Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.885
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 614(7948): 463-470, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36792743

RESUMEN

Aerial seeding can quickly cover large and physically inaccessible areas1 to improve soil quality and scavenge residual nitrogen in agriculture2, and for postfire reforestation3-5 and wildland restoration6,7. However, it suffers from low germination rates, due to the direct exposure of unburied seeds to harsh sunlight, wind and granivorous birds, as well as undesirable air humidity and temperature1,8,9. Here, inspired by Erodium seeds10-14, we design and fabricate self-drilling seed carriers, turning wood veneer into highly stiff (about 4.9 GPa when dry, and about 1.3 GPa when wet) and hygromorphic bending or coiling actuators with an extremely large bending curvature (1,854 m-1), 45 times larger than the values in the literature15-18. Our three-tailed carrier has an 80% drilling success rate on flat land after two triggering cycles, due to the beneficial resting angle (25°-30°) of its tail anchoring, whereas the natural Erodium seed's success rate is 0%. Our carriers can carry payloads of various sizes and contents including biofertilizers and plant seeds as large as those of whitebark pine, which are about 11 mm in length and about 72 mg. We compare data from experiments and numerical simulation to elucidate the curvature transformation and actuation mechanisms to guide the design and optimization of the seed carriers. Our system will improve the effectiveness of aerial seeding to relieve agricultural and environmental stresses, and has potential applications in energy harvesting, soft robotics and sustainable buildings.


Asunto(s)
Materiales Biomiméticos , Semillas , Agricultura/métodos , Germinación , Semillas/química , Semillas/metabolismo , Suelo , Luz Solar , Madera/análisis , Madera/química , Humectabilidad , Fertilizantes , Materiales Biomiméticos/análisis , Materiales Biomiméticos/química , Tamaño de la Partícula
2.
Nature ; 618(7964): 316-321, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225981

RESUMEN

In the United Nations Decade on Ecosystem Restoration1, large knowledge gaps persist on how to increase biodiversity and ecosystem functioning in cash crop-dominated tropical landscapes2. Here, we present findings from a large-scale, 5-year ecosystem restoration experiment in an oil palm landscape enriched with 52 tree islands, encompassing assessments of ten indicators of biodiversity and 19 indicators of ecosystem functioning. Overall, indicators of biodiversity and ecosystem functioning, as well as multidiversity and ecosystem multifunctionality, were higher in tree islands compared to conventionally managed oil palm. Larger tree islands led to larger gains in multidiversity through changes in vegetation structure. Furthermore, tree enrichment did not decrease landscape-scale oil palm yield. Our results demonstrate that enriching oil palm-dominated landscapes with tree islands is a promising ecological restoration strategy, yet should not replace the protection of remaining forests.


Asunto(s)
Biodiversidad , Productos Agrícolas , Restauración y Remediación Ambiental , Aceite de Palma , Árboles , Bosques , Aceite de Palma/provisión & distribución , Árboles/fisiología , Agricultura/métodos , Naciones Unidas , Clima Tropical , Productos Agrícolas/provisión & distribución , Restauración y Remediación Ambiental/métodos
3.
Nature ; 615(7950): 73-79, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36813959

RESUMEN

Avoiding excessive agricultural nitrogen (N) use without compromising yields has long been a priority for both research and government policy in China1,2. Although numerous rice-related strategies have been proposed3-5, few studies have assessed their impacts on national food self-sufficiency and environmental sustainability and fewer still have considered economic risks faced by millions of smallholders. Here we established an optimal N rate strategy based on maximizing either economic (ON) or ecological (EON) performance using new subregion-specific models. Using an extensive on-farm dataset, we then assessed the risk of yield losses among smallholder farmers and the challenges of implementing the optimal N rate strategy. We find that meeting national rice production targets in 2030 is possible while concurrently reducing nationwide N consumption by 10% (6-16%) and 27% (22-32%), mitigating reactive N (Nr) losses by 7% (3-13%) and 24% (19-28%) and increasing N-use efficiency by 30% (3-57%) and 36% (8-64%) for ON and EON, respectively. This study identifies and targets subregions with disproportionate environmental impacts and proposes N rate strategies to limit national Nr pollution below proposed environmental thresholds, without compromising soil N stocks or economic benefits for smallholders. Thereafter, the preferable N strategy is allocated to each region based on the trade-off between economic risk and environmental benefit. To facilitate the adoption of the annually revised subregional N rate strategy, several recommendations were provided, including a monitoring network, fertilization quotas and smallholder subsidies.


Asunto(s)
Agricultura , Productos Agrícolas , Ambientalismo , Nitrógeno , Oryza , Desarrollo Sostenible , Agricultura/economía , Agricultura/métodos , China , Fertilizantes/análisis , Fertilizantes/economía , Nitrógeno/análisis , Nitrógeno/economía , Nitrógeno/metabolismo , Oryza/metabolismo , Suelo/química , Productos Agrícolas/economía , Productos Agrícolas/metabolismo , Productos Agrícolas/provisión & distribución , Ecología , Agricultores , Conjuntos de Datos como Asunto , Abastecimiento de Alimentos
4.
Nature ; 616(7955): 96-103, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36813965

RESUMEN

Rapid demographic ageing substantially affects socioeconomic development1-4 and presents considerable challenges for food security and agricultural sustainability5-8, which have so far not been well understood. Here, by using data from more than 15,000 rural households with crops but no livestock across China, we show that rural population ageing reduced farm size by 4% through transferring cropland ownership and land abandonment (approximately 4 million hectares) in 2019, taking the population age structure in 1990 as a benchmark. These changes led to a reduction of agricultural inputs, including chemical fertilizers, manure and machinery, which decreased agricultural output and labour productivity by 5% and 4%, respectively, further lowering farmers' income by 15%. Meanwhile, fertilizer loss increased by 3%, resulting in higher pollutant emissions to the environment. In new farming models, such as cooperative farming, farms tend to be larger and operated by younger farmers, who have a higher average education level, hence improving agricultural management. By encouraging the transition to new farming models, the negative consequences of ageing can be reversed. Agricultural input, farm size and farmer's income would grow by approximately 14%, 20% and 26%, respectively, and fertilizer loss would reduce by 4% in 2100 compared with that in 2020. This suggests that management of rural ageing will contribute to a comprehensive transformation of smallholder farming to sustainable agriculture in China.


Asunto(s)
Distribución por Edad , Agricultura , Agricultores , Granjas , Seguridad Alimentaria , Población Rural , Desarrollo Sostenible , Humanos , Agricultura/economía , Agricultura/educación , Agricultura/métodos , Agricultura/organización & administración , China , Agricultores/educación , Agricultores/estadística & datos numéricos , Granjas/economía , Granjas/organización & administración , Granjas/estadística & datos numéricos , Granjas/tendencias , Fertilizantes/análisis , Factores de Edad , Seguridad Alimentaria/economía , Seguridad Alimentaria/métodos , Desarrollo Sostenible/economía , Desarrollo Sostenible/tendencias , Población Rural/estadística & datos numéricos , Población Rural/tendencias , Eficiencia , Contaminantes Ambientales
5.
Nature ; 609(7926): 299-306, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36071193

RESUMEN

The potential of mitigation actions to limit global warming within 2 °C (ref. 1) might rely on the abundant supply of biomass for large-scale bioenergy with carbon capture and storage (BECCS) that is assumed to scale up markedly in the future2-5. However, the detrimental effects of climate change on crop yields may reduce the capacity of BECCS and threaten food security6-8, thus creating an unrecognized positive feedback loop on global warming. We quantified the strength of this feedback by implementing the responses of crop yields to increases in growing-season temperature, atmospheric CO2 concentration and intensity of nitrogen (N) fertilization in a compact Earth system model9. Exceeding a threshold of climate change would cause transformative changes in social-ecological systems by jeopardizing climate stability and threatening food security. If global mitigation alongside large-scale BECCS is delayed to 2060 when global warming exceeds about 2.5 °C, then the yields of agricultural residues for BECCS would be too low to meet the Paris goal of 2 °C by 2200. This risk of failure is amplified by the sustained demand for food, leading to an expansion of cropland or intensification of N fertilization to compensate for climate-induced yield losses. Our findings thereby reinforce the urgency of early mitigation, preferably by 2040, to avoid irreversible climate change and serious food crises unless other negative-emission technologies become available in the near future to compensate for the reduced capacity of BECCS.


Asunto(s)
Agricultura , Productos Agrícolas , Seguridad Alimentaria , Calentamiento Global , Agricultura/métodos , Agricultura/tendencias , Atmósfera/química , Dióxido de Carbono/análisis , Secuestro de Carbono , Productos Agrícolas/crecimiento & desarrollo , Ecosistema , Retroalimentación , Seguridad Alimentaria/métodos , Calentamiento Global/prevención & control , Calentamiento Global/estadística & datos numéricos , Objetivos , Humanos , Nitrógeno/análisis , Estaciones del Año , Temperatura , Factores de Tiempo
6.
Nature ; 610(7932): 507-512, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36261550

RESUMEN

Excessive agricultural nitrogen use causes environmental problems globally1, to an extent that it has been suggested that a safe planetary boundary has been exceeded2. Earlier estimates for the planetary nitrogen boundary3,4, however, did not account for the spatial variability in both ecosystems' sensitivity to nitrogen pollution and agricultural nitrogen losses. Here we use a spatially explicit model to establish regional boundaries for agricultural nitrogen surplus from thresholds for eutrophication of terrestrial and aquatic ecosystems and nitrate in groundwater. We estimate regional boundaries for agricultural nitrogen pollution and find both overuse and room for intensification of agricultural nitrogen. The aggregated global surplus boundary with respect to all thresholds is 43 megatonnes of nitrogen per year, which is 64 per cent lower than the current (2010) nitrogen surplus (119 megatonnes of nitrogen per year). Allowing the nitrogen surplus to increase to close yield gaps in regions where environmental thresholds are not exceeded lifts the planetary nitrogen boundary to 57 megatonnes of nitrogen per year. Feeding the world without trespassing regional and planetary nitrogen boundaries requires large increases in nitrogen use efficiencies accompanied by mitigation of non-agricultural nitrogen sources such as sewage water. This asks for coordinated action that recognizes the heterogeneity of agricultural systems, non-agricultural nitrogen losses and environmental vulnerabilities.


Asunto(s)
Agricultura , Ecosistema , Contaminación Ambiental , Agua Subterránea , Nitrógeno , Agricultura/legislación & jurisprudencia , Agricultura/métodos , Planeta Tierra , Contaminantes Ambientales/análisis , Contaminantes Ambientales/provisión & distribución , Contaminación Ambiental/análisis , Contaminación Ambiental/legislación & jurisprudencia , Contaminación Ambiental/prevención & control , Eutrofización , Agua Subterránea/química , Nitratos/análisis , Nitrógeno/análisis , Aguas del Alcantarillado/química , Agua/química , Abastecimiento de Alimentos
7.
Proc Natl Acad Sci U S A ; 121(17): e2305517121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38621135

RESUMEN

Growing crops in more diverse crop systems (i.e., intercropping) is one way to produce food more sustainably. Even though intercropping, compared to average monocultures, is generally more productive, the full yield potential of intercropping might not yet have been achieved as modern crop cultivars are bred to be grown in monoculture. Breeding plants for more familiarity in mixtures, i.e., plants that are adapted to more diverse communities (i.e., adaptation) or even to coexist with each other (i.e., coadaptation) might have the potential to sustainably enhance productivity. In this study, the productivity benefits of familiarity through evolutionary adaptation and coevolutionary coadaptation were disentangled in a crop system through an extensive common garden experiment. Furthermore, evolutionary and coevolutionary effects on species-level and community-level productivity were linked to corresponding changes in functional traits. We found evidence for higher productivity and trait convergence with increasing familiarity with the plant communities. Furthermore, our results provide evidence for the coevolution of plants in mixtures leading to higher productivity of coadapted species. However, with the functional traits measured in our study, we could not fully explain the productivity benefits found upon coevolution. Our study investigated coevolution among randomly interacting plants and was able to demonstrate that coadaptation through coevolution of coexisting species in mixtures occurs and promotes ecosystem functioning (i.e., higher productivity). This result is particularly relevant for the diversification of agricultural and forest ecosystems, demonstrating the added value of artificially selecting plants for the communities they are familiar with.


Asunto(s)
Ecosistema , Fitomejoramiento , Agricultura/métodos , Productos Agrícolas , Evolución Biológica
8.
Proc Natl Acad Sci U S A ; 121(32): e2310079121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39074271

RESUMEN

California agriculture will undergo significant transformations over the next few decades in response to climate extremes, environmental regulation and policy encouraging environmental justice, and economic pressures that have long driven agricultural changes. With several local climates suited to a variety of crops, periodically abundant nearby precipitation, and public investments that facilitated abundant low-priced irrigation water, California hosts one of the most diverse and productive agroecosystems in the world. California farms supply nearly half of the high-nutrient fruit, tree nut, and vegetable production in the United States. Climate change impacts on productivity and profitability of California agriculture are increasing and forebode problems for standard agricultural practices, especially water use norms. We highlight many challenges California agriculture confronts under climate change through the direct and indirect impacts on the biophysical conditions and ecosystem services that drive adaptations in farm practices and water accessibility and availability. In the face of clear conflicts among competing interests, we consider ongoing and potential sustainable and equitable solutions, with particular attention to how technology and policy can facilitate progress.


Asunto(s)
Agricultura , Cambio Climático , California , Agricultura/métodos , Ecosistema , Abastecimiento de Agua , Productos Agrícolas/crecimiento & desarrollo , Riego Agrícola , Agua
9.
Proc Natl Acad Sci U S A ; 121(34): e2317725121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39133857

RESUMEN

Using global data for around 180 countries and territories and 170 food/feed types primarily derived from FAOSTAT, we have systematically analyzed the changes in greenhouse gas (GHG) emission intensity (GHGi) (kg CO2eq per kg protein production) over the past six decades. We found that, with large spatial heterogeneity, emission intensity decreased by nearly two-thirds from 1961 to 2019, predominantly in the earlier years due to agronomic improvement in productivity. However, in the most recent decade, emission intensity has become stagnant, and in a few countries even showed an increase, due to the rapid increase in livestock production and land use changes. The trade of final produced protein between countries has potentially reduced the global GHGi, especially for countries that are net importers with high GHGi, such as many in Africa and South Asia. Overall, a continuous decline of emission intensity in the future relies on countries with higher emission intensity to increase agricultural productivity and minimize land use changes. Countries with lower emission intensity should reduce livestock production and increase the free trade of agricultural products and improve the trade optimality.


Asunto(s)
Agricultura , Gases de Efecto Invernadero , Agricultura/métodos , Gases de Efecto Invernadero/análisis , Carbono/metabolismo , Ganado , Animales , Productos Agrícolas
10.
Proc Natl Acad Sci U S A ; 121(16): e2318160121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38598339

RESUMEN

Organic carbon availability in soil is crucial for shaping microbial communities, yet, uncertainties persist concerning microbial adaptations to carbon levels and the ensuing ecological and evolutionary consequences. We investigated organic carbon metabolism, antibiotic resistance, and virus-host interactions in soils subjected to 40 y of chemical and organic fertilization that led to contrasting carbon availability: carbon-poor and carbon-rich soils, respectively. Carbon-poor soils drove the enrichment of putative genes involved in organic matter decomposition and exhibited specialization in utilizing complex organic compounds, reflecting scramble competition. This specialization confers a competitive advantage of microbial communities in carbon-poor soils but reduces their buffering capacity in terms of organic carbon metabolisms, making them more vulnerable to environmental fluctuations. Additionally, in carbon-poor soils, viral auxiliary metabolic genes linked to organic carbon metabolism increased host competitiveness and environmental adaptability through a strategy akin to "piggyback the winner." Furthermore, putative antibiotic resistance genes, particularly in low-abundance drug categories, were enriched in carbon-poor soils as an evolutionary consequence of chemical warfare (i.e., interference competition). This raises concerns about the potential dissemination of antibiotic resistance from conventional agriculture that relies on chemical-only fertilization. Consequently, carbon starvation resulting from long-term chemical-only fertilization increases microbial adaptations to competition, underscoring the importance of implementing sustainable agricultural practices to mitigate the emergence and spread of antimicrobial resistance and to increase soil carbon storage.


Asunto(s)
Carbono , Suelo , Suelo/química , Carbono/metabolismo , Agricultura/métodos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Microbiología del Suelo
11.
Proc Natl Acad Sci U S A ; 121(18): e2317646121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648486

RESUMEN

Long-distance migrations of insects contribute to ecosystem functioning but also have important economic impacts when the migrants are pests or provide ecosystem services. We combined radar monitoring, aerial sampling, and searchlight trapping, to quantify the annual pattern of nocturnal insect migration above the densely populated agricultural lands of East China. A total of ~9.3 trillion nocturnal insect migrants (15,000 t of biomass), predominantly Lepidoptera, Hemiptera, and Diptera, including many crop pests and disease vectors, fly at heights up to 1 km above this 600 km-wide region every year. Larger migrants (>10 mg) exhibited seasonal reversal of movement directions, comprising northward expansion during spring and summer, followed by southward movements during fall. This north-south transfer was not balanced, however, with southward movement in fall 0.66× that of northward movement in spring and summer. Spring and summer migrations were strongest when the wind had a northward component, while in fall, stronger movements occurred on winds that allowed movement with a southward component; heading directions of larger insects were generally close to the track direction. These findings indicate adaptations leading to movement in seasonally favorable directions. We compare our results from China with similar studies in Europe and North America and conclude that ecological patterns and behavioral adaptations are similar across the Northern Hemisphere. The predominance of pests among these nocturnal migrants has severe implications for food security and grower prosperity throughout this heavily populated region, and knowledge of their migrations is potentially valuable for forecasting pest impacts and planning timely management actions.


Asunto(s)
Altitud , Migración Animal , Estaciones del Año , Animales , China , Migración Animal/fisiología , Agricultura/métodos , Ecosistema , Insectos/fisiología , Viento , Vuelo Animal/fisiología
12.
Proc Natl Acad Sci U S A ; 121(42): e2402195121, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39374391

RESUMEN

Crop switching, in which farmers grow a crop that is novel to a given field, can help agricultural systems adapt to changing environmental, cultural, and market forces. Yet while regional crop production trends receive significant attention, relatively little is known about the local-scale crop switching that underlies these macrotrends. We characterized local crop-switching patterns across the United States using the US Department of Agriculture (USDA) Cropland Data Layer, an annual time series of high resolution (30 m pixel size) remote-sensed cropland data from 2008 to 2022. We found that at multiple spatial scales, crop switching was most common in sparsely cultivated landscapes and in landscapes with high crop diversity, whereas it was low in homogeneous, highly agricultural areas such as the Midwestern corn belt, suggesting a number of potential social and economic mechanisms influencing farmers' crop choices. Crop-switching rates were high overall, occurring on more than 6% of all US cropland in the average year. Applying a framework that classified crop switches based on their temporal novelty (crop introduction versus discontinuation), spatial novelty (locally divergent versus convergent switching), and categorical novelty (transformative versus incremental switching), we found distinct spatial patterns for these three novelty dimensions, indicating a dynamic and multifaceted set of cropping changes across US farms. Collectively, these results suggest that innovation through crop switching is playing out very differently in various parts of the country, with potentially significant implications for the resilience of agricultural systems to changes in climate and other systemic trends.


Asunto(s)
Agricultura , Productos Agrícolas , Productos Agrícolas/crecimiento & desarrollo , Estados Unidos , Agricultura/métodos , Producción de Cultivos/métodos , Agricultores , United States Department of Agriculture
13.
Proc Natl Acad Sci U S A ; 121(21): e2312519121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739799

RESUMEN

Drawing on a harmonized longitudinal dataset covering more than 55,000 smallholder farms in six African countries, we analyze changes in crop productivity from 2008 to 2019. Because smallholder farmers represent a significant fraction of the world's poorest people, agricultural productivity in this context matters for poverty reduction and for the broader achievement of the UN Sustainable Development Goals. Our analysis measures productivity trends for nationally representative samples of smallholder crop farmers, using detailed data on agricultural inputs and outputs which we integrate with detailed data on local weather and environmental conditions. In spite of government commitments and international efforts to strengthen African agriculture, we find no evidence that smallholder crop productivity improved over this 12-y period. Our preferred statistical specification of total factor productivity (TFP) suggests an overall decline in productivity of -3.5% per year. Various other models we test also find declining productivity in the overall sample, and none of them finds productivity growth. However, the different countries in our sample experienced varying trends, with some instances of growth in some regions. The results suggest that major challenges remain for agricultural development in sub-Saharan Africa. They complement previous analyses that relied primarily on aggregate national statistics to measure agricultural productivity, rather than detailed microdata.


Asunto(s)
Agricultura , Productos Agrícolas , África del Sur del Sahara , Productos Agrícolas/crecimiento & desarrollo , Agricultura/métodos , Agricultura/tendencias , Humanos , Producción de Cultivos/estadística & datos numéricos , Producción de Cultivos/tendencias , Agricultores/estadística & datos numéricos , Granjas , Desarrollo Sostenible/tendencias
14.
Proc Natl Acad Sci U S A ; 121(31): e2321245121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39008689

RESUMEN

Beef production has been identified as a significant source of anthropogenic greenhouse gas (GHG) emissions in the agricultural sector. United States and Canada account for about a quarter of the world's beef supply. To compare the GHG emission contributions of alternative beef production systems, we conducted a meta-analysis of 32 studies that were conducted between 2001 and 2023. Results indicated that GHG emissions from beef production in North America varied almost fourfold from 10.2 to 37.6 with an average of 21.4 kg CO2e/kg carcass weight (CW). Studies that considered soil C sequestration (C-seq) reported the highest mitigation potential in GHG emissions (80%), followed by growth enhancement technology (16%), diet modification (6%), and grazing management improvement (7%). Our study highlights the implications of using carbon intensity per economic activity (i.e., GHG emissions per monetary unit), compared to the more common metric of intensity on per weight of product basis (GHG emissions per kg CW) for comparisons across differentiated beef cattle products. While a positive association was found between the proportion of lifespan on grassland and the conventional weight-based indicator, grass-finished beef was found to have lower carbon intensity per economic activity than feedlot-finished beef. Our study emphasizes the need to incorporate land use and management effects and soil C-seq as fundamental aspects of beef GHG emissions and mitigation assessments.


Asunto(s)
Gases de Efecto Invernadero , Carne Roja , Animales , Bovinos , Gases de Efecto Invernadero/análisis , Carne Roja/economía , Canadá , Crianza de Animales Domésticos/métodos , Crianza de Animales Domésticos/economía , Estados Unidos , Agricultura/economía , Agricultura/métodos , Efecto Invernadero , Cambio Climático
15.
Proc Natl Acad Sci U S A ; 121(32): e2401065121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39074289

RESUMEN

This study aimed to reconstruct the environmental conditions and the crop management practices and plant characteristics when agriculture appeared in western Europe. We analyzed oak charcoal and a large number of cereal caryopsides recovered from La Draga (Girona, Spain), an early (5300 to 4800 cal. BC) agricultural site from the Iberian Peninsula. The carbon isotope discrimination (Δ13C) values of oak, the dominant forest species in the region, indicates prevalence of a wet climate at the site. Further, we reconstructed crop management conditions, achievable yield, and crop characteristics through the analysis of Δ13C, nitrogen isotope composition (δ15N), nitrogen content, and the reconstructed weight of wheat and barley caryopsides, following protocols developed by our team [Araus et al., Nat. Commun. 5, 3953 (2014)] and comparison of these parameters with present-day organic agriculture in the region. In parallel, a regional perspective was achieved through the study of wheat and barley grains of seventeen Neolithic sites from the western Mediterranean. The results suggest that rather than small-garden cultivation, a more extensive agriculture was practiced under good water availability and moderate manuring. Moreover, results from La Draga evidence that grain weight and spike morphology were comparable to contemporary cereals. Growing conditions and the prevalence of improved crop traits indicate that agriculture was fairly consolidated at the time it reached the western edge of Europe.


Asunto(s)
Agricultura , Isótopos de Carbono , Hordeum , Isótopos de Nitrógeno , Triticum , Isótopos de Carbono/análisis , Agricultura/métodos , Isótopos de Nitrógeno/análisis , Productos Agrícolas/crecimiento & desarrollo , Europa (Continente) , Quercus , España , Grano Comestible , Historia Antigua
16.
Proc Natl Acad Sci U S A ; 121(21): e2316497121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739807

RESUMEN

Decreased production of crops due to climate change has been predicted scientifically. While climate-resilient crops are necessary to ensure food security and support sustainable agriculture, predicting crop growth under future global warming is challenging. Therefore, we aimed to assess the impact of realistic global warming conditions on rice cultivation. We developed a crop evaluation platform, the agro-environment (AE) emulator, which generates diverse environments by implementing the complexity of natural environmental fluctuations in customized, fully artificial lighting growth chambers. We confirmed that the environmental responsiveness of rice obtained in the fluctuation of artificial environments is similar to those exhibited in natural environments by validating our AE emulator using publicly available meteorological data from multiple years at the same location and multiple locations in the same year. Based on the representative concentration pathway, real-time emulation of severe global warming unveiled dramatic advances in the rice life cycle, accompanied by a 35% decrease in grain yield and an 85% increase in quality deterioration, which is higher than the recently reported projections. The transcriptome dynamism showed that increasing temperature and CO2 concentrations synergistically changed the expression of various genes and strengthened the induction of flowering, heat stress adaptation, and CO2 response genes. The predicted severe global warming greatly alters rice environmental adaptability and negatively impacts rice production. Our findings offer innovative applications of artificial environments and insights for enhancing varietal potential and cultivation methods in the future.


Asunto(s)
Calentamiento Global , Oryza , Oryza/crecimiento & desarrollo , Oryza/genética , Cambio Climático , Productos Agrícolas/crecimiento & desarrollo , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análisis , Agricultura/métodos , Regulación de la Expresión Génica de las Plantas , Temperatura , Transcriptoma
17.
Proc Natl Acad Sci U S A ; 121(21): e2319519121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38753508

RESUMEN

Transforming smallholder farms is critical to global food security and environmental sustainability. The science and technology backyard (STB) platform has proved to be a viable approach in China. However, STB has traditionally focused on empowering smallholder farmers by transferring knowledge, and wide-scale adoption of more sustainable practices and technologies remains a challenge. Here, we report on a long-term project focused on technology scale-up for smallholder farmers by expanding and upgrading the original STB platform (STB 2.0). We created a formalized and standardized process by which to engage and collaborate with farmers, including integrating their feedback via equal dialogues in the process of designing and promoting technologies. Based on 288 site-year of field trials in three regions in the North China Plain over 5 y, we find that technologies cocreated through this process were more easily accepted by farmers and increased their crop yields and nitrogen factor productivity by 7.2% and 28.1% in wheat production and by 11.4% and 27.0% in maize production, respectively. In promoting these technologies more broadly, we created a "one-stop" multistakeholder program involving local government agencies, enterprises, universities, and farmers. The program was shown to be much more effective than the traditional extension methods applied at the STB, yielding substantial environmental and economic benefits. Our study contributes an important case study for technology scale-up for smallholder agriculture. The STB 2.0 platform being explored emphasizes equal dialogue with farmers, multistakeholder collaboration, and long-term investment. These lessons may provide value for the global smallholder research and practitioners.


Asunto(s)
Agricultura , China , Agricultura/métodos , Agricultores , Humanos , Productos Agrícolas/crecimiento & desarrollo , Conducta Cooperativa , Zea mays/crecimiento & desarrollo , Desarrollo Sostenible , Conservación de los Recursos Naturales/métodos , Triticum/crecimiento & desarrollo , Producción de Cultivos/métodos
18.
PLoS Biol ; 21(7): e3002166, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37410698

RESUMEN

Birds share lands with humans at a substantial scale and affect crops. Yet, at a global scale, systematic evaluations of human-bird coexistence in croplands are scarce. Here, we compiled and used meta-analysis approaches to synthesize multiple global datasets of ecological and social dimensions to understand this complex coexistence system. Our result shows that birds usually increase woody, but not herbaceous, crop production, implying that crop loss mitigation efforts are critical for a better coexistence. We reveal that many nonlethal technical measures are more effective in reducing crop loss, e.g., using scaring devices and changing sow practices, than other available methods. Besides, we find that stakeholders from low-income countries are more likely to perceive the crop losses caused by birds and are less positive toward birds than those from high-income ones. Based on our evidence, we identified potential regional clusters, particularly in tropical areas, for implementing win-win coexistence strategies. Overall, we provide an evidence-based knowledge flow and solutions for stakeholders to integrate the conservation and management of birds in croplands.


Asunto(s)
Agricultura , Aves , Humanos , Animales , Femenino , Porcinos , Agricultura/métodos , Productos Agrícolas , Conservación de los Recursos Naturales/métodos
19.
Nature ; 579(7799): 393-396, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32188954

RESUMEN

Agricultural practices constitute both the greatest cause of biodiversity loss and the greatest opportunity for conservation1,2, given the shrinking scope of protected areas in many regions. Recent studies have documented the high levels of biodiversity-across many taxa and biomes-that agricultural landscapes can support over the short term1,3,4. However, little is known about the long-term effects of alternative agricultural practices on ecological communities4,5 Here we document changes in bird communities in intensive-agriculture, diversified-agriculture and natural-forest habitats in 4 regions of Costa Rica over a period of 18 years. Long-term directional shifts in bird communities were evident in intensive- and diversified-agricultural habitats, but were strongest in intensive-agricultural habitats, where the number of endemic and International Union for Conservation of Nature (IUCN) Red List species fell over time. All major guilds, including those involved in pest control, pollination and seed dispersal, were affected. Bird communities in intensive-agricultural habitats proved more susceptible to changes in climate, with hotter and drier periods associated with greater changes in community composition in these settings. These findings demonstrate that diversified agriculture can help to alleviate the long-term loss of biodiversity outside natural protected areas1.


Asunto(s)
Agricultura/métodos , Agricultura/estadística & datos numéricos , Biodiversidad , Aves/clasificación , Bosques , Animales , Bovinos , Costa Rica , Productos Agrícolas/provisión & distribución , Extinción Biológica , Agricultura Forestal/estadística & datos numéricos , Calentamiento Global/estadística & datos numéricos , Control Biológico de Vectores , Polinización , Dispersión de Semillas , Factores de Tiempo
20.
Proc Natl Acad Sci U S A ; 120(47): e2207782120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37956280

RESUMEN

A widespread sense of the unsustainability of the food system has taken hold in recent years, leading to calls for fundamental change. The role of animal agriculture is central to many of these debates, leading to interest in the possibility of a "protein transition," whereby the production and consumption of animal-derived foods is replaced with plant-based substitutes or "alternative proteins." Despite the potential sustainability implications of this transition, the developmental trajectories and transformative potential of the associated technologies remain underexplored. This article sheds light on these dynamics by addressing two questions: 1) how have alternative protein innovations developed over the past three decades, and 2) what explains their more recent acceleration? To answer these questions, the article makes an empirical analysis of four alternative protein innovations, and the partial destabilization of the animal agriculture system between 1990 and 2021, guided by the multi-level perspective. The analysis highlights an intensification in corporate engagement with alternative protein development and diffusion. This intensification is judged to be consistent with the beginnings of a wider corporate reorientation, occurring alongside a rise in pressures on the animal agriculture system, notably an increasing scientific consensus and societal awareness of the links between climate change and meat-intensive diets. The paper demonstrates how differences in technological maturity across the niche innovations have resulted in potentially transformative pressures, which are consistent with an emerging sustainability transition, manifesting differently in terms of the extent of diffusion of the alternative protein niches.


Asunto(s)
Agricultura , Abastecimiento de Alimentos , Animales , Abastecimiento de Alimentos/métodos , Agricultura/métodos , Dieta , Tecnología , Carne
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA