Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.555
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(3): 643-654.e13, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33482082

RESUMEN

Epstein-Barr virus (EBV) is an oncogenic human herpesvirus that persists as a multicopy episome in proliferating host cells. Episome maintenance is strictly dependent on EBNA1, a sequence-specific DNA-binding protein with no known enzymatic activities. Here, we show that EBNA1 forms a cell cycle-dependent DNA crosslink with the EBV origin of plasmid replication oriP. EBNA1 tyrosine 518 (Y518) is essential for crosslinking to oriP and functionally required for episome maintenance and generation of EBV-transformed lymphoblastoid cell lines (LCLs). Mechanistically, Y518 is required for replication fork termination at oriP in vivo and for formation of SDS-resistant complexes in vitro. EBNA1-DNA crosslinking corresponds to single-strand endonuclease activity specific to DNA structures enriched at replication-termination sites, such as 4-way junctions. These findings reveal that EBNA1 forms tyrosine-dependent DNA-protein crosslinks and single-strand cleavage at oriP required for replication termination and viral episome maintenance.


Asunto(s)
Ciclo Celular , Reactivos de Enlaces Cruzados/química , ADN Viral/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Plásmidos/metabolismo , Origen de Réplica , Replicación Viral/fisiología , Secuencia de Aminoácidos , Linfocitos B/metabolismo , Línea Celular , Aductos de ADN/metabolismo , Replicación del ADN , Endonucleasas/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/química , Antígenos Nucleares del Virus de Epstein-Barr/genética , Humanos , Mutación/genética , Unión Proteica , Recombinación Genética/genética , Tirosina/metabolismo
2.
Mol Cell ; 84(20): 3868-3870, 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39423795

RESUMEN

In a recent study in Cell, Lascaux et al.1 implicate TEX264 in the autophagy-driven resolution of nuclear topoisomerase 1 cleavage complexes (TOP1cc) in lysosomes, altering current concepts on the mechanism of action for clinically relevant doses of TOP1 inhibitors.


Asunto(s)
Autofagia , Reparación del ADN , Replicación del ADN , ADN-Topoisomerasas de Tipo I , Lisosomas , Lisosomas/metabolismo , Autofagia/efectos de los fármacos , Humanos , Replicación del ADN/efectos de los fármacos , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo I/genética , Inhibidores de Topoisomerasa I/farmacología , Aductos de ADN/metabolismo , Aductos de ADN/genética , Animales
3.
Nature ; 630(8017): 744-751, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867042

RESUMEN

DNA base damage is a major source of oncogenic mutations1. Such damage can produce strand-phased mutation patterns and multiallelic variation through the process of lesion segregation2. Here we exploited these properties to reveal how strand-asymmetric processes, such as replication and transcription, shape DNA damage and repair. Despite distinct mechanisms of leading and lagging strand replication3,4, we observe identical fidelity and damage tolerance for both strands. For small alkylation adducts of DNA, our results support a model in which the same translesion polymerase is recruited on-the-fly to both replication strands, starkly contrasting the strand asymmetric tolerance of bulky UV-induced adducts5. The accumulation of multiple distinct mutations at the site of persistent lesions provides the means to quantify the relative efficiency of repair processes genome wide and at single-base resolution. At multiple scales, we show DNA damage-induced mutations are largely shaped by the influence of DNA accessibility on repair efficiency, rather than gradients of DNA damage. Finally, we reveal specific genomic conditions that can actively drive oncogenic mutagenesis by corrupting the fidelity of nucleotide excision repair. These results provide insight into how strand-asymmetric mechanisms underlie the formation, tolerance and repair of DNA damage, thereby shaping cancer genome evolution.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN Polimerasa Dirigida por ADN , ADN , Mutagénesis , Mutación , Animales , Humanos , Ratones , Alquilación/efectos de la radiación , Línea Celular , ADN/química , ADN/genética , ADN/metabolismo , ADN/efectos de la radiación , Aductos de ADN/química , Aductos de ADN/genética , Aductos de ADN/metabolismo , Aductos de ADN/efectos de la radiación , Daño del ADN/genética , Daño del ADN/efectos de la radiación , Reparación del ADN/genética , Reparación del ADN/fisiología , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Mutagénesis/genética , Mutagénesis/efectos de la radiación , Mutación/genética , Mutación/efectos de la radiación , Neoplasias/genética , Transcripción Genética , Rayos Ultravioleta/efectos adversos
4.
Nat Rev Mol Cell Biol ; 18(9): 563-573, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28655905

RESUMEN

Covalent DNA-protein crosslinks (DPCs, also known as protein adducts) of topoisomerases and other proteins with DNA are highly toxic DNA lesions. Of note, chemical agents that induce DPCs include widely used classes of chemotherapeutics. Their bulkiness blocks virtually every chromatin-based process and makes them intractable for repair by canonical repair pathways. Distinct DPC repair pathways employ unique points of attack and are crucial for the maintenance of genome stability. Tyrosyl-DNA phosphodiesterases (TDPs) directly hydrolyse the covalent linkage between protein and DNA. The MRE11-RAD50-NBS1 (MRN) nuclease complex targets the DNA component of DPCs, excising the fragment affected by the lesion, whereas proteases of the spartan (SPRTN)/weak suppressor of SMT3 protein 1 (Wss1) family target the protein component. Loss of these pathways renders cells sensitive to DPC-inducing chemotherapeutics, and DPC repair pathways are thus attractive targets for combination cancer therapy.


Asunto(s)
Aductos de ADN/toxicidad , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Animales , Antineoplásicos/efectos adversos , Aductos de ADN/metabolismo , Inestabilidad Genómica , Humanos , Neoplasias/tratamiento farmacológico
5.
Cell ; 159(2): 346-57, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25303529

RESUMEN

DNA-protein crosslinks (DPCs) are caused by environmental, endogenous, and chemotherapeutic agents and pose a severe threat to genome stability. We use Xenopus egg extracts to recapitulate DPC repair in vitro and show that this process is coupled to DNA replication. A DPC on the leading strand template arrests the replisome by stalling the CMG helicase. The DPC is then degraded on DNA, yielding a peptide-DNA adduct that is bypassed by CMG. The leading strand subsequently resumes synthesis, stalls again at the adduct, and then progresses past the adduct using DNA polymerase ζ. A DPC on the lagging strand template only transiently stalls the replisome, but it too is degraded, allowing Okazaki fragment bypass. Our experiments describe a versatile, proteolysis-based mechanism of S phase DPC repair that avoids replication fork collapse.


Asunto(s)
Aductos de ADN/metabolismo , Reparación del ADN , Replicación del ADN , Animales , Extractos Celulares/química , ADN Polimerasa Dirigida por ADN/metabolismo , Inestabilidad Genómica , Óvulo/química , Xenopus
6.
Nat Rev Mol Cell Biol ; 16(8): 455-60, 2015 08.
Artículo en Inglés | MEDLINE | ID: mdl-26130008

RESUMEN

DNA-protein crosslinks (DPCs) are highly toxic DNA adducts, but whether dedicated DPC-repair mechanisms exist was until recently unknown. This has changed with discoveries made in yeast and Xenopus laevis that revealed a protease-based DNA-repair pathway specific for DPCs. Importantly, mutations in the gene encoding the putative human homologue of a yeast DPC protease cause a human premature ageing and cancer predisposition syndrome. Thus, DPC repair is a previously overlooked genome-maintenance mechanism that may be essential for tumour suppression.


Asunto(s)
Aductos de ADN/genética , Reparación del ADN , Animales , Aductos de ADN/metabolismo , Inestabilidad Genómica , Humanos , Péptido Hidrolasas/fisiología
7.
Nature ; 596(7873): 597-602, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34408320

RESUMEN

ADP-ribosyltransferases use NAD+ to catalyse substrate ADP-ribosylation1, and thereby regulate cellular pathways or contribute to toxin-mediated pathogenicity of bacteria2-4. Reversible ADP-ribosylation has traditionally been considered a protein-specific modification5, but recent in vitro studies have suggested nucleic acids as targets6-9. Here we present evidence that specific, reversible ADP-ribosylation of DNA on thymidine bases occurs in cellulo through the DarT-DarG toxin-antitoxin system, which is found in a variety of bacteria (including global pathogens such as Mycobacterium tuberculosis, enteropathogenic Escherichia coli and Pseudomonas aeruginosa)10. We report the structure of DarT, which identifies this protein as a diverged member of the PARP family. We provide a set of high-resolution structures of this enzyme in ligand-free and pre- and post-reaction states, which reveals a specialized mechanism of catalysis that includes a key active-site arginine that extends the canonical ADP-ribosyltransferase toolkit. Comparison with PARP-HPF1, a well-established DNA repair protein ADP-ribosylation complex, offers insights into how the DarT class of ADP-ribosyltransferases evolved into specific DNA-modifying enzymes. Together, our structural and mechanistic data provide details of this PARP family member and contribute to a fundamental understanding of the ADP-ribosylation of nucleic acids. We also show that thymine-linked ADP-ribose DNA adducts reversed by DarG antitoxin (functioning as a noncanonical DNA repair factor) are used not only for targeted DNA damage to induce toxicity, but also as a signalling strategy for cellular processes. Using M. tuberculosis as an exemplar, we show that DarT-DarG regulates growth by ADP-ribosylation of DNA at the origin of chromosome replication.


Asunto(s)
ADP-Ribosilación , Proteínas Bacterianas/metabolismo , ADN/química , ADN/metabolismo , Timina/química , Timina/metabolismo , Adenosina Difosfato Ribosa/metabolismo , Antitoxinas , Proteínas Bacterianas/química , Toxinas Bacterianas , Secuencia de Bases , Biocatálisis , ADN/genética , Aductos de ADN/química , Aductos de ADN/metabolismo , Daño del ADN , Reparación del ADN , Elementos Transponibles de ADN/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Modelos Moleculares , Mycobacterium/enzimología , Mycobacterium/genética , Nitrógeno/química , Nitrógeno/metabolismo , Poli(ADP-Ribosa) Polimerasas/química , Origen de Réplica/genética , Especificidad por Sustrato , Thermus/enzimología , Timidina/química , Timidina/metabolismo
8.
Proc Natl Acad Sci U S A ; 121(37): e2322155121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39226345

RESUMEN

Utilizing molecular dynamics and free energy perturbation, we examine the relative binding affinity of several covalent polycyclic aromatic hydrocarbon - DNA (PAH-DNA) adducts at the central adenine of NRAS codon-61, a mutational hotspot implicated in cancer risk. Several PAHs classified by the International Agency for Research on Cancer as probable, possible, or unclassifiable as to carcinogenicity are found to have greater binding affinity than the known carcinogen, benzo[a]pyrene (B[a]P). van der Waals interactions between the intercalated PAH and neighboring nucleobases, and minimal disruption of the DNA duplex drive increases in binding affinity. PAH-DNA adducts may be repaired by global genomic nucleotide excision repair (GG-NER), hence we also compute relative free energies of complexation of PAH-DNA adducts with RAD4-RAD23 (the yeast ortholog of human XPC-RAD23) which constitutes the recognition step in GG-NER. PAH-DNA adducts exhibiting the greatest DNA binding affinity also exhibit the least RAD4-RAD23 complexation affinity and are thus predicted to resist the GG-NER machinery, contributing to their genotoxic potential. In particular, the fjord region PAHs dibenzo[a,l]pyrene, benzo[g]chrysene, and benzo[c]phenanthrene are found to have greater binding affinity while having weaker RAD4-RAD23 complexation affinity than their respective bay region analogs B[a]P, chrysene, and phenanthrene. We also find that the bay region PAHs dibenzo[a,j]anthracene, dibenzo[a,c]anthracene, and dibenzo[a,h]anthracene exhibit greater binding affinity and weaker RAD4-RAD23 complexation affinity than B[a]P. Thus, the study of PAH genotoxicity likely needs to be substantially broadened, with implications for public policy and the health sciences. This approach can be broadly applied to assess factors contributing to the genotoxicity of other unclassified compounds.


Asunto(s)
Aductos de ADN , Hidrocarburos Policíclicos Aromáticos , Hidrocarburos Policíclicos Aromáticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/química , Hidrocarburos Policíclicos Aromáticos/metabolismo , Aductos de ADN/química , Aductos de ADN/metabolismo , Aductos de ADN/genética , Humanos , Reparación del ADN , Mutágenos/toxicidad , Mutágenos/química , Simulación de Dinámica Molecular , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Termodinámica , Benzo(a)pireno/toxicidad , Benzo(a)pireno/química , Benzo(a)pireno/metabolismo , ADN/química , ADN/metabolismo , Benzopirenos/toxicidad , Benzopirenos/química , Benzopirenos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/química
9.
Genes Dev ; 33(5-6): 282-287, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30808656

RESUMEN

Here we show that translesion synthesis (TLS) opposite 1,N6-ethenodeoxyadenosine (εdA), which disrupts Watson-Crick base pairing, occurs via Polι/Polζ-, Rev1-, and Polθ-dependent pathways. The requirement of Polι/Polζ is consistent with the ability of Polι to incorporate nucleotide opposite εdA by Hoogsteen base pairing and of Polζ to extend synthesis. Rev1 polymerase and Polθ conduct TLS opposite εdA via alternative error-prone pathways. Strikingly, in contrast to extremely error-prone TLS opposite εdA by purified Polθ, it performs predominantly error-free TLS in human cells. Reconfiguration of the active site opposite εdA would provide Polθ the proficiency for error-free TLS in human cells.


Asunto(s)
Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Desoxiadenosinas/metabolismo , Dominio Catalítico , Aductos de ADN/metabolismo , Humanos , ADN Polimerasa theta
10.
Nucleic Acids Res ; 52(16): 9654-9670, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39077933

RESUMEN

DNA-protein crosslinks (DPCs) challenge faithful DNA replication and smooth passage of genomic information. Our study unveils the cullin E3 ubiquitin ligase Rtt101 as a DPC repair factor. Genetic analyses demonstrate that Rtt101 is essential for resistance to a wide range of DPC types including topoisomerase 1 crosslinks, in the same pathway as the ubiquitin-dependent aspartic protease Ddi1. Using an in vivo inducible Top1-mimicking DPC system, we reveal the significant impact of Rtt101 ubiquitination on DPC removal across different cell cycle phases. High-throughput methods coupled with next-generation sequencing specifically highlight the association of Rtt101 with replisomes as well as colocalization with DPCs. Our findings establish Rtt101 as a main contributor to DPC repair throughout the yeast cell cycle.


Asunto(s)
Ciclo Celular , Proteínas Cullin , Reparación del ADN , Proteínas de Saccharomyces cerevisiae , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ciclo Celular/genética , Saccharomyces cerevisiae , Aductos de ADN/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , Transporte de Proteínas/genética , Ubiquitinación/genética , Replicación del ADN/genética , Complejos Multienzimáticos/metabolismo
11.
J Biol Chem ; 300(7): 107358, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38782206

RESUMEN

Aristolochic acids I and II (AA-I/II) are carcinogenic principles of Aristolochia plants, which have been employed in traditional medicinal practices and discovered as food contaminants. While the deleterious effects of AAs are broadly acknowledged, there is a dearth of information to define the mechanisms underlying their carcinogenicity. Following bioactivation in the liver, N-hydroxyaristolactam and N-sulfonyloxyaristolactam metabolites are transported via circulation and elicit carcinogenic effects by reacting with cellular DNA. In this study, we apply DNA adduct analysis, X-ray crystallography, isothermal titration calorimetry, and fluorescence quenching to investigate the role of human serum albumin (HSA) in modulating AA carcinogenicity. We find that HSA extends the half-life and reactivity of N-sulfonyloxyaristolactam-I with DNA, thereby protecting activated AAs from heterolysis. Applying novel pooled plasma HSA crystallization methods, we report high-resolution structures of myristic acid-enriched HSA (HSAMYR) and its AA complexes (HSAMYR/AA-I and HSAMYR/AA-II) at 1.9 Å resolution. While AA-I is located within HSA subdomain IB, AA-II occupies subdomains IIA and IB. ITC binding profiles reveal two distinct AA sites in both complexes with association constants of 1.5 and 0.5 · 106 M-1 for HSA/AA-I versus 8.4 and 9.0 · 105 M-1 for HSA/AA-II. Fluorescence quenching of the HSA Trp214 suggests variable impacts of fatty acids on ligand binding affinities. Collectively, our structural and thermodynamic characterizations yield significant insights into AA binding, transport, toxicity, and potential allostery, critical determinants for elucidating the mechanistic roles of HSA in modulating AA carcinogenicity.


Asunto(s)
Ácidos Aristolóquicos , Albúmina Sérica Humana , Ácidos Aristolóquicos/metabolismo , Ácidos Aristolóquicos/química , Humanos , Cristalografía por Rayos X , Albúmina Sérica Humana/metabolismo , Albúmina Sérica Humana/química , Aductos de ADN/metabolismo , Aductos de ADN/química , Unión Proteica , Ácido Mirístico/metabolismo , Ácido Mirístico/química
12.
Mol Cell ; 67(5): 891-898.e4, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28867292

RESUMEN

DNA double-strand break (DSB) repair is essential for maintaining our genomes. Mre11-Rad50-Nbs1 (MRN) and Ku70-Ku80 (Ku) direct distinct DSB repair pathways, but the interplay between these complexes at a DSB remains unclear. Here, we use high-throughput single-molecule microscopy to show that MRN searches for free DNA ends by one-dimensional facilitated diffusion, even on nucleosome-coated DNA. Rad50 binds homoduplex DNA and promotes facilitated diffusion, whereas Mre11 is required for DNA end recognition and nuclease activities. MRN gains access to occluded DNA ends by removing Ku or other DNA adducts via an Mre11-dependent nucleolytic reaction. Next, MRN loads exonuclease 1 (Exo1) onto the free DNA ends to initiate DNA resection. In the presence of replication protein A (RPA), MRN acts as a processivity factor for Exo1, retaining the exonuclease on DNA for long-range resection. Our results provide a mechanism for how MRN promotes homologous recombination on nucleosome-coated DNA.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Nucleosomas/enzimología , Reparación del ADN por Recombinación , Imagen Individual de Molécula , Ácido Anhídrido Hidrolasas , Proteínas de Ciclo Celular/genética , Aductos de ADN/genética , Aductos de ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Difusión , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Humanos , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Proteína Homóloga de MRE11 , Microscopía Fluorescente , Proteínas Nucleares/genética , Nucleosomas/genética , Factores de Tiempo
13.
Nucleic Acids Res ; 51(20): 10846-10866, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37850658

RESUMEN

Apurinic/apyrimidinic (AP) sites, 5-formyluracil (fU) and 5-formylcytosine (fC) are abundant DNA modifications that share aldehyde-type reactivity. Here, we demonstrate that polyamines featuring at least one secondary 1,2-diamine fragment in combination with aromatic units form covalent DNA adducts upon reaction with AP sites (with concomitant cleavage of the AP strand), fU and, to a lesser extent, fC residues. Using small-molecule mimics of AP site and fU, we show that reaction of secondary 1,2-diamines with AP sites leads to the formation of unprecedented 3'-tetrahydrofuro[2,3,4-ef]-1,4-diazepane ('ribodiazepane') scaffold, whereas the reaction with fU produces cationic 2,3-dihydro-1,4-diazepinium adducts via uracil ring opening. The reactivity of polyamines towards AP sites versus fU and fC can be tuned by modulating their chemical structure and pH of the reaction medium, enabling up to 20-fold chemoselectivity for AP sites with respect to fU and fC. This reaction is efficient in near-physiological conditions at low-micromolar concentration of polyamines and tolerant to the presence of a large excess of unmodified DNA. Remarkably, 3'-ribodiazepane adducts are chemically stable and resistant to the action of apurinic/apyrimidinic endonuclease 1 (APE1) and tyrosyl-DNA phosphoesterase 1 (TDP1), two DNA repair enzymes known to cleanse a variety of 3' end-blocking DNA lesions.


Asunto(s)
Aductos de ADN , Poliaminas , ADN/química , Aductos de ADN/química , Aductos de ADN/metabolismo , Daño del ADN , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Conformación de Ácido Nucleico , Poliaminas/química , Poliaminas/metabolismo
14.
IUBMB Life ; 76(11): 987-996, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38963041

RESUMEN

DNA-protein crosslinks (DPC) are common DNA lesions induced by various external and endogenous agents. One of the sources of DPC is the apurinic/apyrimidinic site (AP site) and proteins interacting with it. Some proteins possessing AP lyase activity form covalent complexes with AP site-containing DNA without borohydride reduction (suicidal crosslinks). We have shown earlier that tyrosyl-DNA phosphodiesterase 1 (TDP1) but not AP endonuclease 1 (APE1) is able to remove intact OGG1 from protein-DNA adducts, whereas APE1 is able to prevent the formation of DPC by hydrolyzing the AP site. Here we demonstrate that TDP1 can remove intact PARP2 but not XRCC1 from covalent enzyme-DNA adducts with AP-DNA formed in the absence of APE1. We also analyzed an impact of APE1 and TDP1 on the efficiency of DPC formation in APE1-/- or TDP1-/- cell extracts. Our data revealed that APE1 depletion leads to increased levels of PARP1-DNA crosslinks, whereas TDP1 deficiency has little effect on DPC formation.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa , Hidrolasas Diéster Fosfóricas , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Humanos , ADN/metabolismo , ADN/genética , Animales , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética , Extractos Celulares/química , Reparación del ADN , Ratones , Aductos de ADN/metabolismo , Aductos de ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Daño del ADN , Poli(ADP-Ribosa) Polimerasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética
15.
Chem Res Toxicol ; 37(8): 1374-1381, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39155646

RESUMEN

Acrolein is an environmental toxicant and is also generated by microbial metabolism in the intestinal tract. Aqueous acrolein rapidly dissipates from standard human cell culture media with nondetectable levels after 8 h, hindering cell-based studies to understand its biological impacts. Thus, we developed an extracellular acrolein biosynthesis system to continuously produce acrolein compatible with human cell culture conditions. The approach uses spermine as a precursor, amine oxidase found in fetal calf serum, and catalase to remove the hydrogen peroxide byproduct. We confirmed amine oxidase activity of calf serum using a colorimetric assay and further tested the requirement for catalase in the system to mitigate hydrogen peroxide-induced cytotoxicity. We calibrated responses of human colon cells to this enzymatic acrolein production system by comparing transcriptional responses, DNA adduct formation and cytotoxicity responses to either this system or pure acrolein exposures in a human colon cell line. Several genes related to oxidative stress including HMOX1, and the colorectal cancer-related gene SEMA4A were upregulated similarly between the enzymatic acrolein production system or pure acrolein. The acrolein-DNA adduct γ-OH-Acr-dG increased in a dose-dependent manner with spermine in the enzymatic acrolein production system, producing a maximum of 1065 adducts per 108 nucleosides when 400 µM spermine was used. This biosynthetic production method provides a relevant model for controlled acrolein exposure in cultured human cells and overcomes current limitations due to its physical properties and limited availability.


Asunto(s)
Acroleína , Humanos , Acroleína/metabolismo , Peróxido de Hidrógeno/metabolismo , Aductos de ADN/metabolismo , Catalasa/metabolismo , Supervivencia Celular/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Espermina/metabolismo
16.
J Org Chem ; 89(11): 7680-7691, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38739842

RESUMEN

Safrole is a natural product present in many plants and plant products, including spices and essential oils. During cellular metabolism, it converts to a highly reactive trans-isosafrole (SF) intermediate that reacts with genomic DNA and forms N2-SF-dG and N6-SF-dA DNA adducts, which are detected in the oral tissue of cancer patients with betel quid chewing history. To study the SF-induced carcinogenesis and to probe the role of low fidelity translesion synthesis (TLS) polymerases in bypassing SF adducts, herein, we report the synthesis of N2-SF-dG modified DNAs using phosphoramidite chemistry. The N2-SF-dG modification in the duplex DNA does not affect the thermal stability and retains the B-form of helical conformation, indicating that this adduct may escape the radar of common DNA repair mechanisms. Primer extension studies showed that the N2-SF-dG adduct is bypassed by human TLS polymerases hpolκ and hpolη, which perform error-free replication across this adduct. Furthermore, molecular modeling and dynamics studies revealed that the adduct reorients to pair with the incoming nucleotide, thus allowing the effective bypass. Overall, the results indicate that hpolκ and hpolη do not distinguish the N2-SF-dG adduct, suggesting that they may not be involved in the safrole-induced carcinogenicity.


Asunto(s)
Aductos de ADN , ADN Polimerasa Dirigida por ADN , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , Humanos , Aductos de ADN/química , Aductos de ADN/metabolismo , Aductos de ADN/síntesis química , Safrol/química , Safrol/análogos & derivados , ADN/química , ADN/metabolismo , Estructura Molecular
17.
Mol Cell ; 64(3): 593-606, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27814491

RESUMEN

The human Mre11/Rad50/Nbs1 (hMRN) complex is critical for the sensing, processing, and signaling of DNA double-strand breaks. The nuclease activity of Mre11 is essential for mammalian development and cell viability, although the regulation and substrate specificity of Mre11 have been difficult to define. Here we show that hMRN catalyzes sequential endonucleolytic and exonucleolytic activities on both 5' and 3' strands of DNA ends containing protein adducts, and that Nbs1, ATP, and adducts are essential for this function. In contrast, Nbs1 inhibits Mre11/Rad50-catalyzed 3'-to-5' exonucleolytic degradation of clean DNA ends. The hMRN endonucleolytic cleavage events are further stimulated by the phosphorylated form of the human C-terminal binding protein-interacting protein (CtIP) DNA repair enzyme, establishing a role for CtIP in regulating hMRN activity. These results illuminate the important role of Nbs1 and CtIP in determining the substrates and consequences of human Mre11/Rad50 nuclease activities on protein-DNA lesions.


Asunto(s)
Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Aductos de ADN/genética , Enzimas Reparadoras del ADN/genética , Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas Nucleares/genética , Ácido Anhídrido Hidrolasas , Animales , Baculoviridae/genética , Baculoviridae/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Aductos de ADN/metabolismo , Roturas del ADN de Doble Cadena , División del ADN , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas , Expresión Génica , Regulación de la Expresión Génica , Humanos , Proteína Homóloga de MRE11 , Mutación , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Transducción de Señal , Spodoptera , Especificidad por Sustrato
18.
World J Microbiol Biotechnol ; 40(6): 180, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38668960

RESUMEN

DNA adduction in the model yeast Saccharomyces cerevisiae was investigated after exposure to the fungicide penconazole and the reference genotoxic compound benzo(a)pyrene, for validating yeasts as a tool for molecular toxicity studies, particularly of environmental pollution. The effect of the toxicants on the yeast's growth kinetics was determined as an indicator of cytotoxicity. Fermentative cultures of S. cerevisiae were exposed to 2 ppm of Penconazole during different phases of growth; while 0.2 and 2 ppm of benzo(a)pyrene were applied to the culture medium before inoculation and on exponential cultures. Exponential respiratory cultures were also exposed to 0.2 ppm of B(a)P for comparison of both metabolisms. Penconazole induced DNA adducts formation in the exponential phase test; DNA adducts showed a peak of 54.93 adducts/109 nucleotides. Benzo(a)pyrene induced the formation of DNA adducts in all the tests carried out; the highest amount of 46.7 adducts/109 nucleotides was obtained in the fermentative cultures after the exponential phase exposure to 0.2 ppm; whereas in the respiratory cultures, 14.6 adducts/109 nucleotides were detected. No cytotoxicity was obtained in any experiment. Our study showed that yeast could be used to analyse DNA adducts as biomarkers of exposure to environmental toxicants.


Asunto(s)
Benzo(a)pireno , Aductos de ADN , Contaminantes Ambientales , Saccharomyces cerevisiae , Aductos de ADN/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Benzo(a)pireno/toxicidad , Benzo(a)pireno/metabolismo , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/metabolismo , Mutágenos/toxicidad , Mutágenos/metabolismo , ADN de Hongos/genética , Fungicidas Industriales/toxicidad , Fungicidas Industriales/metabolismo
19.
Postepy Biochem ; 70(1): 52-56, 2024 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-39016235

RESUMEN

Environmental carcinogens exert their carcinogenic effects by forming DNA adducts. This type of DNA damage can also be formed endogenously as a result of, e.g., oxidative damage. Unrepaired  DNA adducts may induce mutations in critical genes, leading to the initiation of chemical carcinogenesis. Therefore,  detection, identification, and quantification of DNA adducts is essential for cancer risk assessment. Over the last 50 years, the major DNA adducts formed by different classes of environmental carcinogens were characterized. With the development of techniques such as 32P-postlabeling, their measurement was implemented into molecular epidemiology. Advances in liquid chromatography-tandem mass spectrometry (LC-MS ) made the measurement of adducts more precise  and allowed to gain knowledge about their identity and structures. Therefore,  opened the way to  DNA adductomics, the  "omics" approach investigating DNA adducts comprehensively, similarly to proteomics. This review presents the historical perspective of DNA adducts research and the emerging field of adductomics.


Asunto(s)
Aductos de ADN , Epidemiología Molecular , Neoplasias , Aductos de ADN/análisis , Aductos de ADN/metabolismo , Humanos , Neoplasias/epidemiología , Neoplasias/genética , Neoplasias/metabolismo , Epidemiología Molecular/métodos , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos , Carcinógenos Ambientales/toxicidad
20.
Nature ; 551(7680): 389-393, 2017 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-29144457

RESUMEN

DNA repair is essential to prevent the cytotoxic or mutagenic effects of various types of DNA lesions, which are sensed by distinct pathways to recruit repair factors specific to the damage type. Although biochemical mechanisms for repairing several forms of genomic insults are well understood, the upstream signalling pathways that trigger repair are established for only certain types of damage, such as double-stranded breaks and interstrand crosslinks. Understanding the upstream signalling events that mediate recognition and repair of DNA alkylation damage is particularly important, since alkylation chemotherapy is one of the most widely used systemic modalities for cancer treatment and because environmental chemicals may trigger DNA alkylation. Here we demonstrate that human cells have a previously unrecognized signalling mechanism for sensing damage induced by alkylation. We find that the alkylation repair complex ASCC (activating signal cointegrator complex) relocalizes to distinct nuclear foci specifically upon exposure of cells to alkylating agents. These foci associate with alkylated nucleotides, and coincide spatially with elongating RNA polymerase II and splicing components. Proper recruitment of the repair complex requires recognition of K63-linked polyubiquitin by the CUE (coupling of ubiquitin conjugation to ER degradation) domain of the subunit ASCC2. Loss of this subunit impedes alkylation adduct repair kinetics and increases sensitivity to alkylating agents, but not other forms of DNA damage. We identify RING finger protein 113A (RNF113A) as the E3 ligase responsible for upstream ubiquitin signalling in the ASCC pathway. Cells from patients with X-linked trichothiodystrophy, which harbour a mutation in RNF113A, are defective in ASCC foci formation and are hypersensitive to alkylating agents. Together, our work reveals a previously unrecognized ubiquitin-dependent pathway induced specifically to repair alkylation damage, shedding light on the molecular mechanism of X-linked trichothiodystrophy.


Asunto(s)
Enzimas AlkB/metabolismo , Aductos de ADN/metabolismo , Reparación del ADN , Complejos Multiproteicos/metabolismo , Transducción de Señal , Síndromes de Tricotiodistrofia/genética , Ubiquitina/metabolismo , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/metabolismo , Alquilantes/farmacología , Alquilación , Secuencia de Aminoácidos , Aductos de ADN/química , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Retículo Endoplásmico/metabolismo , Genes Ligados a X , Humanos , Cinética , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Poliubiquitina/metabolismo , ARN Polimerasa II/metabolismo , Empalme del ARN , Síndromes de Tricotiodistrofia/metabolismo , Síndromes de Tricotiodistrofia/patología , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA