactores Biológicos , Metalurgia , Acidithiobacillus/metabolismo , Cobre , Minerales , Compuestos de Hierro
3.
J Environ Manage ; 349: 119549, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37979390

RESUMEN

Bioleaching characteristics and bacterial community structure were studied during low-grade copper sulfide ores bioleaching in the presence of pretreated Sargassum (PSM). Results indicated that proportion of attached bacteria and copper recovery were improved by using appropriate-dosage PSM. High copper recovery (82.99%) and low Fe3+ concentration were obtained when 150 mg L-1 PSM was used. Precipitation, such as KFe3(SO4)2(OH)6 and (H3O)Fe3(SO4)2(OH)6, was not found in samples used PSM according to XRD, FTIR and TG analyses, which may result from less passivation layer formed by Fe3+ hydrolysis. I- contained in PSM can act as the reductant to convert Fe3+ into Fe2+, which can reduce Fe3+ hydrolysis and adjust Eh value. Bacterial community structure was influenced significantly by PSM according to the 16 S rDNA analysis. Acidithiobacillus ferrooxidans dominated proportion of bacterial community throughout bioleaching process, whose proportion reached 89.1091% after 14 days in sample added 150 mg L-1 PSM.


Asunto(s)
Acidithiobacillus , Sargassum , Cobre , Sulfuros , Bacterias
4.
J Environ Manage ; 367: 122012, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39094417

RESUMEN

Recycling spent batteries is increasingly important for the sustainable use of Li-ion batteries (LIBs) and for countering the supply uncertainty of critical raw minerals (Li, Co, and Ni). Bioleaching, which uses microorganisms to extract valuable metals, is both economical and environmentally safe compared to other recycling methods, but its practical application is impaired by slow kinetics. Accelerating the process is a key for bioleaching spent LIBs on an industrial scale. Acidithiobacillus ferrooxidans (A. ferrooxidans), which thrives in extremely low pH conditions, has long been explored for bioleaching of spent LIBs. Metabolism of A. ferrooxidans involves the oxidation of magnetic Fe2+ and produces intracellular magnetic nanoparticles. The possibility of accelerating the leaching kinetics of A. ferrooxidans by the application of an external magnetic field is explored in this work. A weak static magnetic field is applied during the bioleaching of spent LIBs to recover Li, Ni, and Co using A. ferrooxidans. It is determined that 3 mT is the optimal field strength which allows the leaching efficiency of Li to reach 100% after only 2 days of leaching at a pulp density of 3 w/v % while without the external magnetic field, the leaching efficiency is limited to 57% even after 4 days. The leaching efficiency of Ni and Co also increases by nearly three-fold to >80% after 4 days of leaching. The proposed magnetic field-assisted bioleaching of spent LIBs using A. ferrooxidans substantially improves the leaching kinetics and thus the cost-effectiveness of the bioleaching process with minimal environmental impact, hence enabling environment-friendly recycling of raw materials that are increasingly becoming scarce. The positive effect of an external magnetic field on the metabolism of A. ferrooxidans demonstrated in this work provide a new set of tools to engineer the bioleaching process and the possibility for genetic modification of acidophile bacteria, especially targeted for magnetic enhancement.


Asunto(s)
Acidithiobacillus , Suministros de Energía Eléctrica , Litio , Reciclaje , Acidithiobacillus/metabolismo , Campos Magnéticos
5.
Sci Total Environ ; 927: 172162, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569954

RESUMEN

Acid mine drainage (AMD) induced by pyrite oxidation is a notorious and serious environmental problem, but the management of AMD in an economical and environmentally friendly way remains challenging. Here, lignin, a natural polymer and abundant waste, was employed as both a bactericide and passivator to prevent AMD formation. The addition of lignin to a mimic AMD formation system inoculated with Acidithiobacillus ferrooxidans at a lignin-to-pyrite weight ratio of 2.5: 10 reduced the combined abiotic and biotic oxidation of pyrite by 68.4 % (based on released SO42-). Morphological characterization of Acidithiobacillus ferrooxidans revealed that lignin could act on the cell surface and impair the cell integrity, disrupting its normal growth and preventing biotic oxidation of pyrite accordingly. Moreover, lignin can be used alone as a passivator to form a coating on the pyrite surface, reducing abiotic oxidation by 71.7 % (based on released SO42-). Through multiple technique analysis, it was proposed that the functional groups on lignin may coordinate with iron ions on pyrite, promoting its deposition on the surface. In addition, the inherent antioxidant activity of lignin may also be actively involved in the abatement of pyrite oxidation via the reduction of iron. Overall, this study offered a "treating waste with waste" strategy for preventing AMD formation at the source and opened a new avenue for the management of AMD.


Asunto(s)
Acidithiobacillus , Lignina , Minería , Acidithiobacillus/metabolismo , Hierro , Sulfuros , Oxidación-Reducción
6.
Bioresour Technol ; 399: 130619, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552857

RESUMEN

Mineral processing encounters the challenge of separating chalcopyrite and pyrite, with the conventional high alkali process characterized by issues such as large dosages of reagents, complex procedures, and environmental pollution. This study addresses this challenge by isolating and enriching Thiobacillus ferrooxidans (T·f) from acidic mine drainage, employing it as a biosurfactant. The modification mechanism of T·f was thoroughly analyzed. Fe dissolution through biological oxidation formed a passivation layer (jarosite [KFe3(SO4)2(OH)6], elemental sulfur (S0), and metal sulfides (Cu/Fe-S) on the surface of minerals. Metal oxides, hydroxides, and sulfates were detected on the surface of two minerals, but the difference was that elemental sulfur (S0) and copper sulfide (Cu-S) were detected on the surface of chalcopyrite. elucidating the fundamental reason for the significant difference in surface hydrophobicity between chalcopyrite and pyrite. T·f has been successfully used as a biosurfactant to achieve copper-sulfur separation.


Asunto(s)
Acidithiobacillus , Cobre , Hierro , Thiobacillus , Minerales , Sulfuros , Azufre
7.
Water Res ; 252: 121221, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38324985

RESUMEN

This study proposes a novel method by forming biogenic K-jarosite coatings on pyrite surfaces driven by Acidithiobacillus ferrooxidans (A. ferrooxidans) to reduce heavy metal release and prevent acid mine drainage (AMD) production. Different thicknesses of K-jarosite coatings (0.7 to 1.1 µm) were able to form on pyrite surfaces in the presence of A. ferrooxidans, which positively correlated with the initial addition of Fe2+ and K+ concentrations. The inhibiting effect of K-jarosite coatings on pyrite oxidation was studied by electrochemical measurements, chemical oxidation tests, and bio-oxidation tests. The experimental results showed that the best passivation performance was achieved when 20 mM Fe2+ and 6.7 mM K+ were initially introduced with a bacterial concentration of 4 × 108 cells·mL-1, reducing chemical and biological oxidation by 70 % and 98 %, respectively (based on the concentration of total iron dissolved into the solution by pyrite oxidation). Similarly, bio-oxidation tests of two mine waste samples also showed sound inhibition effects, which offers a preliminary demonstration of the potential applicability of this method to actual waste rock. This study presents a new perspective on passivating the oxidation of metal sulfide tailings or waste and preventing AMD.


Asunto(s)
Acidithiobacillus , Hierro , Sulfatos , Compuestos Férricos , Sulfuros , Oxidación-Reducción
8.
PLoS One ; 19(2): e0298204, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38306373

RESUMEN

DNA N6-methyladenine (6mA) modification is widespread in organisms and plays an important functional role in the regulation of cellular processes. As a model organism in biohydrometallurgy, Acidithiobacillus ferrooxidans can obtain energy from the oxidation of ferrous iron (Fe2+) and various reduced inorganic sulfides (RISCs) under acidic conditions. To determine the linkage between genomic DNA methylation and the switching between the two oxidative metabolic pathways in A. ferrooxidans, the 6mA landscape in the genome of A. ferrooxidans cultured under different conditions was evaluated by using 6mA-IP-seq. A total of 214 and 47 high-confidence peaks of 6mA were identified under the Fe2+ and RISCs oxidizing conditions, respectively (P<10-5), suggesting that genomic methylation was greater under Fe2+ oxidizing conditions. 6mA experienced a decline at the transcription start site (TSS) and occurs frequently in gene bodies under both oxidizing conditions. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that 7 KEGG pathways were mapped into and most of the differentially methylated genes were enriched in oxidative phosphorylation and metabolic pathways. Fourteen genes were selected for studying the effect of differences in methylation on mRNA expression. Thirteen genes, excluding petA-1, demonstrated a decrease in mRNA expression as methylation levels increased. Overall, the 6mA methylation enrichment patterns are similar under two conditions but show differences in the enriched pathways. The phenomenon of upregulated gene methylation levels coupled with downregulated expression suggests a potential association between the regulation mechanisms of 6mA and the Fe2+ and RISCs oxidation pathways.


Asunto(s)
Acidithiobacillus , Genoma , Genómica , Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Metilación de ADN , ADN/metabolismo , ARN Mensajero/metabolismo
9.
Sci Rep ; 14(1): 14885, 2024 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937525

RESUMEN

Past and present habitability of Mars have been intensely studied in the context of the search for signals of life. Despite the harsh conditions observed today on the planet, some ancient Mars environments could have harbored specific characteristics able to mitigate several challenges for the development of microbial life. In such environments, Fe2+ minerals like siderite (already identified on Mars), and vivianite (proposed, but not confirmed) could sustain a chemolithoautotrophic community. In this study, we investigate the ability of the acidophilic iron-oxidizing chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans to use these minerals as its sole energy source. A. ferrooxidans was grown in media containing siderite or vivianite under different conditions and compared to abiotic controls. Our experiments demonstrated that this microorganism was able to grow, obtaining its energy from the oxidation of Fe2+ that came from the solubilization of these minerals under low pH. Additionally, in sealed flasks without CO2, A. ferrooxidans was able to fix carbon directly from the carbonate ion released from siderite for biomass production, indicating that it could be able to colonize subsurface environments with little or no contact with an atmosphere. These previously unexplored abilities broaden our knowledge on the variety of minerals able to sustain life. In the context of astrobiology, this expands the list of geomicrobiological processes that should be taken into account when considering the habitability of environments beyond Earth, and opens for investigation the possible biological traces left on these substrates as biosignatures.


Asunto(s)
Acidithiobacillus , Marte , Acidithiobacillus/metabolismo , Acidithiobacillus/crecimiento & desarrollo , Oxidación-Reducción , Hierro/metabolismo , Concentración de Iones de Hidrógeno , Compuestos Ferrosos/metabolismo , Minerales/metabolismo , Exobiología , Medio Ambiente Extraterrestre , Carbonatos , Compuestos Férricos
10.
J Biotechnol ; 383: 64-72, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38311245

RESUMEN

Variations in water availability represent a foremost stress factor affecting the growth and survival of microorganisms. Acidophilic bioleaching bacteria are industrially applied for releasing metals from mineral sulphides, and they are considered extremely tolerant to oxidative conditions prevailing in acidic bioleaching environments. Such processes usually are performed in heaps and thus these microorganisms are also exposed to intermittent desiccations or high osmolarity periods that reduce the water availability. However, the tolerance to water stress and the molecular basis of adaptation to it are still largely unknown. The aim of this work was to determine the cellular response to desiccation stress and establish its relationship to oxidative stress response in the acidophilic iron-oxidizing bacteria Acidithiobacillus ferrooxidans ATCC 23270 and Leptospirillum ferriphilum DSM 14647. Results showed that the exposure of cell cultures to desiccation (0-120 min) led to a significant reduction in cell growth, and to an increase in content in reactive oxygen species in both bacteria. However, Leptospirillum ferriphilum turned out to be more tolerant than Acidithiobacillus ferrooxidans. In addition, the pre-treatment of the cell cultures with compatible solutes (trehalose and ectoine), and antioxidants (glutathione and cobalamin) restored all stress parameters to levels exhibited by the control cultures. To evaluate the role of the osmotic and redox homeostasis mechanisms in coping with desiccation stress, the relative expression of a set of selected genes was approached by RT-qPCR experiments in cells exposed to desiccation for 30 min. Results showed a generalized upregulation of genes that code for mechanosensitive channels, and enzymes related to the biosynthesis of compatible solutes and oxidative stress response in both bacteria. These data suggest that acidophiles show variable tolerance to desiccation and allow to establish that water stress can trigger oxidative stress, and thus anti-oxidative protection capability can be a relevant mechanism when cells are challenged by desiccation or other anhydrobiosis states.


Asunto(s)
Acidithiobacillus , Deshidratación , Hierro , Humanos , Desecación , Estrés Oxidativo , Bacterias
11.
Chemosphere ; 353: 141466, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38364921

RESUMEN

In this study, Acidithiobacillus thiooxidans was used for the bioleaching of copper (Cu) from sewage sludge. In order to find optimization conditions, three factors including solid-to-liquid ratio (S/L) (0.01-0.2 %(w/v)), initial element sulfur (S0) (1-10 g/L), and initial pH (1-3) have been investigated. Based on response surface methodology (RSM) determined a significant reduced quadratic model with a p-value of 0.0022 (<0.05 significant level). The maximum Cu recovery was 85.3% in the optimum condition of S/L = 0.16% (w/v), S0 = 8.2 g/L, and pH = 1.4. Furthermore, a kinetic study based on a shrinking core model was performed and the result showed that chemical reaction was rate limiting in the extraction. Toxicity Characteristic Leaching Procedure (TCLP) results after bioleaching showed the bioleaching process detoxified sludge and the bioleached sludge residue was well within the regulatory limits for disposal. The germination seed with adding bioleached and unbioleached sludge to the soil was determined. Various parameters such as Germination Index (GI), Tolerance Index (TI), Vigor Index (VI), and stem length showed that the sewage sludge indices significantly increased than the sample soil with unbioleached sludge.


Asunto(s)
Acidithiobacillus thiooxidans , Acidithiobacillus , Aguas del Alcantarillado/química , Cobre , Concentración de Iones de Hidrógeno , Suelo
12.
Sci Total Environ ; 927: 171919, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38554963

RESUMEN

The catalytic role of Acidithiobacillus ferrooxidans (A. ferrooxidans) in iron biooxidation is pivotal in the formation of Acid Mine Drainage (AMD), which poses a significant threat to the environment. To control AMD generation, treatments with low-molecular-weight organic acids are being studied, yet their exact mechanisms are unclear. In this study, AMD materials, organic acids, and molecular methods were employed to gain a deeper understanding of the inhibitory effects of low-molecular-weight organic acids on the biooxidation of iron by A. ferrooxidans. The inhibition experiments of A. ferrooxidans on the oxidation of Fe2+ showed that to attain a 90 % inhibition efficacy within 72 h, the minimum concentrations required for formic acid, acetic acid, propionic acid, and lactic acid are 0.5, 6, 4, and 10 mmol/L, respectively. Bacterial imaging illustrated the detrimental effects of these organic acids on the cell envelope structure. This includes severe damage to the outer membrane, particularly from formic and acetic acids, which also caused cell wall damage. Coupled with alterations in the types and quantities of protein, carbohydrate, and nucleic acid content in extracellular polymeric substances (EPS), indicate the mechanisms underlying these inhibitory treatments. Transcriptomic analysis revealed interference of these organic acids with crucial metabolic pathways, particularly those related to energy metabolism. These findings establish a comprehensive theoretical basis for understanding the inhibition of A. ferrooxidans' biooxidation by low-molecular-weight organic acids, offering a novel opportunity to effectively mitigate the generation of AMD at its source.


Asunto(s)
Acidithiobacillus , Hierro , Oxidación-Reducción , Propionatos , Acidithiobacillus/metabolismo , Acidithiobacillus/efectos de los fármacos , Hierro/metabolismo , Minería , Formiatos/metabolismo , Ácido Acético/metabolismo
13.
Sci Total Environ ; 925: 171762, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38508270

RESUMEN

Ores serve as energy and nutrient sources for microorganisms. Through complex biochemical processes, microorganisms disrupt the surface structure of ores and release metal elements. However, there is limited research on the mechanisms by which bacteria with different nutritional modes act during the leaching process of different crystal structure ores. This study evaluated the leaching efficiency of two types of bacteria with different nutritional modes, heterotrophic bacterium Bacillus mucilaginosus (BM) and autotrophic bacterium Acidithiobacillus ferrooxidans (AF), on different crystal structure lithium silicate ores (chain spodumene, layered lepidolite and ring elbaite). The aim was to understand the behavioral differences and decomposition mechanisms of bacteria with different nutritional modes in the process of breaking down distorted crystal lattices of ores. The results revealed that heterotrophic bacterium BM primarily relied on passive processes such as bacterial adsorption, organic acid corrosion, and the complexation of small organic acids and large molecular polymers with metal ions. Autotrophic bacterium AF, in addition to exhibiting stronger passive processes such as organic acid corrosion and complexation, also utilized an active transfer process on the cell surface to oxidize Fe2+ in the ores for energy maintenance and intensified the destruction of ore lattices. As a result, strain AF exhibited a greater leaching effect on the ores compared to strain BM. Regarding the three crystal structure ores, their different stacking modes and proportions of elements led to significant differences in structural stability, with the leaching effect being highest for layered structure, followed by chain structure, and then ring structure. These findings indicate that bacteria with different nutritional modes exhibit distinct physiological behaviors related to their nutritional and energy requirements, ultimately resulting in different sequences and mechanisms of metal ion release from ores after lattice damage.


Asunto(s)
Acidithiobacillus , Bacterias , Litio , Bacterias/metabolismo , Metales/metabolismo , Silicatos/química , Iones
14.
Chemosphere ; 363: 142955, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39069100

RESUMEN

As one of the important microorganisms in the mining area, the role of iron-sulfur oxidizing microorganisms in antimony (element symbolized as Sb) migration and transformation in mining environments has been largely neglected for a long time. Therefore, the processes of the typical iron-sulfur oxidizing bacterium Acidithiobacillus ferrooxidans (A. ferrooxidans) and pyrite interaction coupled with the migration and transformation of Sb were investigated in this paper. The bio-oxidation process of pyrite by A. ferrooxidans not only accelerates the oxidation rate of Sb(III) to Sb(V) (62.93% of 10 mg L-1 within 4 h), but also promotes the adsorption and precipitation of Sb (32.89 % of 10 mg L-1 within 96 h), and changes in the dosage of minerals, Sb concentration, and pH value affect the conversion of Sb. The characterization results show that the interaction between A. ferrooxidans and pyrite produces a variety of reactive species, such as H2O2 and •OH, resulting in the oxidation of Sb(III). In addition, A. ferrooxidans mediates the formation of stereotyped iron-sulfur secondary minerals that can act as a major driver of Sb (especially Sb(V)) adsorption or co-precipitation. This study contributes to the further understanding of the diversified biogeochemical processes of iron-sulfur oxidizing bacteria-iron-sulfur minerals-toxic metals in mining environments and provides ideas for the development of in-situ treatment technologies for Sb.


Asunto(s)
Acidithiobacillus , Antimonio , Hierro , Minerales , Minería , Oxidación-Reducción , Especies Reactivas de Oxígeno , Sulfuros , Antimonio/metabolismo , Antimonio/química , Acidithiobacillus/metabolismo , Hierro/metabolismo , Hierro/química , Sulfuros/metabolismo , Sulfuros/química , Minerales/metabolismo , Minerales/química , Especies Reactivas de Oxígeno/metabolismo , Adsorción , Peróxido de Hidrógeno/metabolismo
15.
J Hazard Mater ; 470: 134193, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38569341

RESUMEN

Arsenopyrite and pyrite often coexist in metal deposits and tailings, thus simultaneous bioleaching of both sulfides has economic (as well as environmental) significance. Important targets in bio-oxidation operations are high solubilization rates and minimized accumulation of Fe(III)/As-bearing secondary products. This study investigated the role of pyrite bioleaching in the enhancement of arsenopyrite dissolution. At a pyrite to arsenopyrite mass ratio of 1:1, 93.6% of As and 93.0% of Fe were solubilized. The results show that pyrite bio-oxidation can promote arsenopyrite dissolution, enhance S0 bio-oxidation, and inhibit the formation of jarosites, tooeleite, and amorphous ferric arsenate. The dry weight of the pyrite & arsenopyrite residue was reduced by 95.1% after bioleaching, compared to the initial load, while only 5% weight loss was observed when pyrite was absent. A biofilm was formed on the arsenopyrite surface in the presence of pyrite, while a dense passivation layer was observed in the absence of pyrite. As(III) (as As2O3) was a dominant As species in the pyrite & arsenopyrite residue. Novel and detailed findings are presented on arsenopyrite bio-dissolution in the presence of pyrite, and the presented approach could contribute to the development of novel cost-effective extractive bioprocesses. ENVIRONMENTAL IMPLICATION: The oxidation of arsenopyrite presents significant environmental hazards, as it can contribute to acid mine drainage generation and arsenic mobilization from sulfidic mine wastes. Bioleaching is a proven cost-effective and environmentally friendly extractive technology, which has been applied for decades in metal recovery from minerals or tailings. In this work, efficient extraction of arsenic from arsenopyrite bioleaching was presented through coupling the process with bio-oxidation of pyrite, resulting in lowered accumulation of hazardous and metastable Fe(III)/As-bearing secondary phases. The results could help improve current biomining operations and/or contribute to the development of novel cost-effective bioprocesses for metal extraction.


Asunto(s)
Arsenicales , Compuestos de Hierro , Hierro , Minerales , Sulfuros , Sulfuros/química , Hierro/química , Arsenicales/química , Cinética , Minerales/química , Compuestos de Hierro/química , Oxidación-Reducción , Solubilidad , Arsénico/química , Biopelículas , Acidithiobacillus/metabolismo
16.
Electron. j. biotechnol ; 52: 45-51, July. 2021. ilus, tab, graf
Artículo en Inglés | LILACS | ID: biblio-1283499

RESUMEN

BACKGROUND: Acidithiobacillus ferrooxidans is a facultative anaerobe that depends on ferrous ion oxidation as well as reduced sulfur oxidation to obtain energy and is widely applied in metallurgy, environmental protection, and soil remediation. With the accumulation of experimental data, metabolic mechanisms, kinetic models, and several databases have been established. However, scattered data are not conducive to understanding A. ferrooxidans that necessitates updated information informed by systems biology. RESULTS: Here, we constructed a knowledgebase of iron metabolism of A. ferrooxidans (KIMAf) system by integrating public databases and reviewing the literature, including the database of bioleaching substrates (DBS), the database of bioleaching metallic ion-related proteins (MIRP), the A. ferrooxidans bioinformation database (Af-info), and the database for dynamics model of bioleaching (DDMB). The DBS and MIRP incorporate common bioleaching substrates and metal ion-related proteins. Af-info and DDMB integrate nucleotide, gene, protein, and kinetic model information. Statistical analysis was performed to elucidate the distribution of isolated A. ferrooxidans strains, evolutionary and metabolic advances, and the development of bioleaching models. CONCLUSIONS: This comprehensive system provides researchers with a platform of available iron metabolism-related resources of A. ferrooxidans and facilitates its application.


Asunto(s)
Acidithiobacillus/metabolismo , Hierro/metabolismo , Cinética , Bases del Conocimiento
17.
J Environ Sci (China) ; 147: 342-358, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003052

RESUMEN

Secondary iron-sulfate minerals such as jarosite, which are easily formed in acid mine drainage, play an important role in controlling metal mobility. In this work, the typical iron-oxidizing bacterium Acidithiobacillus ferrooxidans ATCC 23270 was selected to synthesize jarosite in the presence of antimony ions, during which the solution behavior, synthetic product composition, and bacterial metabolism were studied. The results show that in the presence of Sb(V), Fe2+ was rapidly oxidized to Fe3+ by A. ferrooxidans and Sb(V) had no obvious effect on the biooxidation of Fe2+ under the current experimental conditions. The presence of Sb(III) inhibited bacterial growth and Fe2+ oxidation. For the group with Sb(III), products with amorphous phases were formed 72 hr later, which were mainly ferrous sulfate and pentavalent antimony oxide, and the amorphous precursor was finally transformed into a more stable crystal phase. For the group with Sb(V), the morphology and structure of jarosite were changed in comparison with those without Sb. The biomineralization process was accompanied by the removal of 94% Sb(V) to form jarosite containing the Fe-Sb-O complex. Comparative transcriptome analysis shows differential effects of Sb(III) and Sb(V) on bacterial metabolism. The expression levels of functional genes related to cell components were much more downregulated for the group with Sb(III) but much more regulated for that with Sb(V). Notably, cytochrome c and nitrogen fixation-relevant genes for the A.f_Fe2+_Sb(III) group were enhanced significantly, indicating their role in Sb(III) resistance. This study is of great value for the development of antimony pollution control and remediation technology.


Asunto(s)
Acidithiobacillus , Antimonio , Sulfatos , Acidithiobacillus/metabolismo , Acidithiobacillus/efectos de los fármacos , Sulfatos/metabolismo , Compuestos Férricos , Oxidación-Reducción , Minería , Hierro/metabolismo
18.
Electron. j. biotechnol ; 38: 49-57, Mar. 2019. tab, graf, ilus
Artículo en Inglés | LILACS | ID: biblio-1051388

RESUMEN

BACKGROUND: This paper presents micro- and nano-fabrication techniques for leachable realgar using the extremophilic bacterium Acidithiobacillus ferrooxidans (A. ferrooxidans) DLC-5. RESULTS: Realgar nanoparticles of size ranging from 120 nm to 200 nm were successfully prepared using the highenergy ball mill instrument. A. ferrooxidans DLC-5 was then used to bioleach the particles. The arsenic concentration in the bioleaching system was found to be increased significantly when compared with that in the sterile control. Furthermore, in the comparison with the bioleaching of raw realgar, nanoparticles could achieve the same effect with only one fifth of the consumption. CONCLUSION: Emphasis was placed on improving the dissolvability of arsenic because of the great potential of leachable realgar drug delivery in both laboratory and industrial settings


Asunto(s)
Arsénico/metabolismo , Sulfuros/metabolismo , Acidithiobacillus/metabolismo , Minería/métodos , Arsénico/química , Solubilidad , Sulfuros/química , Temperatura , Nanotecnología , Nanopartículas/química , Extremófilos
19.
Electron. j. biotechnol ; 25: 50-57, ene. 2017. tab, ilus, graf
Artículo en Inglés | LILACS | ID: biblio-1008584

RESUMEN

Background: Traditional methods of obtaining arsenic have disadvantages such as high cost and high energy consumption. Realgar is one of the most abundant arsenic sulphide minerals and usually treated as waste in industry. The aim of the present study was to screen an arsenic tolerant bacterium used for bioleaching arsenic from realgar. Results: An acidophilic iron-oxidizing bacterium BYQ-12 was isolated from Wudalianchi volcanic lake in northeast China. BYQ-12 was a motile, rod-shaped gram-negative bacterium with an optimum growth at 30°C and pH 2.5. 16S rDNA phylogeny showed that BYQ-12 was a new strain of Acidithiobacillus ferrooxidans. The inhibitory concentrations (ICs) of arsenite and arsenate were 32 and 64 mM, respectively. A significant second-order model was established using a Box­Behnken design of response surface methodology (BBD-RSM) and it estimated that a maximum arsenic bioleaching rate (73.97%) could be obtained when the pulp concentration, pH and initial ferrous ion concentration were set at optimized values of 0.95% w/v, 1.74 and 3.68 g/L, respectively. SEM, EDS and XRD analyses also revealed that there was direct bioleaching besides indirect electrochemical leaching in the arsenic bioleaching system. Conclusion: From this work we were successful in isolating an acidophilic, arsenic tolerant ferrous iron-oxidizing bacterium. The BBD-RSM analysis showed that maximum arsenic bioleaching rate obtained under optimum conditions, and the most effective factor for arsenic leaching was initial ferrous ion concentration. These revealed that BYQ-12 could be used for bioleaching of arsenic from arsenical minerals.


Asunto(s)
Arsénico/metabolismo , Arsénico/química , Acidithiobacillus/aislamiento & purificación , Oxidación-Reducción , Concentración de Iones de Hidrógeno , Hierro/metabolismo
20.
Biosci. j. (Online) ; 33(3): 721-729, may/jun. 2017. tab, graf, ilus
Artículo en Inglés | LILACS | ID: biblio-966231

RESUMEN

Precipitation of jarosite is a very important phenomenon that is observed in the bioleaching of pyrrhotite by Acidthiobacillus ferrooxidans (A. ferrooxidans). Jarosite is a major secondary mineral formed in acid supergene environment by oxidation of metal sulphide. The formation of jarosite could decrease leached percentage. The Eh-pH diagram of FeS1.12-H2O showed that the thermodynamic parameters of the jarosite were exists steadily on Eh=360 ~ 800, pH=2.8 ~ 5, and the results of pH condition test is consonant with the conclusions of thermodynamic analysis. By means of XRD and SEM, it could indicate that full propagation of A. ferrooxidans in the solution is beneficial to the formation of jarosite and jarosite mediated by bacterial has a better crystalline form than that synthesized by chemical method. This study indicates that pH value and ferrous/ferric iron concentration are key factors affecting the formation of jarosite. Leached percentage is higher when frequency was set more than 2.0. It is crucial to minimize jarosite formation in order to increase factory's efficiency.


A precipitação de jarosite é um fenômeno muito importante que é observado na biolixiviação da pirrotita por Acidithiobacillus ferrooxidans (A. ferrooxidans). A jarosita é um mineral secundário principal formado no ambiente supergênico ácido pela oxidação do sulfureto do metal. A formação de jarosite pode diminuir a porcentagem de lixiviação. O diagrama de Eh-pH de FeS1.12-H2O mostrou que os parâmetros termodinâmicos da jarosite estavam firmemente presentes em Eh = 360~800, pH = 2.8~5, e os resultados do teste de condição de pH estão em consonância com as conclusões da análise termodinâmica. Por meio de XRD e SEM, pode ser indicado que a propagação completa de A. ferrooxidans na solução é benéfica para a formação de jarosite e jarosite mediada por bactérias tem uma forma cristalina melhor do que a sintetizada por método químico. Este estudo indica que o valor do pH e a concentração de ferro ferroso/férrico são fatores chave que afetam a formação de jarosite. A porcentagem de lixiviação é maior quando a freqüência foi ajustada a mais de 2,0. É crucial para minimizar a formação de jarosite, a fim de aumentar a eficiência da fábrica.


Asunto(s)
Percolación , Acidithiobacillus , Minerales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA