Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.810
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 148(4): 679-89, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22341441

RESUMEN

Understanding the pathway and kinetic mechanisms of transcription initiation is essential for quantitative understanding of gene regulation, but initiation is a multistep process, the features of which can be obscured in bulk analysis. We used a multiwavelength single-molecule fluorescence colocalization approach, CoSMoS, to define the initiation pathway at an activator-dependent bacterial σ(54) promoter that recapitulates characteristic features of eukaryotic promoters activated by enhancer binding proteins. The experiments kinetically characterize all major steps of the initiation process, revealing heretofore unknown features, including reversible formation of two closed complexes with greatly differing stabilities, multiple attempts for each successful formation of an open complex, and efficient release of σ(54) from the polymerase core at the start of transcript synthesis. Open complexes are committed to transcription, suggesting that regulation likely targets earlier steps in the mechanism. CoSMoS is a powerful, generally applicable method to elucidate the mechanisms of transcription and other multistep biochemical processes.


Asunto(s)
Regiones Promotoras Genéticas , Factor sigma/metabolismo , Análisis Espectral/métodos , Transcripción Genética , Secuencia de Bases , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Cinética , Datos de Secuencia Molecular , Salmonella typhimurium/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(41): e2414037121, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39356673

RESUMEN

The ultrafast photochemical reaction mechanism, transient spectra, and transition kinetics of the human blue cone visual pigment have been recorded at room temperature. Ultrafast time-resolved absorption spectroscopy revealed the progressive formation and decay of several metastable photo-intermediates, corresponding to the Batho to Meta-II photo-intermediates previously observed with bovine rhodopsin and human green cone opsin, on the picosecond to millisecond timescales following pulsed excitation. The experimental data reveal several interesting similarities and differences between the photobleaching sequences of bovine rhodopsin, human green cone opsin, and human blue cone opsin. While Meta-II formation kinetics are comparable between bovine rhodopsin and blue cone opsin, the transition kinetics of earlier photo-intermediates and qualitative characteristics of the Meta-I to Meta-II transition are more similar for blue cone opsin and green cone opsin. Additionally, the blue cone photo-intermediate spectra exhibit a high degree of overlap with uniquely small spectral shifts. The observed variation in Meta-II formation kinetics between rod and cone visual pigments is explained based on key structural differences.


Asunto(s)
Temperatura , Humanos , Cinética , Bovinos , Animales , Opsinas de los Conos/metabolismo , Opsinas de los Conos/química , Rodopsina/química , Rodopsina/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Opsinas de Bastones/química , Opsinas de Bastones/metabolismo , Pigmentos Retinianos/química , Pigmentos Retinianos/metabolismo , Análisis Espectral/métodos
3.
Proc Natl Acad Sci U S A ; 121(39): e2408459121, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39298480

RESUMEN

We report a neutron spin echo (NSE) study of the nanoscale dynamics of the cell-cell adhesion cadherin-catenin complex bound to vinculin. Our measurements and theoretical physics analyses of the NSE data reveal that the dynamics of full-length α-catenin, ß-catenin, and vinculin residing in the cadherin-catenin-vinculin complex become activated, involving nanoscale motions in this complex. The cadherin-catenin complex is the central component of the cell-cell adherens junction (AJ) and is fundamental to embryogenesis, tissue wound healing, neuronal plasticity, cancer metastasis, and cardiovascular health and disease. A highly dynamic cadherin-catenin-vinculin complex provides the molecular dynamics basis for the flexibility and elasticity that are necessary for the AJs to function as force transducers. Our theoretical physics analysis provides a way to elucidate these driving nanoscale motions within the complex without requiring large-scale numerical simulations, providing insights not accessible by other techniques. We propose a three-way "motorman" entropic spring model for the dynamic cadherin-catenin-vinculin complex, which allows the complex to function as a flexible and elastic force transducer.


Asunto(s)
Cadherinas , Vinculina , Vinculina/metabolismo , Vinculina/química , Cadherinas/metabolismo , Cadherinas/química , alfa Catenina/metabolismo , alfa Catenina/química , Humanos , beta Catenina/metabolismo , beta Catenina/química , Unión Proteica , Uniones Adherentes/metabolismo , Neutrones , Simulación de Dinámica Molecular , Análisis Espectral/métodos , Animales , Cateninas/metabolismo , Adhesión Celular/fisiología
4.
Q Rev Biophys ; 57: e11, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39434618

RESUMEN

The parallel and synergistic developments of atomic resolution structural information, new spectroscopic methods, their underpinning formalism, and the application of sophisticated theoretical methods have led to a step function change in our understanding of photosynthetic light harvesting, the process by which photosynthetic organisms collect solar energy and supply it to their reaction centers to initiate the chemistry of photosynthesis. The new spectroscopic methods, in particular multidimensional spectroscopies, have enabled a transition from recording rates of processes to focusing on mechanism. We discuss two ultrafast spectroscopies - two-dimensional electronic spectroscopy and two-dimensional electronic-vibrational spectroscopy - and illustrate their development through the lens of photosynthetic light harvesting. Both spectroscopies provide enhanced spectral resolution and, in different ways, reveal pathways of energy flow and coherent oscillations which relate to the quantum mechanical mixing of, for example, electronic excitations (excitons) and nuclear motions. The new types of information present in these spectra provoked the application of sophisticated quantum dynamical theories to describe the temporal evolution of the spectra and provide new questions for experimental investigation. While multidimensional spectroscopies have applications in many other areas of science, we feel that the investigation of photosynthetic light harvesting has had the largest influence on the development of spectroscopic and theoretical methods for the study of quantum dynamics in biology, hence the focus of this review. We conclude with key questions for the next decade of this review.


Asunto(s)
Complejos de Proteína Captadores de Luz , Fotosíntesis , Análisis Espectral , Análisis Espectral/métodos , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/química , Teoría Cuántica
5.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35193966

RESUMEN

Photoacoustic (PA) imaging offers promise for biomedical applications due to its ability to image deep within biological tissues while providing detailed molecular information; however, its detection sensitivity is limited by high background signals that arise from endogenous chromophores. Genetic reporter proteins with photoswitchable properties enable the removal of background signals through the subtraction of PA images for each light-absorbing form. Unfortunately, the application of photoswitchable chromoproteins for tumor-targeted imaging has been hampered by the lack of an effective targeted delivery scheme; that is, photoswitchable probes must be delivered in vivo with high targeting efficiency and specificity. To overcome this limitation, we have developed a tumor-targeting delivery system in which tumor-homing bacteria (Escherichia coli) are exploited as carriers to affect the point-specific delivery of genetically encoded photochromic probes to the tumor area. To improve the efficiency of the desired background suppression, we engineered a phytochrome-based reporter protein (mDrBphP-PCMm/F469W) that displays higher photoswitching contrast than those in the current state of the art. Photoacoustic computed tomography was applied to achieve good depth and resolution in the context of in vivo (mice) imaging. The present system effectively integrates a genetically encoded phytochrome-based reporter protein, PA imaging, and synthetic biology (GPS), to achieve essentially background-suppressed tumor-targeted PA monitoring in deep-seated tissues. The ability to image tumors at substantial depths may enable target-specific cancer diagnoses to be made with greater sensitivity, fidelity, and specificity.


Asunto(s)
Neoplasias/diagnóstico por imagen , Técnicas Fotoacústicas/métodos , Fitocromo/metabolismo , Animales , Línea Celular Tumoral , Escherichia coli , Femenino , Genes Reporteros/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Imagen Molecular/métodos , Fitocromo/farmacología , Análisis Espectral/métodos , Tomografía Computarizada por Rayos X/métodos
6.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35115405

RESUMEN

Two-dimensional (2D) optical spectroscopy contains cross-peaks that are helpful features for determining molecular structure and monitoring energy transfer, but they can be difficult to resolve from the much more intense diagonal peaks. Transient absorption (TA) spectra contain transitions similar to cross-peaks in 2D spectroscopy, but in most cases they are obscured by the bleach and stimulated emission peaks. We report a polarization scheme, <0°,0°,+θ2(t2),-θ2(t2)>, that can be easily implemented in the pump-probe beam geometry, used most frequently in 2D and TA spectroscopy. This scheme removes the diagonal peaks in 2D spectroscopies and the intense bleach/stimulated emission peaks in TA spectroscopies, thereby resolving the cross-peak features. At zero pump-probe delay, θ2 = 60° destructively interferes two Feynman paths, eliminating all signals generated by field interactions with four parallel transition dipoles, and the intense diagonal and bleach/stimulated emission peaks. At later delay times, θ2(t2) is adjusted to compensate for anisotropy caused by rotational diffusion. When implemented with TA spectroscopy or microscopy, the pump-probe spectrum is dominated by the cross-peak features. The local oscillator is also attenuated, which enhances the signal two times. This overlooked polarization scheme reduces spectral congestion by eliminating diagonal peaks in 2D spectra and enables TA spectroscopy to measure similar information given by cross-peaks in 2D spectroscopy.


Asunto(s)
Análisis Espectral/métodos , Tomografía Óptica/métodos
7.
Annu Rev Biochem ; 78: 903-28, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19489736

RESUMEN

SNAREs are essential components of the machinery for Ca(2+)-triggered fusion of synaptic vesicles with the plasma membrane, resulting in neurotransmitter release into the synaptic cleft. Although much is known about their biophysical and structural properties and their interactions with accessory proteins such as the Ca(2+) sensor synaptotagmin, their precise role in membrane fusion remains an enigma. Ensemble studies of liposomes with reconstituted SNAREs have demonstrated that SNAREs and accessory proteins can trigger lipid mixing/fusion, but the inability to study individual fusion events has precluded molecular insights into the fusion process. Thus, this field is ripe for studies with single-molecule methodology. In this review, we discuss applications of single-molecule approaches to observe reconstituted SNAREs, their complexes, associated proteins, and their effect on biological membranes. Some of the findings are provocative, such as the possibility of parallel and antiparallel SNARE complexes or of vesicle docking with only syntaxin and synaptobrevin, but have been confirmed by other experiments.


Asunto(s)
Neuronas/química , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Análisis Espectral/métodos , Animales , Fluorescencia , Humanos , Microscopía de Fuerza Atómica , Neuronas/metabolismo , Sinaptotagminas/química
8.
Neuroimage ; 298: 120793, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39153520

RESUMEN

Diffuse correlation spectroscopy (DCS) is a powerful tool for assessing microvascular hemodynamic in deep tissues. Recent advances in sensors, lasers, and deep learning have further boosted the development of new DCS methods. However, newcomers might feel overwhelmed, not only by the already-complex DCS theoretical framework but also by the broad range of component options and system architectures. To facilitate new entry to this exciting field, we present a comprehensive review of DCS hardware architectures (continuous-wave, frequency-domain, and time-domain) and summarize corresponding theoretical models. Further, we discuss new applications of highly integrated silicon single-photon avalanche diode (SPAD) sensors in DCS, compare SPADs with existing sensors, and review other components (lasers, sensors, and correlators), as well as data analysis tools, including deep learning. Potential applications in medical diagnosis are discussed and an outlook for the future directions is provided, to offer effective guidance to embark on DCS research.


Asunto(s)
Análisis Espectral , Humanos , Análisis Espectral/métodos , Análisis Espectral/instrumentación , Aprendizaje Profundo , Hemodinámica/fisiología
9.
Anal Chem ; 96(9): 3733-3738, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38373274

RESUMEN

Accurate detection and screening of Pb in biological samples is helpful to assess the risk associated with lead pollution to human health. However, conventional atomic spectroscopic instruments are bulky and cumbersome, requiring additional sample pretreatment equipment, and difficult to perform field analysis with. Herein, a portable point discharge (PD) microplasma-optical emission spectrometric (OES) device with online digestion function is designed for field and sensitive determination of lead in biological samples. With rice as a model, online digestion of a batch of six 50 mg samples can be achieved in the HNO3 and H2O2 system within 25 min by a temperature control and timing module. Compared to the conventional microwave digestion, the digestion efficiency of this device reaches 97%. Pb in digestion solution is converted into volatile species by hydride generation (HG) and directly introduced into PD-OES for excitation and detection by a self-designed rotatable and telescopic cutoff gas sampling column. Six samples can be successively detected in 2 min, and argon consumption of the whole process is only <800 mL. Under the optimized conditions, the detection limit of Pb is 0.018 mg kg-1 (0.9 µg L-1) and precision is 3.6%. The accuracy and practicability of the present device are verified by measuring several certified reference materials and real biological samples. By virtue of small size (23.5 × 17 × 8.5 cm3), lightweight (2.5 kg), and low energy consumption (24.3 W), the present device provides a convenient tool for field analysis of toxic elements in biological samples.


Asunto(s)
Plomo , Dispositivos Ópticos , Humanos , Peróxido de Hidrógeno , Análisis Espectral/métodos , Digestión
10.
Anal Chem ; 96(23): 9478-9485, 2024 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-38807457

RESUMEN

A major challenge in forensic anthropology and bioarcheology is the development of fast and effective methods for sorting commingled remains. This study assesses how portable laser-induced breakdown spectroscopy (LIBS) can be used to group skeletal remains based on their elemental profiles. LIBS spectra were acquired from the remains of 45 modern skeletons, with a total data set of 8388 profiles from 1284 bones. Spectral feature selection was conducted to reduce the spectral profiles to the peaks exhibiting the highest variation among individuals. Emission lines corresponding to 9 elements (Ca, P, C, K, Mg, Na, Al, Ba, and Sr) were found important for classification. Linear discriminant analysis (LDA) was concurrently used to classify each spectral profile. From the 45 individuals, each LIBS spectrum was successfully sorted to its corresponding skeleton with an average accuracy of 87%. These findings indicate that variation exists among the LIBS profiles of individuals' skeletal remains, highlighting the potential for portable LIBS technology to aid in the sorting of commingled remains.


Asunto(s)
Huesos , Rayos Láser , Análisis Espectral , Humanos , Análisis Espectral/métodos , Huesos/química , Análisis Discriminante , Antropología Forense/métodos , Restos Mortales/química
11.
Anal Chem ; 96(28): 11508-11515, 2024 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-38953489

RESUMEN

26% of the world's population lacks access to clean drinking water; clean water and sanitation are major global challenges highlighted by the UN Sustainable Development Goals, indicating water security in public water systems is at stake today. Water monitoring using precise instruments by skilled operators is one of the most promising solutions. Despite decades of research, the professionalism-convenience trade-off when monitoring ubiquitous metal ions remains the major challenge for public water safety. Thus, to overcome these disadvantages, an easy-to-use and highly sensitive visual method is desirable. Herein, an innovative strategy for one-to-nine metal detection is proposed, in which a novel thiourea spectroscopic probe with high 9-metal affinity is synthesized, acting as "one", and is detected based on the 9 metal-thiourea complexes within portable spectrometers in the public water field; this is accomplished by nonspecialized personnel as is also required. During the processing of multimetal analysis, issues arise due to signal overlap and reproducibility problems, leading to constrained sensitivity. In this innovative endeavor, machine learning (ML) algorithms were employed to extract key features from the composite spectral signature, addressing multipeak overlap, and completing the detection within 30-300 s, thus achieving a detection limit of 0.01 mg/L and meeting established conventional water quality standards. This method provides a convenient approach for public drinking water safety testing.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Agua Potable/análisis , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Tiourea/química , Análisis Espectral/métodos , Aprendizaje Automático
12.
Anal Chem ; 96(18): 7038-7046, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38575850

RESUMEN

Laser-induced breakdown spectroscopy (LIBS) imaging continues to gain strength as an influential bioanalytical technique, showing intriguing potential in the field of clinical analysis. This is because hyperspectral LIBS imaging allows for rapid, comprehensive elemental analysis, covering elements from major to trace levels consistently year after year. In this study, we estimated the potential of a multivariate spectral data treatment approach based on a so-called convex envelope method to detect exotic elements (whether they are minor or in trace amounts) in biopsy tissues of patients with occupational exposure-related diseases. More precisely, we have developed an approach called Interesting Features Finder (IFF), which initially allowed us to identify unexpected elements without any preconceptions, considering only the set of spectra contained in a LIBS hyperspectral data cube. This task is, in fact, almost impossible with conventional chemometric tools, as it entails identifying a few exotic spectra among several hundred thousand others. Once this detection was performed, a second approach based on correlation was used to locate their distribution in the biopsies. Through this unique data analysis pipeline to processing massive LIBS spectroscopic data, it was possible to detect and locate exotic elements such as tin and rhodium in a patient's tissue section, ultimately leading to a possible reclassification of their lung condition as an occupational disease. This review will thus demonstrate the potential of this new diagnostic tool based on LIBS imaging in addressing the shortcomings of approaches developed thus far. The proposed data processing approach naturally transcends this specific framework and can be leveraged across various domains of analytical chemistry, where the detection of rare events is concealed within extensive data sets.


Asunto(s)
Enfermedades Pulmonares , Humanos , Biopsia , Enfermedades Pulmonares/diagnóstico , Enfermedades Pulmonares/patología , Enfermedades Profesionales/diagnóstico , Enfermedades Profesionales/patología , Rayos Láser , Análisis Espectral/métodos , Pulmón/patología , Pulmón/química , Pulmón/diagnóstico por imagen
13.
Acc Chem Res ; 56(12): 1494-1504, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37163574

RESUMEN

Chemists have long been fascinated by chirality, water, and interfaces, making tremendous progress in each research area. However, the chemistry emerging from the interplay of chirality, water, and interfaces has been difficult to study due to technical challenges, creating a barrier to elucidating biological functions at interfaces. Most biopolymers (proteins, DNA, and RNA) fold into macroscopic chiral structures to perform biological functions. Their folding requires water, but water behaves differently at interfaces where the bulk water hydrogen-bonding network terminates. A question arises as to how water molecules rearrange to minimize free energy at interfaces while stabilizing the macroscopic folding of biopolymers to support biological function. This question is central to solving many research challenges, including the molecular origin of biological homochirality, folding and insertion of proteins into cell membranes, and the design of heterogeneous biocatalysts. Researchers can resolve these challenges if they have the theoretical tools to accurately predict molecular behaviors of water and biopolymers at various interfaces. However, developing such tools requires validation by the experimental data. These experimental data are scarce because few physical methods can simultaneously distinguish chiral folding of the biopolymers, separate signals of interfaces from the overwhelming background of bulk solvent, and differentiate water in hydration shells of the polymers from water elsewhere.We recently illustrated these very capacities of chirality-sensitive vibrational sum frequency generation spectroscopy (chiral SFG). While chiral SFG theory dictates that the method is surface-specific under the condition of electronic nonresonance, we show the method can distinguish chiral folding of proteins and DNA and probe water structures in the first hydration shell of proteins at interfaces. Using amide I signals, we observe protein folding into ß-sheets without background signals from α-helices and disordered structures at interfaces, thereby demonstrating the effect of 2D crowding on protein folding. Also, chiral SFG signals of C-H stretches are silent from single-stranded DNA, but prominent for canonical antiparallel duplexes as well as noncanonical parallel duplexes at interfaces, allowing for sensing DNA secondary structures and hybridization. In establishing chiral SFG for detecting protein hydration structures, we observe an H218O isotopic shift that reveals water contribution to the chiral SFG spectra. Additionally, the phase of the O-H stretching bands flips when the protein chirality is switched from L to D. These experimental results agree with our simulated chiral SFG spectra of water hydrating the ß-sheet protein at the vacuum-water interface. The simulations further reveal that over 90% of the total chiral SFG signal comes from water in the first hydration shell. We conclude that the chiral SFG signals originate from achiral water molecules that assemble around the protein into a chiral supramolecular structure with chirality transferred from the protein. As water O-H stretches can reveal hydrogen-bonding interactions, chiral SFG shows promise in probing the structures and dynamics of water-biopolymer interactions at interfaces. Altogether, our work has created an experimental and computational framework for chiral SFG to elucidate biological functions at interfaces, setting the stage for probing the intricate chemical interplay of chirality, water, and interfaces.


Asunto(s)
Proteínas , Agua , Proteínas/química , Análisis Espectral/métodos , Pliegue de Proteína , Hidrógeno
14.
Chemphyschem ; 25(15): e202400191, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38703034

RESUMEN

Herein, we report a spectroscopic study of N-acetyl-L-cysteine, an important antioxidant drug, using Fourier-transform microwave techniques and in isolated conditions. Two conformers are observed, where most stable structure adopts a cis disposition, and the second conformer has a lower abundance and adopts a trans disposition. The rotational constants and the barriers to methyl internal rotation are determined for each conformer, allowing a precise conformation identification. The results show that the cis form adopts an identical structure in the crystal, solution, and gas phases. Additionally, the structures are contrasted against those of cysteine.


Asunto(s)
Acetilcisteína , Acetilcisteína/química , Cisteína/química , Rotación , Análisis Espectral/métodos , Conformación Molecular , Microondas
15.
Chem Rev ; 122(3): 4257-4321, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35037757

RESUMEN

Over the past few decades, coherent broadband spectroscopy has been widely used to improve our understanding of ultrafast processes (e.g., photoinduced electron transfer, proton transfer, and proton-coupled electron transfer reactions) at femtosecond resolution. The advances in femtosecond laser technology along with the development of nonlinear multidimensional spectroscopy enabled further insights into ultrafast energy transfer and carrier relaxation processes in complex biological and material systems. New discoveries and interpretations have led to improved design principles for optimizing the photophysical properties of various artificial systems. In this review, we first provide a detailed theoretical framework of both coherent broadband and two-dimensional electronic spectroscopy (2DES). We then discuss a selection of experimental approaches and considerations of 2DES along with best practices for data processing and analysis. Finally, we review several examples where coherent broadband and 2DES were employed to reveal mechanisms of photoinitiated ultrafast processes in molecular, biological, and material systems. We end the review with a brief perspective on the future of the experimental techniques themselves and their potential to answer an even greater range of scientific questions.


Asunto(s)
Electrones , Protones , Electrónica , Transferencia de Energía , Análisis Espectral/métodos
16.
Chem Rev ; 122(24): 17339-17396, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36278801

RESUMEN

Femtosecond nonlinear spectroscopy is the main tool for the time-resolved detection of photophysical and photochemical processes. Since most systems of chemical interest are rather complex, theoretical support is indispensable for the extraction of the intrinsic system dynamics from the detected spectroscopic responses. There exist two alternative theoretical formalisms for the calculation of spectroscopic signals, the nonlinear response-function (NRF) approach and the spectroscopic equation-of-motion (EOM) approach. In the NRF formalism, the system-field interaction is assumed to be sufficiently weak and is treated in lowest-order perturbation theory for each laser pulse interacting with the sample. The conceptual alternative to the NRF method is the extraction of the spectroscopic signals from the solutions of quantum mechanical, semiclassical, or quasiclassical EOMs which govern the time evolution of the material system interacting with the radiation field of the laser pulses. The NRF formalism and its applications to a broad range of material systems and spectroscopic signals have been comprehensively reviewed in the literature. This article provides a detailed review of the suite of EOM methods, including applications to 4-wave-mixing and N-wave-mixing signals detected with weak or strong fields. Under certain circumstances, the spectroscopic EOM methods may be more efficient than the NRF method for the computation of various nonlinear spectroscopic signals.


Asunto(s)
Rayos Láser , Luz , Análisis Espectral/métodos
17.
Anal Bioanal Chem ; 416(4): 993-1000, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38063906

RESUMEN

Precisely distinguishing between malignant and benign lung tumors is pivotal for suggesting therapeutic strategies and enhancing prognosis, yet this differentiation remains a daunting task. The growth rates, metastatic potentials, and prognoses of benign and malignant tumors differ significantly. Developing specialized treatment protocols tailored to various tumor types is essential for enhancing patient survival outcomes. Employing laser-induced breakdown spectroscopy (LIBS) in conjunction with a deep learning methodology, we attained a high-precision differential diagnosis of malignant and benign lung tumors. First, LIBS spectra of malignant tumors, benign tumors, and normal tissues were collected. The spectra were preprocessed and Z score normalized. Then, the intensities of the Mg II 279.6, Mg I 285.2, Ca II 393.4, Cu II 518.3, and Na I 589.6 nm lines were analyzed in the spectra of the three tissues. The analytical results show that the elemental lines have different contents in the three tissues and can be used as a basis for distinguishing between the three tissues. Finally, the RF-1D ResNet model was constructed by combining the feature importance assessment method of random forest (RF) and one-dimensional residual network (1D ResNet). The classification accuracy, precision, sensitivity, and specificity of the RF-1D ResNet model were 91.1%, 91.6%, 91.3%, and 91.3%, respectively. And the model demonstrates superior performance with an area under the curve (AUC) value of 0.99. The above results show that combining LIBS with deep learning is an effective way to diagnose malignant and benign tumors.


Asunto(s)
Aprendizaje Profundo , Neoplasias Pulmonares , Humanos , Análisis Espectral/métodos , Neoplasias Pulmonares/diagnóstico , Rayos Láser
18.
Macromol Rapid Commun ; 45(20): e2400374, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39018484

RESUMEN

Particle size evolution in seeded semibatch emulsion polymerization is monitored by two real-time monitoring techniques: online turbidity spectroscopy (TUS) and inline photon density wave spectroscopy (PDWS). An automatic dilution system that withdraws a sample from the reactor and upon dilution transfers to the measurement cell is used for the online TUS analysis. A PDWS probe is immersed in the reactor and collects inline the scattered light directly from the reacting latex. The particle sizes retrieved from TUS and PDWS are compared to offline dynamic light scattering (DLS) values. The particle size obtained by TUS is close to the intensity-average particle size obtained offline by DLS, while the particle size obtained by PDWS lies closer to the number-average particle size from DLS.


Asunto(s)
Emulsiones , Tamaño de la Partícula , Fotones , Polimerizacion , Análisis Espectral , Emulsiones/química , Análisis Espectral/métodos , Nefelometría y Turbidimetría , Dispersión Dinámica de Luz
19.
J Chem Phys ; 160(17)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38748024

RESUMEN

Chromones are a class of naturally occurring compounds, renowned for their diverse biological activities with significant relevance in medicine and biochemistry. This study marks the first analysis of rotational spectra of both the chromone monomer and its monohydrate through Fourier transform microwave spectroscopy. The observation of nine mono-substituted 13C isotopologues facilitated a semi-experimental determination of the equilibrium structure of the chromone monomer. In the case of chromone monohydrate, two distinct isomers were identified, each characterized by a combination of O-H⋯O and C-H⋯O hydrogen bonds involving the chromone's carbonyl group. This study further delved into intermolecular non-covalent interactions, employing different theoretical approaches. The relative population ratio of the two identified isomers was estimated to be about 2:1 within the supersonic jet.


Asunto(s)
Cromonas , Cromonas/química , Enlace de Hidrógeno , Conformación Molecular , Análisis Espectral/métodos , Microondas , Estructura Molecular
20.
J Chem Phys ; 160(18)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38726933

RESUMEN

We investigate how electronic excitations and subsequent dissipative dynamics in the water soluble chlorophyll-binding protein (WSCP) are connected to features in two-dimensional (2D) electronic spectra, thereby comparing results from our theoretical approach with experimental data from the literature. Our calculations rely on third-order response functions, which we derived from a second-order cumulant expansion of the dissipative dynamics involving the partial ordering prescription, assuming a fast vibrational relaxation in the potential energy surfaces of excitons. Depending on whether the WSCP complex containing a tetrameric arrangement of pigments composed of two dimers with weak excitonic coupling between them binds the chlorophyll variant Chl a or Chl b, the resulting linear absorption and circular dichroism spectra and particularly the 2D spectra exhibit substantial differences in line shapes. These differences between Chl a WSCP and Chl b WSCP cannot be explained by the slightly modified excitonic couplings within the two variants. In the case of Chl a WSCP, the assumption of equivalent dimer subunits facilitates a reproduction of substantial features from the experiment by the calculations. In contrast, for Chl b WSCP, we have to assume that the sample, in addition to Chl b dimers, contains a small but distinct fraction of chemically modified Chl b pigments. The existence of such Chl b derivates has been proposed by Pieper et al. [J. Phys. Chem. B 115, 4042 (2011)] based on low-temperature absorption and hole-burning spectroscopy. Here, we provide independent evidence.


Asunto(s)
Proteínas de Unión a Clorofila , Clorofila , Agua , Clorofila/química , Agua/química , Proteínas de Unión a Clorofila/química , Análisis Espectral/métodos , Solubilidad , Dicroismo Circular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA