Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(7): 3886-3895, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38324471

RESUMEN

The eukaryotic epigenetic modifications 5-methyldeoxycytosine (5mC) and N6-methyldeoxyadenine (6mA) have indispensable regulatory roles in gene expression and embryonic development. We recently identified an atypical bifunctional dioxygenase CcTet from Coprinopsis cinerea that works on both 5mC and 6mA demethylation. The nonconserved residues Gly331 and Asp337 of CcTet facilitate 6mA accommodation, while D337F unexpectedly abolishes 5mC oxidation activity without interfering 6mA demethylation, indicating a prominent distinct but unclear 5mC oxidation mechanism to the conventional Tet enzymes. Here, we assessed the molecular mechanism of CcTet in catalyzing 5mC oxidation by representing the crystal structure of CcTet-5mC-dsDNA complex. We identified the distinct mechanism by which CcTet recognizes 5mC-dsDNA compared to 6mA-dsDNA substrate. Moreover, Asp337 was found to have a central role in compensating for the loss of a critical 5mC-stablizing H-bond observed in conventional Tet enzymes, and stabilizes 5mC and subsequent intermediates through an H-bond with the N4 atom of the substrates. These findings improve our understanding of Tet enzyme functions in the dsDNA 5mC and 6mA demethylation pathways, and provide useful information for future discovery of small molecular probes targeting Tet enzymes in DNA active demethylation processes.


Asunto(s)
Agaricales , Dioxigenasas , 5-Metilcitosina/metabolismo , Cristalografía por Rayos X , Dioxigenasas/química , Dioxigenasas/genética , Dioxigenasas/metabolismo , Desmetilación del ADN , Metilación de ADN , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Enlace de Hidrógeno , Modelos Moleculares , Oxidación-Reducción , Especificidad por Sustrato , Adenosina/análogos & derivados , Agaricales/enzimología
2.
Biochemistry ; 63(16): 2063-2074, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39110954

RESUMEN

Melanin biosynthesis in different organisms is performed by a tyrosinase action. Excessive enzyme activity and pigment accumulation result in different diseases and disorders including skin cancers, blemishes, and darkening. In fruits and vegetables, it causes unwanted browning of these products and reduces their appearance quality and economic value. Inhibiting enzyme activity and finding novel powerful and safe inhibitors are highly important in agriculture, food, medical, and pharmaceutical industries. In this regard, in the present study, some novel synthetic pyridine-based compounds including 2,6-bis (tosyloxymethyl) pyridine (compound 3), 2,6-bis (butylthiomethyl) pyridine (compound 4), and 2,6-bis (phenylthiomethyl) pyridine (compound 5) were synthesized for the first time, and their inhibitory potencies were assessed on mushroom tyrosinase diphenolase activity. The results showed that while all tested compounds significantly decreased the enzyme activity, compounds 4 and 5 had the highest inhibitory effects (respectively, 80 and 89% inhibition with the IC50 values of 17.0 and 9.0 µmol L-1), and the inhibition mechanism was mixed-type for both compounds. Ligand-binding studies were carried out by fluorescence quenching and molecular docking methods to investigate the enzyme-compound interactions. Fluorescence quenching results revealed that the compounds can form nonfluorescent complexes with the enzyme and result in quenching of its intrinsic emission by the static process. Molecular docking analyses predicted the binding positions and the amino acid residues involved in the interactions. These compounds appear to be suitable candidates for more studies on tyrosinase inhibition.


Asunto(s)
Agaricales , Inhibidores Enzimáticos , Simulación del Acoplamiento Molecular , Monofenol Monooxigenasa , Piridinas , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/química , Monofenol Monooxigenasa/metabolismo , Agaricales/enzimología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Piridinas/química , Piridinas/farmacología , Espectrometría de Fluorescencia , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo
3.
Fungal Genet Biol ; 173: 103911, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960372

RESUMEN

Coprinopsis cinerea, a model fungus, is utilized for investigating the developmental mechanisms of basidiomycetes. The development of basidiomycetes is a highly organized process that requires coordination among genetic, environmental, and physiological factors. Oxylipins, a class of widely distributed signaling molecules, play crucial roles in fungal biology. Among oxylipins, the sexual pheromone-inducing factors (psi factors) have been identified as key regulators of the balance between asexual and sexual spore development in Ascomycetes. Linoleate dioxygenases are enzymes involved in the biosynthesis of psi factors, yet their specific physiological functions in basidiomycete development remain unclear. In this study, linoleate dioxygenases in basidiomycetes were identified and characterized. Phylogenetic analysis revealed that linoleate dioxygenases from Basidiomycota formed a distinct clade, with linoleate dioxygenases from Agaricomycetes segregating into three groups and those from Ustilaginomycetes forming a separate group. Both basidiomycete and ascomycete linoleate dioxygenases shared two characteristic domains: the N-terminal of linoleate dioxygenase domain and the C-terminal of cytochrome P450 domain. While the linoleate dioxygenase domains exhibited similarity between basidiomycetes and ascomycetes, the cytochrome P450 domains displayed high diversity in key sites. Furthermore, the gene encoding the linoleate dioxygenase Ccldo1 in C. cinerea was knocked out, resulting in a significant increase in fruiting body formation without affecting asexual conidia production. This observation suggests that secondary metabolites synthesized by CcLdo1 negatively regulate the sexual reproduction process in C. cinerea while not influencing the asexual reproductive process. This study represents the first identification of a gene involved in secondary metabolite synthesis that regulates basidiocarp development in a basidiomycete.


Asunto(s)
Basidiomycota , Cuerpos Fructíferos de los Hongos , Proteínas Fúngicas , Filogenia , Cuerpos Fructíferos de los Hongos/genética , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Cuerpos Fructíferos de los Hongos/enzimología , Basidiomycota/genética , Basidiomycota/enzimología , Basidiomycota/crecimiento & desarrollo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Agaricales/genética , Agaricales/enzimología , Agaricales/crecimiento & desarrollo , Agaricales/metabolismo , Regulación Fúngica de la Expresión Génica , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/genética , Esporas Fúngicas/enzimología
4.
Chembiochem ; 25(14): e202400050, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38386893

RESUMEN

"Mushroom tyrosinase" from the common button mushroom is the most frequently used source of tyrosinase activity, both for basic and applied research. Here, the complete tyrosinase family from Agaricus bisporus var. bisporus (abPPO1-6) was cloned from mRNA and expressed heterologously using a single protocol. All six isoenzymes accept a wide range of phenolic and catecholic substrates, but display pronounced differences in their specificity and enzymatic reaction rate. AbPPO3 ignores γ-l-glutaminyl-4-hydroxybenzene (GHB), a natural phenol present in mM concentrations in A. bisporus, while AbPPO4 processes 100 µM GHB at 4-times the rate of the catechol l-DOPA. All six AbPPOs are biochemically distinct enzymes fit for different roles in the fungal life cycle, which challenges the traditional concept of isoenzymes as catalyzing the same physiological reaction and varying only in secondary properties. Transferring this approach to other enzymes and organisms will greatly stimulate both the study of the in vivo function(s) of enzymes and the application of these highly efficient catalysts.


Asunto(s)
Agaricus , Isoenzimas , Monofenol Monooxigenasa , Monofenol Monooxigenasa/metabolismo , Monofenol Monooxigenasa/química , Monofenol Monooxigenasa/genética , Isoenzimas/metabolismo , Isoenzimas/química , Isoenzimas/genética , Agaricus/enzimología , Especificidad por Sustrato , Biocatálisis , Agaricales/enzimología , Cinética
5.
Protein Expr Purif ; 219: 106474, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38518927

RESUMEN

The polyphenol oxidase (PPO) enzyme, which causes enzymatic browning, has been repeatedly purified from fruit and vegetables by affinity chromatography. In the present research, Sepharose 4B-l-tyrosine-4-amino-2-methylbenzoic acid, a novel affinity gel for the purification of the PPO enzyme with high efficiency, was synthesized. Additionally, Sepharose 4B-l-tyrosine-p-aminobenzoic acid affinity gel, known in the literature, was also synthesized, and 9.02, 16.57, and 28.13 purification folds were obtained for the PPO enzymes of potato, mushroom, and eggplant by the reference gel. The PPO enzymes of potato, mushroom, and eggplant were purified 41.17, 64.47, and 56.78-fold from the new 4-amino-2-methylbenzoic acid gel. Following their isolation from the new affinity column, the assessment of PPO enzyme purity involved the utilization of SDS-PAGE. According to the results from SDS-PAGE and native PAGE, the molecular weight of each enzyme was 50 kDa. Then, the inhibition effects of naringin, morin hydrate, esculin hydrate, homovanillic acid, vanillic acid, phloridzin dihydrate, and p-coumaric acid phenolic compounds on purified potato, mushroom, and eggplant PPO enzyme were investigated. Among the tested phenolic compounds, morin hydrate was determined to be the most potent inhibitor on the potato (Ki: 0.07 ± 0.03 µM), mushroom (Ki: 0.7 ± 0.3 µM), and eggplant (Ki: 4.8 ± 1.2 µM) PPO enzymes. The studies found that the weakest inhibitor was homovanillic acid for the potato (Ki: 1112 ± 324 µM), mushroom (Ki: 567 ± 81 µM), and eggplant (Ki: 2016.7 ± 805.6 µM) PPO enzymes. Kinetic assays indicated that morin hydrate was a remarkable inhibitor on PPO.


Asunto(s)
Catecol Oxidasa , Cromatografía de Afinidad , Catecol Oxidasa/química , Catecol Oxidasa/aislamiento & purificación , Catecol Oxidasa/antagonistas & inhibidores , Agaricales/enzimología , Solanum tuberosum/enzimología , Solanum tuberosum/química , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Solanum melongena/enzimología , Solanum melongena/química , Ácidos Cumáricos/química , Propionatos/química , metaminobenzoatos/química , Ácido 4-Aminobenzoico/química
6.
Bioorg Med Chem ; 110: 117832, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39002182

RESUMEN

Tyrosinase is a metalloenzyme that contains copper(II) ions. We designed and synthesized eight known low-molecular-weight 2-mercaptobenzoxazole (2-MBO) analogs as tyrosinase inhibitors. Our focus was on the mercapto functional group, which interacts with copper ions. Analogs 1-3 exhibited mushroom tyrosinase inhibitory activity at the nanomolar level and demonstrated strong potency with extremely low half-maximal inhibitory concentration (IC50) values of 80-90 nM for l-dopa and 100-240 nM for l-tyrosine. Analogs 2, 4, and 5 showed the most potent anti-melanogenic effects in B16F10 cells, and their mode of action was demonstrated by kinetic analysis. Their anti-melanogenic effects were similar to the tyrosinase inhibition results, suggesting that their anti-melanogenic effects could be attributed to their tyrosinase inhibitory ability. Experiments using copper-chelating activity assays and changes in tyrosinase inhibitory activity with and without CuSO4 demonstrated that 2-MBO analogs inhibit tyrosinase activity by chelating the copper ions of tyrosinase. In conclusion, the 2-MBO analogs show potential as anti-melanogenic agents with potent tyrosinase inhibitory activity.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos , Monofenol Monooxigenasa , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Ratones , Animales , Relación Estructura-Actividad , Estructura Molecular , Agaricales/enzimología , Melaninas/metabolismo , Melaninas/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Línea Celular Tumoral , Cobre/química , Cobre/farmacología
7.
Bioorg Chem ; 147: 107397, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38691905

RESUMEN

Phenolics, abundant in plants, constitute a significant portion of phytoconstituents consumed in the human diet. The phytochemical screening of the aerial parts of Centaurium spicatum led to the isolation of five phenolics. The anti-tyrosinase activities of the isolated compounds were assessed through a combination of in vitro experiments and multiple in silico approaches. Docking and molecular dynamics (MD) simulation techniques were utilized to figure out the binding interactions of the isolated phytochemicals with tyrosinase. The findings from molecular docking analysis revealed that the isolated phenolics were able to bind effectively to tyrosinase and potentially inhibit substrate binding, consequently diminishing the catalytic activity of tyrosinase. Among isolated compounds, cichoric acid displayed the lowest binding energy and the highest extent of polar interactions with the target enzyme. Analysis of MD simulation trajectories indicated that equilibrium was reached within 30 ns for all complexes of tyrosinase with the isolated phenolics. Among the five ligands studied, cichoric acid exhibited the lowest interaction energies, rendering its complex with tyrosinase the most stable. Considering these collective findings, cichoric acid emerges as a promising candidate for the design and development of a potential tyrosinase inhibitor. Furthermore, the in vitro anti-tyrosinase activity assay unveiled significant variations among the isolated compounds. Notably, cichoric acid exhibited the most potent inhibitory effect, as evidenced by the lowest IC50 value (7.92 ± 1.32 µg/ml), followed by isorhamnetin and gentiopicrin. In contrast, sinapic acid demonstrated the least inhibitory activity against tyrosinase, with the highest IC50 value. Moreover, cichoric acid exhibited a mixed inhibition mode against the hydrolysis of l-DOPA catalyzed by tyrosinase, with Ki value of 1.64. Remarkably, these experimental findings align well with the outcomes of docking and MD simulations, underscoring the consistency and reliability of our computational predictions with the actual inhibitory potential observed in vitro.


Asunto(s)
Inhibidores Enzimáticos , Simulación del Acoplamiento Molecular , Monofenol Monooxigenasa , Fenoles , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Fenoles/química , Fenoles/farmacología , Fenoles/aislamiento & purificación , Estructura Molecular , Relación Dosis-Respuesta a Droga , Relación Estructura-Actividad , Simulación de Dinámica Molecular , Agaricales/enzimología
8.
Bioorg Chem ; 150: 107586, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38955001

RESUMEN

Compounds with sulfhydryl substituents and azole compounds exhibit potent anti-tyrosinase potency. 2-Thiobenzothiazole (2-TBT), a hybrid structure of sulfhydryl and azole, exists in two tautomeric forms, with the thione form being predominant according to several studies. 2-TBT derivatives were synthesized as potential tyrosinase inhibitors as the thione tautomeric form has the same N-CS moiety as phenylthiourea (PTU), which is suitable for chelation with the copper ions present in the tyrosinase active site. Eight of the ten 2-TBT derivatives inhibited the monophenolase and diphenolase activities of mushroom tyrosinase, with IC50 values of 0.02-0.83 µM. Kinetic studies and molecular dynamics simulations were performed to determine their mode of action and confirm that the 2-TBT derivatives bind to the tyrosinase active site with high stability. Derivatives 3, 4, 8, and 10 strongly inhibited melanogenesis in B16F10 cells in a pattern similar to the results of cellular tyrosinase inhibition, thereby suggesting that their ability to inhibit melanogenesis was due to their tyrosinase inhibitory activity. In a depigmentation experiment using zebrafish embryos, all 2-TBT derivatives showed better potency than kojic acid, even at 400 to 2000 times lower concentration, and 1 and 10 reduced zebrafish larva pigmentation more strongly than PTU even at 20 times lower concentration. Experiments investigating the changes in tyrosinase inhibitory activity of 2-TBT derivatives in the presence and absence of CuSO4 and their copper chelating ability supported that these derivatives exert their anti-melanogenic effect by chelating the copper ions of tyrosinase. These results suggest that 2-TBT derivatives are promising candidates for the treatment of hyperpigmentation-related disorders.


Asunto(s)
Benzotiazoles , Inhibidores Enzimáticos , Melaninas , Monofenol Monooxigenasa , Pez Cebra , Animales , Ratones , Agaricales/enzimología , Benzotiazoles/farmacología , Benzotiazoles/química , Benzotiazoles/síntesis química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Melaninas/antagonistas & inhibidores , Melaninas/metabolismo , Estructura Molecular , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Feniltiourea/química , Feniltiourea/farmacología , Relación Estructura-Actividad
9.
Appl Microbiol Biotechnol ; 108(1): 324, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713211

RESUMEN

Laccase, a copper-containing polyphenol oxidase, is an important green biocatalyst. In this study, Laccase Lcc5 was homologous recombinantly expressed in Coprinopsis cinerea and a novel strategy of silencing chitinase gene expression was used to enhance recombinant Lcc5 extracellular yield. Two critical chitinase genes, ChiEn1 and ChiE2, were selected by analyzing the transcriptome data of C. cinerea FA2222, and their silent expression was performed by RNA interference (RNAi). It was found that silencing either ChiEn1 or ChiE2 reduced sporulation and growth rate, and increased cell wall sensitivity, but had no significant effect on mycelial branching. Among them, the extracellular laccase activity of the ChiE2-silenced engineered strain Cclcc5-antiChiE2-5 and the control Cclcc5-13 reached the highest values (38.2 and 25.5 U/mL, respectively) at 250 and 150 rpm agitation speeds, corresponding to productivity of 0.35 and 0.19 U/mL·h, respectively, in a 3-L fermenter culture. Moreover, since Cclcc5-antiChiE2-5 could withstand greater shear forces, its extracellular laccase activity was 2.6-fold higher than that of Cclcc5-13 when the agitation speed was all at 250 rpm. To our knowledge, this is the first report of enhanced recombinant laccase production in C. cinerea by silencing the chitinase gene. This study will pave the way for laccase industrial production and accelerate the development of a C. cinerea high-expression system. KEY POINTS: • ChiEn1 and ChiE2 are critical chitinase genes in C. cinerea FA2222 genome. • Chitinase gene silencing enhanced the tolerance of C. cinerea to shear forces. • High homologous production of Lcc5 is achieved by fermentation in a 3-L fermenter.


Asunto(s)
Quitinasas , Silenciador del Gen , Lacasa , Quitinasas/genética , Quitinasas/metabolismo , Quitinasas/biosíntesis , Lacasa/genética , Lacasa/metabolismo , Lacasa/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Agaricales/genética , Agaricales/enzimología , Fermentación , Interferencia de ARN , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Micelio/genética , Micelio/crecimiento & desarrollo , Micelio/enzimología , Pared Celular/metabolismo , Pared Celular/genética
10.
J Enzyme Inhib Med Chem ; 39(1): 2357174, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38814149

RESUMEN

Tyrosinase, a pivotal enzyme in melanin synthesis, is a primary target for the development of depigmenting agents. In this work, in vitro and in silico techniques were employed to identify novel tyrosinase inhibitors from a set of 12 anilino-1,4-naphthoquinone derivatives. Results from the mushroom tyrosinase activity assay indicated that, among the 12 derivatives, three compounds (1, 5, and 10) demonstrated the most significant inhibitory activity against mushroom tyrosinase, surpassing the effectiveness of the kojic acid. Molecular docking revealed that all studied derivatives interacted with copper ions and amino acid residues at the enzyme active site. Molecular dynamics simulations provided insights into the stability of enzyme-inhibitor complexes, in which compounds 1, 5, and particularly 10 displayed greater stability, atomic contacts, and structural compactness than kojic acid. Drug likeness prediction further strengthens the potential of anilino-1,4-naphthoquinones as promising candidates for the development of novel tyrosinase inhibitors for the treatment of hyperpigmentation disorders.


Asunto(s)
Agaricales , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos , Monofenol Monooxigenasa , Naftoquinonas , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Naftoquinonas/farmacología , Naftoquinonas/química , Naftoquinonas/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Agaricales/enzimología , Relación Estructura-Actividad , Estructura Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
11.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39000472

RESUMEN

Melanin is produced by melanocytes to protect human skin from harmful ultraviolet radiation. During skin cell renewal, melanin and dead skin cells are disposed of. However, prolonged exposure to ultraviolet rays or aging can disturb this cycle, leading to skin hyperpigmentation due to melanin accumulation. Tyrosinase is a crucial enzyme involved in melanin biosynthesis. Although various compounds, including tyrosine inhibitors, that counteract melanin accumulation have been reported, some, such as hydroquinone, are toxic and can cause vitiligo. Meanwhile, the skin is the largest organ and the outermost layer of the immune system, containing a diverse range of bacteria that produce low-toxicity compounds. In the current study, we aim to identify metabolites produced by skin microbiota that inhibit tyrosinase. Specifically, mushroom tyrosinase served as the study model. Following commensal skin bacteria screening, Corynebacterium tuberculostearicum was found to inhibit tyrosinase activity. The active compound was cyclo(l-Pro-l-Tyr); commercially available cyclo(l-Pro-l-Tyr) also exhibited inhibitory activity. Docking simulations suggested that cyclo(l-Pro-l-Tyr) binds to the substrate-binding site of mushroom tyrosinase, obstructing the substrate pocket and preventing its activity. Hence, cyclo(l-Pro-l-Tyr) might have potential applications as a cosmetic agent and food additive.


Asunto(s)
Corynebacterium , Monofenol Monooxigenasa , Piel , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Humanos , Piel/microbiología , Piel/efectos de los fármacos , Piel/metabolismo , Simulación del Acoplamiento Molecular , Agaricales/enzimología , Inhibidores Enzimáticos/farmacología , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/química , Melaninas/metabolismo , Melaninas/biosíntesis
12.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39000417

RESUMEN

Metabolites resulting from the bacterial fermentation of dietary fibers, such as short-chain fatty acids, especially butyrate, play important roles in maintaining gut health and regulating various biological effects in the skin. However, butyrate is underutilized due to its unpleasant odor. To circumvent this organoleptic unfavorable property, phenylalanine butyramide (PBA), a butyrate precursor, has been synthesized and is currently available on the market. We evaluated the inhibition of mushroom tyrosinase by butyrate and PBA through in vitro assays, finding IC50 values of 34.7 mM and 120.3 mM, respectively. Docking calculations using a homology model of human tyrosinase identified a putative binding mode of PBA into the catalytic site. The anti-aging and anti-spot efficacy of topical PBA was evaluated in a randomized, double-blind, parallel-arm, placebo-controlled clinical trial involving 43 women affected by photo-damage. The results of this study showed that PBA significantly improved skin conditions compared to the placebo and was well tolerated. Specifically, PBA demonstrated strong skin depigmenting activity on both UV and brown spots (UV: -12.7% and -9.9%, Bs: -20.8% and -17.7% after 15 and 30 days, respectively, p < 0.001). Moreover, PBA brightened and lightened the skin (ITA°: +12% and 13% after 15 and 30 days, respectively, p < 0.001). Finally, PBA significantly improved skin elasticity (Ua/Uf: +12.4% and +32.3% after 15 and 30 days, respectively, p < 0.001) and firmness (Uf: -3.2% and -14.9% after 15 and 30 days, respectively, p < 0.01).


Asunto(s)
Monofenol Monooxigenasa , Fenilalanina , Envejecimiento de la Piel , Pigmentación de la Piel , Adulto , Femenino , Humanos , Persona de Mediana Edad , Agaricales/enzimología , Butiratos/química , Butiratos/farmacología , Método Doble Ciego , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , Monofenol Monooxigenasa/antagonistas & inhibidores , Fenilalanina/química , Fenilalanina/análogos & derivados , Fenilalanina/farmacología , Envejecimiento de la Piel/efectos de los fármacos , Pigmentación de la Piel/efectos de los fármacos
13.
J Environ Manage ; 366: 121857, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39029166

RESUMEN

Fluoroquinolone antibiotics frequently found in environmental matrices (wastewater treatment plants, hospital wastewater, industrial wastewater and surface wastewater) causes potential threat to the environment. Enzymatic treatment for degradation of antibiotics from environmental matrices is a green and sustainable approach. Focusing on this, this study aimed to degrade two frequently found fluroquinolone emergent pollutants, ciprofloxacin and norfloxacin from wastewater. The trinuclear cluster of copper ions present in laccase has the ability to effectively remove organic micropollutants (OMPs). The uniqueness of this study is that it utilizes laccase enzyme extracted from spent mushroom waste (SMW) of P. florida for degradation of ciprofloxacin and norfloxacin and to achieve highest degradation efficiency various parameters were tweaked such as pH (3-6), temperature (30 °C and 50 °C), and ABTS (0.05, 0.6, and 1 mM) concentration. The results showed that the most effective degradation of ciprofloxacin (86.12-75.94%) and norfloxacin (83.27-65.94%) was achieved in 3 h at pH 4.5, temperature 30 °C, and 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 0.05 mM concentration. Nevertheless, achieving degradation at 50 °C for both antibiotics, indicates thermostability nature of laccase (P. florida). Further, the fate of transformed products obtained from laccase mediated degradation was confirmed by liquid chromatography (LC-MS). Both the antibiotics undergo decarboxylation, depiperylyzation, dealkylation and defluorination as a result of laccase-mediated bond breakage. Anti-microbial activity of the biodegraded products was monitored by residual anti-bacterial toxicity test (E. coli and Staphylococcus aureus). The biodegraded products were found to be non-toxic and resulted in the growth of E. coli and Staphylococcus aureus, as determined by the agar-diffusion method. Moreover, the storage stability of laccase was determined for 28-day duration at varying pH (3-10) and temperature (4-50 °C). The maximum storage stability was obtained at pH 4.5 and temperature 30 °C. Therefore, utilizing SMW for the degradation of OMPs from wastewater not only benefits in degradation but also reuses SMW agro waste, shedding light on agro waste management. Thus, SMW is a one-pot solution for both OMPs biodegradation and circularity in the economy.


Asunto(s)
Agaricales , Ciprofloxacina , Lacasa , Norfloxacino , Aguas Residuales , Contaminantes Químicos del Agua , Lacasa/metabolismo , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad , Agaricales/enzimología , Ciprofloxacina/química , Biodegradación Ambiental , Antibacterianos/química
14.
Molecules ; 29(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38930952

RESUMEN

Based on the fact that substances with a ß-phenyl-α,ß-unsaturated carbonyl (PUSC) motif confer strong tyrosinase inhibitory activity, benzylidene-3-methyl-2-thioxothiazolidin-4-one (BMTTZD) analogs 1-8 were prepared as potential tyrosinase inhibitors. Four analogs (1-3 and 5) inhibited mushroom tyrosinase strongly. Especially, analog 3 showed an inhibitory effect that was 220 and 22 times more powerful than kojic acid in the presence of l-tyrosine and l-dopa, respectively. A kinetic study utilizing mushroom tyrosinase showed that analogs 1 and 3 competitively inhibited tyrosinase, whereas analogs 2 and 5 inhibited tyrosinase in a mixed manner. A docking simulation study indicated that analogs 2 and 5 could bind to both the tyrosinase active and allosteric sites with high binding affinities. In cell-based experiments using B16F10 cells, analogs 1, 3, and 5 effectively inhibited melanin production; their anti-melanogenic effects were attributed to their ability to inhibit intracellular tyrosinase activity. Moreover, analogs 1, 3, and 5 inhibited in situ B16F10 cellular tyrosinase activity. In three antioxidant experiments, analogs 2 and 3 exhibited strong antioxidant efficacy, similar to that of the positive controls. These results suggest that the BMTTZD analogs are promising tyrosinase inhibitors for the treatment of hyperpigmentation-related disorders.


Asunto(s)
Agaricales , Antioxidantes , Inhibidores Enzimáticos , Melaninas , Simulación del Acoplamiento Molecular , Monofenol Monooxigenasa , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Agaricales/enzimología , Animales , Antioxidantes/farmacología , Antioxidantes/química , Ratones , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Melaninas/antagonistas & inhibidores , Melaninas/biosíntesis , Tiazolidinas/química , Tiazolidinas/farmacología , Línea Celular Tumoral , Cinética , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/patología , Compuestos de Bencilideno/farmacología , Compuestos de Bencilideno/química , Pironas
15.
Food Res Int ; 188: 114325, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823824

RESUMEN

In this study, inactivation of mushroom polyphenol oxidase (PPO) by low intensity direct current (DC) electric field and its molecular mechanism were investigated. In the experiments under 3 V/cm, 5 V/cm, 7 V/cm and 9 V/cm electric fields, PPOs were all completely inactivated after different exposure times. Under 1 V/cm, a residual activity of 11.88 % remained. The inactivation kinetics confirms to Weibull model. Under 1-7 V/cm, n value closes to a constant about 1.3. The structural analysis of PPO under 3 V/cm and 5 V/cm by fluorescence emission spectroscopy and molecular dynamics (MD) simulation showed that the tertiary structure was slightly changed with increased radius of gyration, higher potential energy and rate of C-alpha fluctuation. After exposure to the electric field, most of the hydrophobic tryptophan (TRP) residues turned to the hydrophilic surface, resulting the fluorescence red-shifted and quenched. Molecular docking indicated that the receptor binding domain of catechol in PPO was changed. PPO under electric field was MD simulated the first time, revealing the changing mechanism of the electric field itself on PPO, a binuclear copper enzyme, which has a metallic center. All these suggest that the low intensity DC electric field would be a promising option for enzymatic browning inhibition or even enzyme activity inactivation.


Asunto(s)
Catecol Oxidasa , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Catecol Oxidasa/metabolismo , Catecol Oxidasa/química , Espectrometría de Fluorescencia , Cinética , Electricidad , Agaricales/enzimología , Catecoles/química , Catecoles/metabolismo
16.
Int J Biol Macromol ; 266(Pt 2): 131047, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521325

RESUMEN

This investigation aimed to scrutinize the chemical and structural analogies between chitosan extracted from crab exoskeleton (High Molecular Weight Chitosan, HMWC) and chitosan obtained from mushrooms (Mushroom-derived Chitosan, MRC), and to assess their biological functionalities. The resulting hydrolysates from the hydrolysis of HMWC by chitosanase were categorized as chitosan oligosaccharides (csCOS), while those from MRC were denoted as mrCOS. The molecular weights (MW) of csCOS and mrCOS were determined using Matrix-Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF) mass spectrometry. Furthermore, structural resemblances of csCOS and mrCOS were assessed utilizing X-ray powder diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. Intriguingly, no apparent structural disparity between csCOS and mrCOS was noted in terms of the glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) composition ratios. Consequently, the enzymatic activities of chitosanase for HMWC and MRC exhibited remarkable similarity. A topological examination was performed between the enzyme and the substrate to deduce the alteration in MW of COSs following enzymatic hydrolysis. Moreover, the evaluation of antioxidant activity for each COS revealed insignificance in the structural disparity between HMWC and MRC. In summary, grounded on the chemical structural similarity of HMWC and MRC, we propose the potential substitution of HMWC with MRC, incorporating diverse biological functionalities.


Asunto(s)
Agaricales , Exoesqueleto , Braquiuros , Quitosano , Peso Molecular , Quitosano/química , Braquiuros/química , Exoesqueleto/química , Animales , Hidrólisis , Agaricales/química , Agaricales/enzimología , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Estructura Molecular
17.
J Microbiol Biotechnol ; 34(4): 930-939, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38314447

RESUMEN

Mushroom laccases play a crucial role in lignin depolymerization, one of the most critical challenges in lignin utilization. Importantly, laccases can utilize a wide range of substrates, such as toxicants and antibiotics. This study isolated a novel laccase, named HeLac4c, from endophytic white-rot fungi Hericium erinaceus mushrooms. The cDNAs for this enzyme were 1569 bp in length and encoded a protein of 523 amino acids, including a 20 amino-acid signal peptide. Active extracellular production of glycosylated laccases from Saccharomyces cerevisiae was successfully achieved by selecting an optimal translational fusion partner. We observed that 5 and 10 mM Ca2+, Zn2+, and K+ increased laccase activity, whereas 5 mM Fe2+ and Al3+ inhibited laccase activity. The laccase activity was inhibited by the addition of low concentrations of sodium azide and L-cysteine. The optimal pH for the 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt was 4.4. Guaiacylglycerol-ß-guaiacyl ether, a lignin model compound, was polymerized by the HeLac4c enzyme. These results indicated that HeLac4c is a novel oxidase biocatalyst for the bioconversion of lignin into value-added products for environmental biotechnological applications.


Asunto(s)
Hericium , Lacasa , Lignina , Saccharomyces cerevisiae , Lacasa/metabolismo , Lacasa/genética , Lacasa/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Hericium/metabolismo , Hericium/genética , Hericium/enzimología , Concentración de Iones de Hidrógeno , Lignina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Secuencia de Aminoácidos , Clonación Molecular , Azida Sódica/farmacología , Agaricales/enzimología , Agaricales/genética , Glicosilación
18.
J Hazard Mater ; 476: 135099, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38981236

RESUMEN

The substantial use of antibiotics contributes to the spread and evolution of antibiotic resistance, posing potential risks to food production systems, including mushroom production. In this study, the potential risk of antibiotics to Stropharia rugosoannulata, the third most productive straw-rotting mushroom in China, was assessed, and the underlying mechanisms were investigated. Tetracycline exposure at environmentally relevant concentrations (<500 µg/L) did not influence the growth of S. rugosoannulata mycelia, while high concentrations of tetracycline (>500 mg/L) slightly inhibited its growth. Biodegradation was identified as the main antibiotic removal mechanism in S. rugosoannulata, with a degradation rate reaching 98.31 % at 200 mg/L tetracycline. High antibiotic removal efficiency was observed with secreted proteins of S. rugosoannulata, showing removal efficiency in the order of tetracyclines > sulfadiazines > quinolones. Antibiotic degradation products lost the ability to inhibit the growth of Escherichia coli, and tetracycline degradation products could not confer a growth advantage to antibiotic-resistant strains. Two laccases, SrLAC1 and SrLAC9, responsible for antibiotic degradation were identified based on proteomic analysis. Eleven antibiotics from tetracyclines, sulfonamides, and quinolones families could be transformed by these two laccases with degradation rates of 95.54-99.95 %, 54.43-100 %, and 5.68-57.12 %, respectively. The biosafety of the antibiotic degradation products was evaluated using the Toxicity Estimation Software Tool (TEST), revealing a decreased toxicity or no toxic effect. None of the S. rugosoannulata fruiting bodies from seven provinces in China contained detectable antibiotic-resistance genes (ARGs). This study demonstrated that S. rugosoannulata can degrade antibiotics into non-toxic and non-bactericidal products that do not accelerate the spread of antibiotic resistance, ensuring the safety of S. rugosoannulata production.


Asunto(s)
Antibacterianos , Lacasa , Antibacterianos/toxicidad , Antibacterianos/farmacología , Lacasa/metabolismo , Lacasa/genética , Biodegradación Ambiental , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Tetraciclina/toxicidad , Agaricales/efectos de los fármacos , Agaricales/enzimología
19.
Electron. j. biotechnol ; 15(6): 8-8, Nov. 2012. ilus, tab
Artículo en Inglés | LILACS | ID: lil-662206

RESUMEN

Six strains of white-rot fungi isolated from southern Chile were evaluated for their ergosterol/biomass correlation and ligninolytic potential in solid medium to formulate pellets for Reactive Orange 165 (RO165) decolourization. The fungus Anthracophyllum discolor was selected to formulate complex pellets (fungal mycelium, sawdust, and activated carbon), coated pellets (complex pellet + alginate) and simple pellets (fungal mycelium). The activity of ligninolytic enzymes (laccase, manganese peroxidase, manganese-independent peroxidase, and lignin peroxidase) was evaluated in both the complex and coated pellets in modified Kirk medium, and the morphology of the pellets was studied using scanning electron microscopy (SEM). Complex pellets of A. discolor showed a higher enzymatic production mainly MnP (38 U L-1 at day 15) compared to coated and simple pellets. Examinations using SEM showed that both pellets produced a black core that was entrapped by a layer of fungal mycelium. Decolourization of RO165 was demonstrated with all the pellets formulated. However, the highest and fastest decolourization was obtained with complex pellets (100 percent at day 8). Therefore, complex pellets of A. discolor can be used for the biological treatment of wastewater contaminated with RO165.


Asunto(s)
Compuestos Azo , Agaricales/enzimología , Biodegradación Ambiental , Colorantes , Lignina , Remoción de Contaminantes/métodos
20.
An. acad. bras. ciênc ; 83(2): 599-609, June 2011. graf, tab
Artículo en Inglés | LILACS | ID: lil-589899

RESUMEN

The enzyme glucanase from Moniliophthora perniciosa was produced in liquid medium and purified from the culture supernatant. A multivariate statistical approach (Response Surface Methodology - RSM) was employed to evaluate the effect of variables, including inducer (yeast extract) and fermentation time, on secreted glucanase activities M. perniciosa detected in the culture medium. The crude enzyme present in the supernatant was purified in two steps: precipitation with ammonium sulfate (70 percent) and gel filtration chromatography on Sephacryl S-200. The best inducer and fermentation time for glucanase activities were 5.9 g L-1 and 13 days, respectively. The results revealed three different isoforms (GLUI, GLUII and GLUIII) with purification factors of 4.33, 1.86 and 3.03, respectively. The partially purified enzymatic extract showed an optimum pH of 5.0 and an optimum temperature of 40°C. The enzymatic activity increased in the presence of KCl at all concentrations studied. The glucanase activity was highest in the presence of 0.2 M NaCl. The enzyme showed high thermal stability, losing only 10.20 percent of its specific activity after 40 minutes of incubation at 90°C. A purified enzyme with relatively good thermostability that is stable at low pH might be used in future industrial applications.


A enzima glucanase de Moniliophthora perniciosa foi produzida em meio líquido e purificada a partir do sobrenadante da cultura. A metodologia de superfície de resposta (MSR) foi usada para avaliar os efeitos das variáveis, incluindo indutor (extrato de levedura) e tempo de fermentação, na atividade da glucanase de M. perniciosa detectada no meio de cultura. A enzima presente no sobrenadante foi purificada em duas etapas: precipitação com sulfato de amônio (70 por cento) e cromatografia de filtração em gel em Sephacryl S-200. A produção da enzima glucanase foi maior na concentração de 5,9 g L-1 de extrato de levedura e 13 dias de fermentação. Os resultados mostraram três diferentes isoformas (GLUI, GLUII e GLUIII) com fatores de purificação de 4,33, 1,86 e 3,03, respectivamente. O extrato enzimático parcialmente purificado mostrou um pH ótimo de 5,0 e uma temperatura ótima de 40°C. A atividade enzimática aumentou na presença de KCl em todas as concentrações estudadas. A atividade da glucanase foi maior na presença de NaCl 0,2 M. A enzima apresentou alta estabilidade térmica, perdendo apenas 10,20 por cento de sua atividade específica após 40 minutos de incubação a 90°C. Os resultados de termoestabilidade e a atividade em baixo pH mostraram que a enzima glucanase de M. perniciosa tem características promissoras para futuras aplicações industriais.


Asunto(s)
Agaricales/enzimología , /biosíntesis , Cromatografía en Gel , Estabilidad de Enzimas , Fermentación , /química , /aislamiento & purificación , Especificidad por Sustrato , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA