Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.222
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunity ; 52(4): 620-634.e6, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32268121

RESUMEN

Innate lymphoid cells (ILCs) play an important role in the control and maintenance of barrier immunity. However, chronic activation of ILCs results in immune-mediated pathology. Here, we show that tissue-resident type 2 ILCs (ILC2s) display a distinct metabolic signature upon chronic activation. In the context of allergen-driven airway inflammation, ILC2s increase their uptake of both external lipids and glucose. Externally acquired fatty acids are transiently stored in lipid droplets and converted into phospholipids to promote the proliferation of ILC2s. This metabolic program is imprinted by interleukin-33 (IL-33) and regulated by the genes Pparg and Dgat1, which are both controlled by glucose availability and mTOR signaling. Restricting dietary glucose by feeding mice a ketogenic diet largely ablated ILC2-mediated airway inflammation by impairing fatty acid metabolism and the formation of lipid droplets. Together, these results reveal that pathogenic ILC2 responses require lipid metabolism and identify ketogenic diet as a potent intervention strategy to treat airway inflammation.


Asunto(s)
Alérgenos/administración & dosificación , Asma/dietoterapia , Diacilglicerol O-Acetiltransferasa/inmunología , Dieta Cetogénica/métodos , Interleucina-33/inmunología , Gotas Lipídicas/metabolismo , Subgrupos de Linfocitos T/inmunología , Alternaria/química , Animales , Asma/inducido químicamente , Asma/inmunología , Asma/patología , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Linaje de la Célula/inmunología , Citocinas/administración & dosificación , Diacilglicerol O-Acetiltransferasa/genética , Modelos Animales de Enfermedad , Ácidos Grasos/inmunología , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Glucosa/inmunología , Glucosa/metabolismo , Inmunidad Innata , Interleucina-33/administración & dosificación , Interleucina-33/genética , Interleucinas/administración & dosificación , Gotas Lipídicas/inmunología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR gamma/genética , PPAR gamma/inmunología , Papaína/administración & dosificación , Fosfolípidos/inmunología , Fosfolípidos/metabolismo , Cultivo Primario de Células , Subgrupos de Linfocitos T/clasificación , Subgrupos de Linfocitos T/efectos de los fármacos , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/inmunología , Linfopoyetina del Estroma Tímico
2.
Immunity ; 47(4): 739-751.e5, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-29045903

RESUMEN

Infection by helminth parasites is associated with amelioration of allergic reactivity, but mechanistic insights into this association are lacking. Products secreted by the mouse parasite Heligmosomoides polygyrus suppress type 2 (allergic) immune responses through interference in the interleukin-33 (IL-33) pathway. Here, we identified H. polygyrus Alarmin Release Inhibitor (HpARI), an IL-33-suppressive 26-kDa protein, containing three predicted complement control protein (CCP) modules. In vivo, recombinant HpARI abrogated IL-33, group 2 innate lymphoid cell (ILC2) and eosinophilic responses to Alternaria allergen administration, and diminished eosinophilic responses to Nippostrongylus brasiliensis, increasing parasite burden. HpARI bound directly to both mouse and human IL-33 (in the cytokine's activated state) and also to nuclear DNA via its N-terminal CCP module pair (CCP1/2), tethering active IL-33 within necrotic cells, preventing its release, and forestalling initiation of type 2 allergic responses. Thus, HpARI employs a novel molecular strategy to suppress type 2 immunity in both infection and allergy.


Asunto(s)
Proteínas del Helminto/inmunología , Interleucina-33/inmunología , Nematospiroides dubius/inmunología , Infecciones por Strongylida/inmunología , Alérgenos/inmunología , Alternaria/inmunología , Secuencia de Aminoácidos , Animales , Western Blotting , Eosinófilos/inmunología , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Interacciones Huésped-Parásitos/inmunología , Humanos , Inmunidad Innata/inmunología , Proteína 1 Similar al Receptor de Interleucina-1 , Interleucina-33/genética , Interleucina-33/metabolismo , Linfocitos/inmunología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Nematospiroides dubius/genética , Nematospiroides dubius/metabolismo , Unión Proteica/inmunología , Receptores de Interleucina/inmunología , Receptores de Interleucina/metabolismo , Homología de Secuencia de Aminoácido , Infecciones por Strongylida/metabolismo , Infecciones por Strongylida/parasitología
3.
J Biol Chem ; 300(5): 107238, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552736

RESUMEN

Light and temperature sensing are important features of many organisms. Light may provide energy but may also be used by non-photosynthetic organisms for orientation in the environment. Recent evidence suggests that plant and fungal phytochrome and plant phototropin serve dual functions as light and temperature sensors. Here we characterized the fungal LOV-domain blue-light receptor LreA of Alternaria alternata and show that it predominantly contains FAD as chromophore. Blue-light illumination induced ROS production followed by protein agglomeration in vitro. In vivo ROS may control LreA activity. LreA acts as a blue-light photoreceptor but also triggers temperature-shift-induced gene expression. Both responses required the conserved amino acid cysteine 421. We therefore propose that temperature mimics the photoresponse, which could be the ancient function of the chromoprotein. Temperature-dependent gene expression control with LreA was distinct from the response with phytochrome suggesting fine-tuned, photoreceptor-specific gene regulation.


Asunto(s)
Alternaria , Luz Azul , Flavina-Adenina Dinucleótido , Proteínas Fúngicas , Fotorreceptores Microbianos , Alternaria/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Flavina-Adenina Dinucleótido/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Regulación Fúngica de la Expresión Génica , Fotorreceptores Microbianos/metabolismo , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Fitocromo/metabolismo , Fitocromo/química , Fitocromo/genética , Dominios Proteicos , Especies Reactivas de Oxígeno/metabolismo , Temperatura
4.
EMBO J ; 40(17): e108083, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34254350

RESUMEN

Mitochondria are essential organelles because of their function in energy conservation. Here, we show an involvement of mitochondria in phytochrome-dependent light sensing in fungi. Phytochrome photoreceptors are found in plants, bacteria, and fungi and contain a linear, heme-derived tetrapyrrole as chromophore. Linearization of heme requires heme oxygenases (HOs) which reside inside chloroplasts in planta. Despite the poor degree of conservation of HOs, we identified two candidates in the fungus Alternaria alternata. Deletion of either one phenocopied phytochrome deletion. The two enzymes had a cooperative effect and physically interacted with phytochrome, suggesting metabolon formation. The metabolon was attached to the surface of mitochondria with a C-terminal anchor (CTA) sequence in HoxA. The CTA was necessary and sufficient for mitochondrial targeting. The affinity of phytochrome apoprotein to HoxA was 57,000-fold higher than the affinity of the holoprotein, suggesting a "kiss-and-go" mechanism for chromophore loading and a function of mitochondria as assembly platforms for functional phytochrome. Hence, two alternative approaches for chromophore biosynthesis and insertion into phytochrome evolved in plants and fungi.


Asunto(s)
Proteínas Fúngicas/biosíntesis , Mitocondrias/metabolismo , Fitocromo/biosíntesis , Alternaria , Proteínas Fúngicas/genética , Hemo/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Fitocromo/genética , Transporte de Proteínas
5.
J Allergy Clin Immunol ; 154(2): 424-434, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38663817

RESUMEN

BACKGROUND: Alternaria alternata is associated with allergic respiratory diseases, which can be managed with allergen extract-based diagnostics and immunotherapy. It is not known how spores and hyphae contribute to allergen content. Commercial allergen extracts are manufactured by extracting proteins without separating the different forms of the fungus. OBJECTIVE: We sought to determine differences between spore and hyphae proteomes and how allergens are distributed in Aalternata. METHODS: Data-independent acquisition mass spectrometry was used to quantitatively compare the proteomes of asexual spores (nongerminating and germinating) with vegetative hyphae. RESULTS: We identified 4515 proteins in nongerminating spores, germinating spores, and hyphae; most known allergens are more abundant in nongerminating spores. On comparing significant protein fold-change differences between nongerminating spores and hyphae, we found that 174 proteins were upregulated in nongerminating spores and 80 proteins in hyphae. Among the spore proteins are ones functionally involved in cell wall synthesis, responding to cellular stress, and maintaining redox balance and homeostasis. On comparing nongerminating and germinating spores, 25 proteins were found to be upregulated in nongerminating spores and 54 in germinating spores. Among the proteins specific to germinating spores were proteases known to be virulence factors. One of the most abundant proteins in the spore proteome is sialidase, which has not been identified as an allergen but may be important in the pathogenicity of this fungus. Major allergen Alt a 1 is present at low levels in spores and hyphae and appears to be largely secreted into growth media. CONCLUSIONS: Spores and hyphae express overlapping but distinct proteomes. Most known allergens are found more abundantly in nongerminating spores.


Asunto(s)
Alérgenos , Alternaria , Proteínas Fúngicas , Proteoma , Esporas Fúngicas , Alternaria/inmunología , Alérgenos/inmunología , Esporas Fúngicas/inmunología , Proteínas Fúngicas/inmunología , Proteínas Fúngicas/metabolismo , Hifa/inmunología , Antígenos Fúngicos/inmunología , Estadios del Ciclo de Vida , Humanos
6.
Plant Mol Biol ; 114(3): 68, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842571

RESUMEN

Alternaria leaf blight (ALB), caused by a necrotrophic fungus Alternaria brassicae is a serious disease of oleiferous Brassicas resulting in significant yield losses worldwide. No robust resistance against A. brassicae has been identified in the Brassicas. Natural accessions of Arabidopsis show a spectrum of responses to A. brassicae ranging from high susceptibility to complete resistance. To understand the molecular mechanisms of resistance/ susceptibility, we analysed the comparative changes in the transcriptome profile of Arabidopsis accessions with contrasting responses- at different time points post-infection. Differential gene expression, GO enrichment, pathway enrichment, and weighted gene co-expression network analysis (WGCNA) revealed reprogramming of phenylpropanoid biosynthetic pathway involving lignin, hydroxycinnamic acids, scopoletin, anthocyanin genes to be highly associated with resistance against A. brassicae. T-DNA insertion mutants deficient in the biosynthesis of coumarin scopoletin exhibited enhanced susceptibility to A. brassicae. The supplementation of scopoletin to medium or exogenous application resulted in a significant reduction in the A. brassicae growth. Our study provides new insights into the transcriptome dynamics in A. brassicae-challenged Arabidopsis and demonstrates the involvement of coumarins in plant immunity against the Brassica pathogen A. brassicae.


Asunto(s)
Alternaria , Arabidopsis , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Transcriptoma , Arabidopsis/genética , Arabidopsis/microbiología , Arabidopsis/inmunología , Alternaria/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Escopoletina/metabolismo , Perfilación de la Expresión Génica , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
7.
BMC Plant Biol ; 24(1): 131, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383294

RESUMEN

Early blight (EB), caused by Alternaria solani, is a serious problem in tomato production. Plant growth-promoting rhizobacteria promote plant growth and inhibit plant disease. The present study explored the bio-efficacy of synergistic effect of rhizobacterial isolates and ginger powder extract (GPE) against tomato EB disease, singly and in combination. Six fungal isolates from symptomatic tomato plants were identified as A. solani on the basis of morphological features i.e., horizontal septation (6.96 to 7.93 µm), vertical septation (1.50 to 2.22 µm), conidia length (174.2 to 187.6 µm), conidial width (14.09 to 16.52 µm), beak length (93.06 to 102.26 µm), and sporulation. Five of the twenty-three bacterial isolates recovered from tomato rhizosphere soil were nonpathogenic to tomato seedlings and were compatible with each other and with GPE. Out of five isolates tested individually, three isolates (St-149D, Hyd-13Z, and Gb-T23) showed maximum inhibition (56.3%, 48.3%, and 42.0% respectively) against mycelial growth of A. solani. Among combinations, St-149D + GPE had the highest mycelial growth inhibition (76.9%) over the untreated control. Bacterial strains molecularly characterized as Pseudomonas putida, Bacillus subtilis, and Bacillus cereus and were further tested in pot trials through seed bacterization for disease control. Seeds treated with bacterial consortia + GPE had the highest disease suppression percentage (78.1%), followed by St-149D + GPE (72.2%) and Hyd-13Z + GPE (67.5%). Maximum seed germination was obtained in the bacterial consortia + GPE (95.0 ± 2.04) followed by St-149D + GPE (92.5 ± 1.44) and Hyd-13Z + GPE (90.0 ± 2.04) over control (73.8 ± 2.39) and chemical control as standard treatment (90.0 ± 2). Ginger powder extracts also induce the activation of defence-related enzymes (TPC, PO, PPO, PAL, and CAT) activity in tomato plants. These were highly significant in the testing bacterial inoculants against A. solani infection in tomato crops.


Asunto(s)
Inoculantes Agrícolas , Extractos Vegetales , Solanum lycopersicum , Zingiber officinale , Animales , Polvos , Alternaria , Bacterias , Enfermedades de las Plantas/microbiología
8.
BMC Plant Biol ; 24(1): 641, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971719

RESUMEN

BACKGROUND: Early blight and brown leaf spot are often cited as the most problematic pathogens of tomato in many agricultural regions. Their causal agents are Alternaria spp., a genus of Ascomycota containing numerous necrotrophic pathogens. Breeding programs have yielded quantitatively resistant commercial cultivars, but fungicide application remains necessary to mitigate the yield losses. A major hindrance to resistance breeding is the complexity of the genetic determinants of resistance and susceptibility. In the absence of sufficiently resistant germplasm, we sequenced the transcriptomes of Heinz 1706 tomatoes treated with strongly virulent and weakly virulent isolates of Alternaria spp. 3 h post infection. We expanded existing functional gene annotations in tomato and using network statistics, we analyzed the transcriptional modules associated with defense and susceptibility. RESULTS: The induced responses are very distinct. The weakly virulent isolate induced a defense response of calcium-signaling, hormone responses, and transcription factors. These defense-associated processes were found in a single transcriptional module alongside secondary metabolite biosynthesis genes, and other defense responses. Co-expression and gene regulatory networks independently predicted several D clade ethylene response factors to be early regulators of the defense transcriptional module, as well as other transcription factors both known and novel in pathogen defense, including several JA-associated genes. In contrast, the strongly virulent isolate elicited a much weaker response, and a separate transcriptional module bereft of hormone signaling. CONCLUSIONS: Our findings have predicted major defense regulators and several targets for downstream functional analyses. Combined with our improved gene functional annotation, they suggest that defense is achieved through induction of Alternaria-specific immune pathways, and susceptibility is mediated by modulating hormone responses. The implication of multiple specific clade D ethylene response factors and upregulation of JA-associated genes suggests that host defense in this pathosystem involves ethylene response factors to modulate jasmonic acid signaling.


Asunto(s)
Alternaria , Resistencia a la Enfermedad , Redes Reguladoras de Genes , Enfermedades de las Plantas , Solanum lycopersicum , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Solanum lycopersicum/microbiología , Solanum lycopersicum/genética , Solanum lycopersicum/inmunología , Alternaria/fisiología , Alternaria/patogenicidad , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Reguladores del Crecimiento de las Plantas/metabolismo , Etilenos/metabolismo
9.
BMC Plant Biol ; 24(1): 687, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39026164

RESUMEN

BACKGROUND: The effect of azelaic acid (Aza) on the response of tomato plants to Alternaria solani was investigated in this study. After being treated with Aza, tomato plants were infected with A. solani, and their antioxidant, biochemical, and molecular responses were analyzed. RESULTS: The results demonstrated that H2O2 and MDA accumulation increased in control plants after pathogen infection. Aza-treated plants exhibited a remarkable rise in peroxidase (POD) and catalase (CAT) activities during the initial stages of A. solani infection. Gene expression analysis revealed that both Aza treatment and pathogen infection altered the expression patterns of the SlNPR1, SlERF2, SlPR1, and SlPDF1.2 genes. The expression of SlPDF1.2, a marker gene for the jasmonic acid/ethylene (JA/ET) signaling pathway, showed a remarkable increase of 4.2-fold upon pathogen infection. In contrast, for the SlNPR1, a key gene in salicylic acid (SA) pathway, this increased expression was recorded with a delay at 96 hpi. Also, the phytohormone analysis showed significantly increased SA accumulation in plant tissues with disease development. It was also revealed that tissue accumulation of JA in Aza-treated plants was increased following pathogen infection, while it was not increased in plants without pathogen inoculation. CONCLUSION: The results suggest that the resistance induced by Aza is mainly a result of modulations in both SA and JA pathways following complex antioxidant and molecular defense responses in tomato plants during A. solani infection. These findings provide novel information regarding inducing mechanisms of azelaic acid which would add to the current body of knowledge of SAR induction in plants as result of Aza application.


Asunto(s)
Alternaria , Ciclopentanos , Ácidos Dicarboxílicos , Resistencia a la Enfermedad , Enfermedades de las Plantas , Solanum lycopersicum , Solanum lycopersicum/microbiología , Solanum lycopersicum/genética , Solanum lycopersicum/inmunología , Alternaria/fisiología , Ácidos Dicarboxílicos/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácido Salicílico/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Antioxidantes/metabolismo
10.
BMC Plant Biol ; 24(1): 302, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38637784

RESUMEN

BACKGROUND: Early blight (EB) of Tomatoes, caused by Alternaria solani, is a serious fungal disease that adversely affects tomato production. Infection is characterized by dark lesions on leaves, stems, and fruits. Several agrochemicals can be used to control infection, these chemicals may disrupt environmental equilibrium. An alternative technology is needed to address this significant fungal threat. This study was designed to control the growth of EB in tomatoes caused by A. solani, using green-fabricated silver nanoparticles (Ag-NPs). RESULTS: Ag-NPs were synthesized through an environmentally friendly and cost-effective approach using leaf extract of Quercus incana Roxb. (Fagaceae). The physico-chemical characterization of the Ag-NPs was conducted through UV-visible spectroscopy, scanning electron microscopy, X-ray diffraction analysis, and Fourier transform infrared spectrometry. The Ag-NPs produced were round with a mean diameter of 27 nm. The antifungal activity of these Ag-NPs was assessed through in vitro Petri plate and in vitro leaflet assays against A. solani. The green fabricated Ag-NPs exhibited excellent antifungal activity in vitro at a concentration of 100 mg/l against A. solani, inhibiting growth by 98.27 ± 1.58% and 92.79 ± 1.33% during Petri plate and leaflet assays, respectively. CONCLUSION: In conclusion, this study suggests the practical application of green-fabricated Ag-NPs from Q. incana leaf extract against A. solani to effectively control EB disease in tomatoes.


Asunto(s)
Alternaria , Nanopartículas del Metal , Quercus , Solanum lycopersicum , Plata/química , Nanopartículas del Metal/química , Antifúngicos , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/farmacología , Extractos Vegetales/química , Difracción de Rayos X , Antibacterianos
11.
Fungal Genet Biol ; 172: 103895, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679292

RESUMEN

Botrytis cinerea is a necrotrophic pathogen that infects across a broad range of plant hosts, including high-impact crop species. Its generalist necrotrophic behavior stems from its ability to detoxify structurally diverse phytoalexins. The current study aims to provide evidence of the ability of B. cinerea to tolerate the sesquiterpenoid phytoalexin rishitin, which is produced by potato and tomato. While the growth of potato pathogens Phytophthora infestans (late blight) and Alternaria solani (early blight) was severely inhibited by rishitin, B. cinerea was tolerant to rishitin. After incubation of rishitin with the mycelia of B. cinerea, it was metabolized to at least six oxidized forms. Structural analysis of these purified rishitin metabolites revealed a variety of oxidative metabolism including hydroxylation at C7 or C12, ketone formation at C5, and dihydroxylation at the 10,11-olefin. Six rishitin metabolites showed reduced toxicity to P. infestans and A. solani, indicating that B. cinerea has at least 5 distinct enzymatic reactions to detoxify rishitin. Four host-specialized phytopathogenic Botrytis species, namely B. elliptica, B. allii, B. squamosa, and B. tulipae also had at least a partial ability to metabolize rishitin as B. cinerea, but their metabolic capacity was significantly weaker than that of B. cinerea. These results suggest that the ability of B. cinerea to rapidly metabolize rishitin through multiple detoxification mechanisms could be critical for its pathogenicity in potato and tomato.


Asunto(s)
Botrytis , Fitoalexinas , Phytophthora infestans , Enfermedades de las Plantas , Sesquiterpenos , Botrytis/metabolismo , Botrytis/genética , Botrytis/efectos de los fármacos , Sesquiterpenos/metabolismo , Enfermedades de las Plantas/microbiología , Phytophthora infestans/metabolismo , Phytophthora infestans/genética , Phytophthora infestans/crecimiento & desarrollo , Phytophthora infestans/efectos de los fármacos , Solanum lycopersicum/microbiología , Inactivación Metabólica , Alternaria/metabolismo , Alternaria/genética , Redes y Vías Metabólicas , Solanum tuberosum/microbiología
12.
Appl Environ Microbiol ; 90(4): e0005824, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38470179

RESUMEN

Alternaria alternata FB1 is a marine fungus identified as a candidate for plastic degradation in our previous study. This fungus has been recently shown to produce secondary metabolites with significant antimicrobial activity against various pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) and the notorious aquaculture pathogen Vibrio anguillarum. The antibacterial compounds were purified and identified as alternariol (AOH) and its derivative, alternariol monomethyl ether (AME). We found that AOH and AME primarily inhibited pathogenic bacteria (MRSA or V. anguillarum) by disordering cell division and some other key physiological and biochemical processes. We further demonstrated that AOH could effectively inhibit the unwinding activity of MRSA topoisomerases, which are closely related to cell division and are the potential action target of AOH. The antibacterial activities of AOH and AME were verified by using zebrafish as the in vivo model. Notably, AOH and AME did not significantly affect the viability of normal human liver cells at concentrations that effectively inhibited MRSA or V. anguillarum. Finally, we developed the genetic operation system of A. alternata FB1 and blocked the biosynthesis of AME by knocking out omtI (encoding an O-methyl transferase), which facilitated A. alternata FB1 to only produce AOH. The development of this system in the marine fungus will accelerate the discovery of novel natural products and further bioactivity study.IMPORTANCEMore and more scientific reports indicate that alternariol (AOH) and its derivative alternariol monomethyl ether (AME) exhibit antibacterial activities. However, limited exploration of their detailed antibacterial mechanisms has been performed. In the present study, the antibacterial mechanisms of AOH and AME produced by the marine fungus Alternaria alternata FB1 were disclosed in vitro and in vivo. Given their low toxicity on the normal human liver cell line under the concentrations exhibiting significant antibacterial activity against different pathogens, AOH and AME are proposed to be good candidates for developing promising antibiotics against methicillin-resistant Staphylococcus aureus and Vibrio anguillarum. We also succeeded in blocking the biosynthesis of AME, which facilitated us to easily obtain pure AOH. Moreover, based on our previous results, A. alternata FB1 was shown to enable polyethylene degradation.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Micotoxinas , Vibrio , Animales , Humanos , Pez Cebra , Alternaria , Lactonas/farmacología , Lactonas/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Micotoxinas/metabolismo
13.
BMC Microbiol ; 24(1): 291, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097685

RESUMEN

BACKGROUND: Taxol, derived from Taxus trees, is a valuable natural resource for the development of anticancer drugs. Endophytic fungi from Taxus trees are a promising alternative source of Taxol. However, the impact of plant-endophytic microbial interaction on the host's Taxol biosynthesis is largely unknown. RESULTS: In the current study, the diversity of endophytic fungi in three different Taxus species was analyzed using Internal Transcribed Spacer sequencing. A total of 271 Operational Taxonomic Units (OTUs) were identified, grouping into 2 phyla, 8 classes, 16 orders, 19 families, and 19 genera. Alpha and beta diversity analysis indicated significant differences in endophytic fungal communities among the various Taxus trees. At the genus level, Alternaria and Davidiella were predominantly found in T. mairei and T. media, respectively. By utilizing a previously published dataset, a Pearson correlation analysis was conducted to predict the taxol biosynthesis-related fungal genera. Following screening, two isolates of Alternaria (L7 and M14) were obtained. Effect of inoculation with Alternaria isolates on the gene expression and metabolite accumulation of T. mairei was determined by transcriptomic and untargeted metabolomic studies. The co-inoculation assay suggests that the two Alternaria isolates may have a negative regulatory effect on taxol biosynthesis by influencing hormone signaling pathways. CONCLUSION: Our findings will serve as a foundation for advancing the production and utilization of Taxus and will also aid in screening endophytic fungi related to taxol production.


Asunto(s)
Alternaria , Endófitos , Paclitaxel , Taxus , Taxus/microbiología , Paclitaxel/biosíntesis , Endófitos/genética , Endófitos/metabolismo , Endófitos/aislamiento & purificación , Endófitos/clasificación , Alternaria/genética , Alternaria/metabolismo , Alternaria/clasificación , Alternaria/aislamiento & purificación , Filogenia , Hongos/genética , Hongos/metabolismo , Hongos/clasificación , Hongos/aislamiento & purificación , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética
14.
BMC Microbiol ; 24(1): 255, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982358

RESUMEN

BACKGROUND: Alternaria alternata is the primary pathogen of potato leaf spot disease, resulting in significant potato yield losses globally. Endophytic microorganism-based biological control, especially using microorganisms from host plants, has emerged as a promising and eco-friendly approach for managing plant diseases. Therefore, this study aimed to isolate, identify and characterize the endophytic fungi from healthy potato leaves which had great antifungal activity to the potato leaf spot pathogen of A. alternata in vitro and in vivo. RESULTS: An endophytic fungal strain SD1-4 was isolated from healthy potato leaves and was identified as Talaromyces muroii through morphological and sequencing analysis. The strain SD1-4 exhibited potent antifungal activity against the potato leaf spot pathogen A. alternata Lill, with a hyphal inhibition rate of 69.19%. Microscopic and scanning electron microscope observations revealed that the strain SD1-4 grew parallel to, coiled around, shrunk and deformed the mycelia of A. alternata Lill. Additionally, the enzyme activities of chitinase and ß-1, 3-glucanase significantly increased in the hyphae of A. alternata Lill when co-cultured with the strain SD1-4, indicating severe impairment of the cell wall function of A. alternata Lill. Furthermore, the mycelial growth and conidial germination of A. alternata Lill were significantly suppressed by the aseptic filtrate of the strain SD1-4, with inhibition rates of 79.00% and 80.67%, respectively. Decrease of leaf spot disease index from 78.36 to 37.03 was also observed in potato plants treated with the strain SD1-4, along with the significantly increased plant growth characters including plant height, root length, fresh weight, dry weight, chlorophyll content and photosynthetic rate of potato seedlings. CONCLUSION: The endophyte fungus of T. muroii SD1-4 isolated from healthy potato leaves in the present study showed high biocontrol potential against potato leaf spot disease caused by A. alternata via direct parasitism or antifungal metabolites, and had positive roles in promoting potato plant growth.


Asunto(s)
Alternaria , Endófitos , Enfermedades de las Plantas , Hojas de la Planta , Solanum tuberosum , Talaromyces , Alternaria/crecimiento & desarrollo , Alternaria/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Solanum tuberosum/microbiología , Talaromyces/genética , Talaromyces/crecimiento & desarrollo , Endófitos/fisiología , Endófitos/aislamiento & purificación , Endófitos/genética , Hojas de la Planta/microbiología , Hifa/crecimiento & desarrollo , Antibiosis , Quitinasas/metabolismo , Agentes de Control Biológico , Control Biológico de Vectores/métodos
15.
BMC Microbiol ; 24(1): 200, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851702

RESUMEN

There is an urgent need for new bioactive molecules with unique mechanisms of action and chemistry to address the issue of incorrect use of chemical fertilizers and pesticides, which hurts both the environment and the health of humans. In light of this, research was done for this work to isolate, identify, and evaluate the germination-promoting potential of various plant species' fungal endophytes. Zea mays L. (maize) seed germination was examined using spore suspension of 75 different endophytic strains that were identified. Three promising strains were identified through screening to possess the ability mentioned above. These strains Alternaria alternate, Aspergilus flavus, and Aspergillus terreus were isolated from the stem of Tecoma stans, Delonix regia, and Ricinus communis, respectively. The ability of the three endophytic fungal strains to produce siderophore and indole acetic acid (IAA) was also examined. Compared to both Aspergillus flavus as well as Aspergillus terreus, Alternaria alternata recorded the greatest rates of IAA, according to the data that was gathered. On CAS agar versus blue media, all three strains failed to produce siderophores. Moreover, the antioxidant and antifungal potentials of extracts from these fungi were tested against different plant pathogens. The obtained results indicated the antioxidant and antifungal activities of the three fungal strains. GC-Mass studies were carried out to determine the principal components in extracts of all three strains of fungi. The three strains' fungus extracts included both well-known and previously unidentified bioactive compounds. These results may aid in the development of novel plant growth promoters by suggesting three different fungal strains as sources of compounds that may improve seed germination. According to the study that has been given, as unexplored sources of bioactive compounds, fungal endophytes have great potential.


Asunto(s)
Alternaria , Aspergillus , Bioprospección , Endófitos , Germinación , Semillas , Sideróforos , Zea mays , Endófitos/metabolismo , Endófitos/aislamiento & purificación , Endófitos/fisiología , Semillas/microbiología , Semillas/crecimiento & desarrollo , Alternaria/crecimiento & desarrollo , Alternaria/fisiología , Zea mays/microbiología , Zea mays/crecimiento & desarrollo , Aspergillus/metabolismo , Aspergillus/crecimiento & desarrollo , Sideróforos/metabolismo , Bioprospección/métodos , Ácidos Indolacéticos/metabolismo , Antifúngicos/farmacología , Antifúngicos/metabolismo , Hongos/clasificación , Hongos/aislamiento & purificación , Hongos/metabolismo , Hongos/fisiología , Antioxidantes/metabolismo , Aspergillus flavus/crecimiento & desarrollo , Aspergillus flavus/metabolismo
16.
New Phytol ; 242(3): 1289-1306, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38426573

RESUMEN

Jasmonate (JA) and abscisic acid (ABA) are two major phytohormones involved in pathogen resistance. However, how their biosynthesis is regulated is not well understood. We silenced NaWRKY70 in wild tobacco Nicotiana attenuata and determined its role in regulating genes involved in the production of JA, ABA and the phytoalexin capsidiol in response to the fungal pathogen Alternaria alternata using techniques including electrophoretic mobility shift, chromatin immunoprecipitation, transient overexpression and virus-induced gene silencing. Silencing NaWRKY70 dramatically reduced both basal and A. alternata-induced jasmonoyl-isoleucine (JA-Ile) and ABA. Further evidence showed that NaWRKY70 directly binds to the W-boxes of the promoters of NaAOS and NaJAR4 (JA biosynthesis), NaNCED1 and NaXD1-like (ABA biosynthesis), and NaMPK4 (ABA signaling) to activate their expression, while binding but repressing the expression of NaCYP707A4-like3 (ABA degradation). Additionally, NaWRKY70 regulates capsidiol production through its key enzyme genes NaEASs and NaEAHs, and interacts with its regulator NaERF2-like to enhance their expression, whereas ABA negatively regulates capsidiol biosynthesis. Our results highlight the key role of NaWRKY70 in controlling both JA-Ile and ABA production, as well as capsidiol production, thus providing new insight into the defense mechanism of plant resistance to A. alternata.


Asunto(s)
Alternaria , Isoleucina/análogos & derivados , Nicotiana , Reguladores del Crecimiento de las Plantas , Sesquiterpenos , Nicotiana/genética , Fitoalexinas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ciclopentanos/metabolismo , Ácido Abscísico/metabolismo , Oxilipinas/metabolismo , Regulación de la Expresión Génica de las Plantas
17.
Plant Cell Environ ; 47(4): 1224-1237, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38164085

RESUMEN

Plants employ a multilayered immune system to combat pathogens. In one layer, recognition of Pathogen- or Microbe-Associated Molecular Patterns or elicitors, triggers a cascade that leads to defence against the pathogen and Pattern Triggered Immunity. Secondary or specialised metabolites (SMs) are expected to play a role, because they are potentially anti-fungal compounds. Tomato (Solanum lycopersicum) plants inoculated with Alternaria solani s.l. show symptoms of infection after inoculation. Plants inoculated with Alternaria alternata remain symptomless. We hypothesised that pattern-triggered induction of resistance related metabolites in tomato contributes to the resistance against A. alternata. We compared the metabolomic profile (metabolome) of tomato after treatments with A. alternata, A. solani and the fungal elicitor chitin, and identified SMs involved in early defence of tomato plants. We revealed differential metabolome fingerprints. The composition of A. alternata and chitin induced metabolomes show larger overlap with each other than with the A. solani induced metabolome. We identify 65 metabolites possibly associated with PTI in tomato plants, including NAD and trigonelline. We confirm that trigonelline inhibits fungal growth in vitro at physiological concentrations. Thus, a true pattern-triggered, chemical defence is mounted against A. alternata, which contains anti-fungal compounds that could be interesting for crop protection strategies.


Asunto(s)
Proteínas de Plantas , Solanum lycopersicum , Proteínas de Plantas/metabolismo , Resistencia a la Enfermedad , Enfermedades de las Plantas/microbiología , Alternaria/metabolismo , Quitina
18.
Plant Cell Environ ; 47(9): 3619-3637, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38747645

RESUMEN

Potassium (K) fertilisation has frequently been shown to enhance plant resistance against pathogens, though the mechanisms remain elusive. This study investigates the interaction dynamics between Nicotiana benthamiana and the pathogen Alternaria longipes under different planta K levels. On the host side, adding K activated the expressions of three NLR (nucleotide-binding domain and leucine-rich repeat-containing proteins) resistance genes, including NbRPM1, NbR1B23 and NbNBS12. Silencing these NLRs attenuated resistance in high-K (HK, 40.8 g/kg) plant, whereas their overexpression strengthened resistance in low-K (LK, 23.9 g/kg) plant. Typically, these NLRs mainly strengthened plant resistance via promoting the expression of pathogenesis-related genes (PRs), ROS burst and synthesis of antifungal metabolites in HK plant. On the pathogen side, the expression of effectors HKCSP1, HKCSP2 and LKCSP were shown to be related to planta K content. A. longipes mainly expressed effectors HKCSP1 and HKCSP2 in HK plant to interfere host resistance. HKCSP1 physically interacted with NbRPM1 to promote the degradation of NbRPM1, then attenuated related resistance in HK N. benthamiana. Meanwhile, HKCSP2 directly interacted with NbPR5 to suppress resistance in HK plant. In LK plant, A. longipes mainly deployed LKCSP that interacted with NbR1B23 to interfere reduce resistance in N. benthamiana. Overall, our research insights that both pathogen and host mobilise distinct strategies to outcompete each other during interactions in different K nutrient environments.


Asunto(s)
Alternaria , Nicotiana , Enfermedades de las Plantas , Proteínas de Plantas , Potasio , Nicotiana/microbiología , Nicotiana/genética , Nicotiana/metabolismo , Alternaria/fisiología , Enfermedades de las Plantas/microbiología , Potasio/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Proteínas NLR/metabolismo , Proteínas NLR/genética
19.
Microb Pathog ; 193: 106750, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38906491

RESUMEN

The antifungal activity of Serratia plymuthica CCGG2742, a bacterial strain isolated from grapes berries skin, against a phytopathogenic fungus isolated from blueberries was evaluated in vitro and in vivo. In order to characterize the wild fungal isolate, phylogenetic analysis using concatenated DNA sequences from the RPB2 and TEF1 genes and of the ITS region was performed, allowing the identification of the fungal isolate that was called Alternaria tenuissima CC17. Hyphae morphology, mycelium ultrastructure, conidia and reproductive structures were in agreement with the phylogenetic analysis. The antifungal activity of the S. plymuthica strain was dependent on the composition of the culture medium. The greatest inhibition of mycelial growth of A. tenuissima CC17 by S. plymuthica CCGG2742 was observed on YTS medium, which lacks of an easily assimilable carbon source. Fungal growth medium supplemented with 50 % of bacterial supernatant decreased the conidia germination of A. tenuissima CC17 up to 32 %. Preventive applications of S. plymuthica CCGG2742 to blueberries and tomato leaves at conidia:bacteria ratio of 1:100, protected in 77.8 ± 4.6 % and 98.2 ± 0.6 % to blueberries and tomato leaves from infection caused by A. tenuissima CC17, respectively. To the best of our knowledge, this is the first report on the antifungal activity of S. plymuthica against A. tenuissima, which could be used as a biological control agent of plant diseases caused by this fungal species. In addition, the results of this work could be a starting point to attribute the real importance of A. tenuissima as a pathogen of blueberries in Chile, which until now had been considered almost exclusively to A. alternata. Likewise, this research could be relevant to start developing highly effective strategies based on S. plymuthica CCGG2742 for the control of this important phytopathogenic fungus.


Asunto(s)
Alternaria , Antibiosis , Filogenia , Enfermedades de las Plantas , Serratia , Esporas Fúngicas , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Alternaria/crecimiento & desarrollo , Alternaria/genética , Serratia/genética , Serratia/fisiología , Esporas Fúngicas/crecimiento & desarrollo , Micelio/crecimiento & desarrollo , Antifúngicos/farmacología , Solanum lycopersicum/microbiología , Hifa/crecimiento & desarrollo , Medios de Cultivo/química , Hojas de la Planta/microbiología , Vitis/microbiología
20.
Microb Pathog ; 190: 106604, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490458

RESUMEN

Early blight caused by Alternaria solani is a common foliar disease of potato around the world, and serious infections result in reduced yields and marketability due to infected tubers. The major aim of this study is to figure out the synergistic effect between microorganism and fungicides and to evaluate the effectiveness of Bacillus subtilis NM4 in the control of early blight in potato. Based on its colonial morphology and a 16S rRNA analysis, a bacterial antagonist isolated from kimchi was identified as B. subtilis NM4 and it has strong antifungal and anti-oomycete activity against several phytopathogenic fungi and oomycetes. The culture filtrate of strain NM4 with the fungicide effectively suppressed the mycelial growth of A. solani, with the highest growth inhibition rate of 83.48%. Although exposure to culture filtrate prompted hyphal alterations in A. solani, including bulging, combining it with the fungicide caused more severe hyphal damage with continuous bulging. Surfactins and fengycins, two lipopeptide groups, were isolated and identified as the main compounds in two fractions using LC-ESI-MS. Although the surfactin-containing fraction failed to inhibit growth, the fengycin-containing fraction, alone and in combination with chlorothalonil, restricted mycelial development, producing severe hyphal deformations with formation of chlamydospores. A pot experiment combining strain NM4, applied as a broth culture, with fungicide, at half the recommended concentration, resulted in a significant reduction in potato early blight severity. Our results indicate the feasibility of an integrated approach for the management of early blight in potato that can reduce fungicide application rates, promoting a healthy ecosystem in agriculture.


Asunto(s)
Alternaria , Bacillus subtilis , Fungicidas Industriales , Lipopéptidos , Nitrilos , Enfermedades de las Plantas , Solanum tuberosum , Solanum tuberosum/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Alternaria/efectos de los fármacos , Alternaria/crecimiento & desarrollo , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/crecimiento & desarrollo , Fungicidas Industriales/farmacología , Nitrilos/farmacología , Lipopéptidos/farmacología , ARN Ribosómico 16S/genética , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Péptidos Cíclicos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA