Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.893
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cell ; 83(23): 4386-4397.e9, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37995686

RESUMEN

The multi-pass transmembrane protein ACCELERATED CELL DEATH 6 (ACD6) is an immune regulator in Arabidopsis thaliana with an unclear biochemical mode of action. We have identified two loci, MODULATOR OF HYPERACTIVE ACD6 1 (MHA1) and its paralog MHA1-LIKE (MHA1L), that code for ∼7 kDa proteins, which differentially interact with specific ACD6 variants. MHA1L enhances the accumulation of an ACD6 complex, thereby increasing the activity of the ACD6 standard allele for regulating plant growth and defenses. The intracellular ankyrin repeats of ACD6 are structurally similar to those found in mammalian ion channels. Several lines of evidence link increased ACD6 activity to enhanced calcium influx, with MHA1L as a direct regulator of ACD6, indicating that peptide-regulated ion channels are not restricted to animals.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ancirinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Muerte Celular , Canales Iónicos/genética , Canales Iónicos/metabolismo , Inmunidad de la Planta/genética
2.
Cell ; 149(5): 1125-39, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22632975

RESUMEN

AnkyrinG (ankG) is highly enriched in neurons at axon initial segments (AISs) where it clusters Na(+) and K(+) channels and maintains neuronal polarity. How ankG becomes concentrated at the AIS is unknown. Here, we show that as neurons break symmetry, they assemble a distal axonal submembranous cytoskeleton, comprised of ankyrinB (ankB), αII-spectrin, and ßII-spectrin, that defines a boundary limiting ankG to the proximal axon. Experimentally moving this boundary altered the length of ankG staining in the proximal axon, whereas disruption of the boundary through silencing of ankB, αII-spectrin, or ßII-spectrin expression blocked AIS assembly and permitted ankG to redistribute throughout the distal axon. In support of an essential role for the distal cytoskeleton in ankG clustering, we also found that αII and ßII-spectrin-deficient mice had disrupted AIS. Thus, the distal axonal cytoskeleton functions as an intra-axonal boundary restricting ankG to the AIS.


Asunto(s)
Axones/metabolismo , Citoesqueleto/metabolismo , Neuronas/metabolismo , Animales , Ancirinas/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Ratones , Neuronas/citología , Espectrina/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(31): e2310120121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39058579

RESUMEN

The axon initial segment (AIS) is a critical compartment in neurons. It converts postsynaptic input into action potentials that subsequently trigger information transfer to target neurons. This process relies on the presence of several voltage-gated sodium (NaV) and potassium (KV) channels that accumulate in high densities at the AIS. TRAAK is a mechanosensitive leak potassium channel that was recently localized to the nodes of Ranvier. Here, we uncover that TRAAK is also present in AISs of hippocampal and cortical neurons in the adult rat brain as well as in AISs of cultured rat hippocampal neurons. We show that the AIS localization is driven by a C-terminal ankyrin G-binding sequence that organizes TRAAK in a 190 nm spaced periodic pattern that codistributes with periodically organized ankyrin G. We furthermore uncover that while the identified ankyrin G-binding motif is analogous to known ankyrin G-binding motifs in NaV1 and KV7.2/KV7.3 channels, it was acquired by convergent evolution. Our findings identify TRAAK as an AIS ion channel that convergently acquired an ankyrin G-binding motif and expand the role of ankyrin G to include the nanoscale organization of ion channels at the AIS.


Asunto(s)
Ancirinas , Segmento Inicial del Axón , Hipocampo , Células Piramidales , Animales , Ancirinas/metabolismo , Ratas , Células Piramidales/metabolismo , Segmento Inicial del Axón/metabolismo , Hipocampo/metabolismo , Hipocampo/citología , Axones/metabolismo , Secuencias de Aminoácidos , Canales de Potasio/metabolismo , Unión Proteica
4.
EMBO J ; 41(20): e110486, 2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36004759

RESUMEN

The proteasome is essential for cellular responses to various physiological stressors. However, how proteasome function impacts the stress resilience of regenerative damaged motor neurons remains unclear. Here, we develop a unique mouse model using a regulatory element of the activating transcription factor (Atf3) gene to label mitochondria in a damage-induced manner while simultaneously genetically disrupting the proteasome. Using this model, we observed that in injury-induced proteasome-deficient mouse motor neurons, the increase of mitochondrial influx from soma into axons is inhibited because neurons fail to disassemble ankyrin G, an organizer of the axon initial segment (AIS), in a proteasome-dependent manner. Further, these motor neurons exhibit amyotrophic lateral sclerosis (ALS)-like degeneration despite having regenerative potential. Selectively vulnerable motor neurons in SOD1G93A ALS mice, which induce ATF3 in response to pathological damage, also fail to disrupt the AIS, limiting the number of axonal mitochondria at a pre-symptomatic stage. Thus, damage-induced proteasome-sensitive AIS disassembly could be a critical post-translational response for damaged motor neurons to temporarily transit to an immature state and meet energy demands for axon regeneration or preservation.


Asunto(s)
Esclerosis Amiotrófica Lateral , Segmento Inicial del Axón , Esclerosis Amiotrófica Lateral/patología , Animales , Ancirinas/metabolismo , Axones/metabolismo , Ratones , Ratones Transgénicos , Mitocondrias/patología , Neuronas Motoras/metabolismo , Regeneración Nerviosa/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Superóxido Dismutasa-1/genética
5.
Nat Rev Neurosci ; 22(1): 7-20, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33239761

RESUMEN

The nodes of Ranvier have clustered Na+ and K+ channels necessary for rapid and efficient axonal action potential conduction. However, detailed mechanisms of channel clustering have only recently been identified: they include two independent axon-glia interactions that converge on distinct axonal cytoskeletons. Here, we discuss how glial cell adhesion molecules and the extracellular matrix molecules that bind them assemble combinations of ankyrins, spectrins and other cytoskeletal scaffolding proteins, which cluster ion channels. We present a detailed molecular model, incorporating these overlapping mechanisms, to explain how the nodes of Ranvier are assembled in both the peripheral and central nervous systems.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Nódulos de Ranvier/metabolismo , Animales , Ancirinas/metabolismo , Axones/metabolismo , Humanos , Canales Iónicos/metabolismo , Espectrina/metabolismo
6.
Nature ; 582(7811): 240-245, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32499647

RESUMEN

Meta-analyses of genome-wide association studies (GWAS) have identified more than 240 loci that are associated with type 2 diabetes (T2D)1,2; however, most of these loci have been identified in analyses of individuals with European ancestry. Here, to examine T2D risk in East Asian individuals, we carried out a meta-analysis of GWAS data from 77,418 individuals with T2D and 356,122 healthy control individuals. In the main analysis, we identified 301 distinct association signals at 183 loci, and across T2D association models with and without consideration of body mass index and sex, we identified 61 loci that are newly implicated in predisposition to T2D. Common variants associated with T2D in both East Asian and European populations exhibited strongly correlated effect sizes. Previously undescribed associations include signals in or near GDAP1, PTF1A, SIX3, ALDH2, a microRNA cluster, and genes that affect the differentiation of muscle and adipose cells3. At another locus, expression quantitative trait loci at two overlapping T2D signals affect two genes-NKX6-3 and ANK1-in different tissues4-6. Association studies in diverse populations identify additional loci and elucidate disease-associated genes, biology, and pathways.


Asunto(s)
Pueblo Asiatico/genética , Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Aldehído Deshidrogenasa Mitocondrial/genética , Alelos , Ancirinas/genética , Índice de Masa Corporal , Estudios de Casos y Controles , Europa (Continente)/etnología , Proteínas del Ojo/genética , Asia Oriental/etnología , Femenino , Estudio de Asociación del Genoma Completo , Proteínas de Homeodominio/genética , Humanos , Masculino , Proteínas del Tejido Nervioso/genética , ARN Mensajero/análisis , Factores de Transcripción/genética , Transcripción Genética , Proteína Homeobox SIX3
7.
Hum Mol Genet ; 32(14): 2373-2385, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37195288

RESUMEN

PURPOSE: To characterize a novel neurodevelopmental syndrome due to loss-of-function (LoF) variants in Ankyrin 2 (ANK2), and to explore the effects on neuronal network dynamics and homeostatic plasticity in human-induced pluripotent stem cell-derived neurons. METHODS: We collected clinical and molecular data of 12 individuals with heterozygous de novo LoF variants in ANK2. We generated a heterozygous LoF allele of ANK2 using CRISPR/Cas9 in human-induced pluripotent stem cells (hiPSCs). HiPSCs were differentiated into excitatory neurons, and we measured their spontaneous electrophysiological responses using micro-electrode arrays (MEAs). We also characterized their somatodendritic morphology and axon initial segment (AIS) structure and plasticity. RESULTS: We found a broad neurodevelopmental disorder (NDD), comprising intellectual disability, autism spectrum disorders and early onset epilepsy. Using MEAs, we found that hiPSC-derived neurons with heterozygous LoF of ANK2 show a hyperactive and desynchronized neuronal network. ANK2-deficient neurons also showed increased somatodendritic structures and altered AIS structure of which its plasticity is impaired upon activity-dependent modulation. CONCLUSIONS: Phenotypic characterization of patients with de novo ANK2 LoF variants defines a novel NDD with early onset epilepsy. Our functional in vitro data of ANK2-deficient human neurons show a specific neuronal phenotype in which reduced ANKB expression leads to hyperactive and desynchronized neuronal network activity, increased somatodendritic complexity and AIS structure and impaired activity-dependent plasticity of the AIS.


Asunto(s)
Segmento Inicial del Axón , Epilepsia , Células Madre Pluripotentes Inducidas , Humanos , Segmento Inicial del Axón/metabolismo , Ancirinas/genética , Ancirinas/metabolismo , Neuronas/metabolismo , Epilepsia/genética , Epilepsia/metabolismo
8.
J Neurosci ; 43(9): 1614-1626, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36653193

RESUMEN

α-Synuclein plays a key role in the pathogenesis of Parkinson's disease and related disorders, but critical interacting partners and molecular mechanisms mediating neurotoxicity are incompletely understood. We show that α-synuclein binds directly to ß-spectrin. Using males and females in a Drosophila model of α-synuclein-related disorders, we demonstrate that ß-spectrin is critical for α-synuclein neurotoxicity. Further, the ankyrin binding domain of ß-spectrin is required for α-synuclein binding and neurotoxicity. A key plasma membrane target of ankyrin, Na+/K+ ATPase, is mislocalized when human α-synuclein is expressed in Drosophila Accordingly, membrane potential is depolarized in α-synuclein transgenic fly brains. We examine the same pathway in human neurons and find that Parkinson's disease patient-derived neurons with a triplication of the α-synuclein locus show disruption of the spectrin cytoskeleton, mislocalization of ankyrin and Na+/K+ ATPase, and membrane potential depolarization. Our findings define a specific molecular mechanism by which elevated levels of α-synuclein in Parkinson's disease and related α-synucleinopathies lead to neuronal dysfunction and death.SIGNIFICANCE STATEMENT The small synaptic vesicle associate protein α-synuclein plays a critical role in the pathogenesis of Parkinson's disease and related disorders, but the disease-relevant binding partners of α-synuclein and proximate pathways critical for neurotoxicity require further definition. We show that α-synuclein binds directly to ß-spectrin, a key cytoskeletal protein required for localization of plasma membrane proteins and maintenance of neuronal viability. Binding of α-synuclein to ß-spectrin alters the organization of the spectrin-ankyrin complex, which is critical for localization and function of integral membrane proteins, including Na+/K+ ATPase. These finding outline a previously undescribed mechanism of α-synuclein neurotoxicity and thus suggest potential new therapeutic approaches in Parkinson's disease and related disorders.


Asunto(s)
Enfermedad de Parkinson , Espectrina , Animales , Femenino , Humanos , Masculino , Adenosina Trifosfatasas/metabolismo , alfa-Sinucleína/metabolismo , Ancirinas/metabolismo , Drosophila/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Espectrina/metabolismo
9.
J Physiol ; 602(9): 2107-2126, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38568869

RESUMEN

We are studying the mechanisms of H-reflex operant conditioning, a simple form of learning. Modelling studies in the literature and our previous data suggested that changes in the axon initial segment (AIS) might contribute. To explore this, we used blinded quantitative histological and immunohistochemical methods to study in adult rats the impact of H-reflex conditioning on the AIS of the spinal motoneuron that produces the reflex. Successful, but not unsuccessful, H-reflex up-conditioning was associated with greater AIS length and distance from soma; greater length correlated with greater H-reflex increase. Modelling studies in the literature suggest that these increases may increase motoneuron excitability, supporting the hypothesis that they may contribute to H-reflex increase. Up-conditioning did not affect AIS ankyrin G (AnkG) immunoreactivity (IR), p-p38 protein kinase IR, or GABAergic terminals. Successful, but not unsuccessful, H-reflex down-conditioning was associated with more GABAergic terminals on the AIS, weaker AnkG-IR, and stronger p-p38-IR. More GABAergic terminals and weaker AnkG-IR correlated with greater H-reflex decrease. These changes might potentially contribute to the positive shift in motoneuron firing threshold underlying H-reflex decrease; they are consistent with modelling suggesting that sodium channel change may be responsible. H-reflex down-conditioning did not affect AIS dimensions. This evidence that AIS plasticity is associated with and might contribute to H-reflex conditioning adds to evidence that motor learning involves both spinal and brain plasticity, and both neuronal and synaptic plasticity. AIS properties of spinal motoneurons are likely to reflect the combined influence of all the motor skills that share these motoneurons. KEY POINTS: Neuronal action potentials normally begin in the axon initial segment (AIS). AIS plasticity affects neuronal excitability in development and disease. Whether it does so in learning is unknown. Operant conditioning of a spinal reflex, a simple learning model, changes the rat spinal motoneuron AIS. Successful, but not unsuccessful, H-reflex up-conditioning is associated with greater AIS length and distance from soma. Successful, but not unsuccessful, down-conditioning is associated with more AIS GABAergic terminals, less ankyrin G, and more p-p38 protein kinase. The associations between AIS plasticity and successful H-reflex conditioning are consistent with those between AIS plasticity and functional changes in development and disease, and with those predicted by modelling studies in the literature. Motor learning changes neurons and synapses in spinal cord and brain. Because spinal motoneurons are the final common pathway for behaviour, their AIS properties probably reflect the combined impact of all the behaviours that use these motoneurons.


Asunto(s)
Segmento Inicial del Axón , Reflejo H , Neuronas Motoras , Ratas Sprague-Dawley , Animales , Neuronas Motoras/fisiología , Ratas , Masculino , Reflejo H/fisiología , Segmento Inicial del Axón/fisiología , Aprendizaje/fisiología , Médula Espinal/fisiología , Médula Espinal/citología , Axones/fisiología , Plasticidad Neuronal/fisiología , Condicionamiento Operante/fisiología , Ancirinas/metabolismo
10.
J Biol Chem ; 299(6): 104818, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37182735

RESUMEN

Encoded by ANK2, ankyrin-B (AnkB) is a multifunctional adapter protein critical for the expression and targeting of key cardiac ion channels, transporters, cytoskeletal-associated proteins, and signaling molecules. Mice deficient for AnkB expression are neonatal lethal, and mice heterozygous for AnkB expression display cardiac structural and electrical phenotypes. Human ANK2 loss-of-function variants are associated with diverse cardiac manifestations; however, human clinical 'AnkB syndrome' displays incomplete penetrance. To date, animal models for human arrhythmias have generally been knock-out or transgenic overexpression models and thus the direct impact of ANK2 variants on cardiac structure and function in vivo is not clearly defined. Here, we directly tested the relationship of a single human ANK2 disease-associated variant with cardiac phenotypes utilizing a novel in vivo animal model. At baseline, young AnkBp.E1458G+/+ mice lacked significant structural or electrical abnormalities. However, aged AnkBp.E1458G+/+ mice displayed both electrical and structural phenotypes at baseline including bradycardia and aberrant heart rate variability, structural remodeling, and fibrosis. Young and old AnkBp.E1458G+/+ mice displayed ventricular arrhythmias following acute (adrenergic) stress. In addition, young AnkBp.E1458G+/+ mice displayed structural remodeling following chronic (transverse aortic constriction) stress. Finally, AnkBp.E1458G+/+ myocytes harbored alterations in expression and/or localization of key AnkB-associated partners, consistent with the underlying disease mechanism. In summary, our findings illustrate the critical role of AnkB in in vivo cardiac function as well as the impact of single AnkB loss-of-function variants in vivo. However, our findings illustrate the contribution and in fact necessity of secondary factors (aging, adrenergic challenge, pressure-overload) to phenotype penetrance and severity.


Asunto(s)
Ancirinas , Miocitos Cardíacos , Animales , Humanos , Ratones , Adrenérgicos/metabolismo , Ancirinas/metabolismo , Modelos Animales de Enfermedad , Canales Iónicos/metabolismo , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Fenotipo , Envejecimiento/metabolismo
11.
J Am Chem Soc ; 146(20): 13709-13713, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38738955

RESUMEN

G-Quadruplex (G4) structures formed by guanine-rich DNA and RNA sequences are implicated in various biological processes. Understanding the mechanisms by which proteins recognize G4 structures is crucial for elucidating their functional roles. Here we present the X-ray crystal structure of an ankyrin protein bound to a parallel G4 structure. Our findings reveal a new specific recognition mode in which a bundle of α-helices and loops of the ankyrin form a flat surface to stack on the G-tetrad core. The protein employs a combination of hydrogen bonds and hydrophobic contacts to interact with the G4, and electrostatic interaction is used to enhance the binding affinity. This binding mechanism provides valuable insights into understanding G4 recognition by proteins.


Asunto(s)
Ancirinas , G-Cuádruplex , Modelos Moleculares , Ancirinas/química , Cristalografía por Rayos X , Humanos , Unión Proteica , Enlace de Hidrógeno
12.
J Pharmacol Exp Ther ; 388(2): 613-623, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38050077

RESUMEN

Deployment of the tear gas agent 2-chlorobenzalmalononitrile (CS) for riot control has significantly increased in recent years. The effects of CS have been believed to be transient and benign. However, CS induces severe pain, blepharospasm, lachrymation, airway obstruction, and skin blisters. Frequent injuries and hospitalizations have been reported after exposure. We have identified the sensory neuronal ion channel, transient receptor potential ankyrin 1 (TRPA1), as a key CS target resulting in acute irritation and pain and also as a mediator of neurogenic inflammation. Here, we examined the effects of pharmacologic TRPA1 inhibition on CS-induced cutaneous injury. We modeled CS-induced cutaneous injury by applying 10 µl CS agent [200 mM in dimethyl sulfoxide (DMSO)] to each side of the right ears of 8- to 9-week-old C57BL/6 male mice, whereas left ears were applied with solvent only (DMSO). The TRPA1 inhibitor HC-030031 or A-967079 was administered after CS exposure. CS exposure induced strong tissue swelling, plasma extravasation, and a dramatic increase in inflammatory cytokine levels in the mouse ear skin. We also showed that the effects of CS were not transient but caused persistent skin injuries. These injury parameters were reduced with TRPA1 inhibitor treatment. Further, we tested the pharmacologic activity of advanced TRPA1 antagonists in vitro. Our findings showed that TRPA1 is a crucial mediator of CS-induced nociception and tissue injury and that TRPA1 inhibitors are effective countermeasures that reduce key injury parameters when administered after exposure. Additional therapeutic efficacy studies with advanced TRPA1 antagonists and decontamination strategies are warranted. SIGNIFICANCE STATEMENT: 2-Chlorobenzalmalononitrile (CS) tear gas agent has been deployed as a crowd dispersion chemical agent in recent times. Exposure to CS tear gas agents has been believed to cause transient acute toxic effects that are minimal at most. Here we found that CS tear gas exposure causes both acute and persistent skin injuries and that treatment with transient receptor potential ion channel ankyrin 1 (TRPA1) antagonists ameliorated skin injuries.


Asunto(s)
Clorobencenos , Canales de Potencial de Receptor Transitorio , o-Clorobencilidenomalonitrila , Masculino , Ratones , Animales , Gases Lacrimógenos/farmacología , Ancirinas , Canal Catiónico TRPA1 , Dimetilsulfóxido , Ratones Endogámicos C57BL , Dolor
13.
Mol Psychiatry ; 28(4): 1747-1769, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36604605

RESUMEN

Copy number variations (CNVs) are associated with psychiatric and neurodevelopmental disorders (NDDs), and most, including the recurrent 15q13.3 microdeletion disorder, have unknown disease mechanisms. We used a heterozygous 15q13.3 microdeletion mouse model and patient iPSC-derived neurons to reveal developmental defects in neuronal maturation and network activity. To identify the underlying molecular dysfunction, we developed a neuron-specific proximity-labeling proteomics (BioID2) pipeline, combined with patient mutations, to target the 15q13.3 CNV genetic driver OTUD7A. OTUD7A is an emerging independent NDD risk gene with no known function in the brain, but has putative deubiquitinase function. The OTUD7A protein-protein interaction network included synaptic, axonal, and cytoskeletal proteins and was enriched for ASD and epilepsy risk genes (Ank3, Ank2, SPTAN1, SPTBN1). The interactions between OTUD7A and Ankyrin-G (Ank3) and Ankyrin-B (Ank2) were disrupted by an epilepsy-associated OTUD7A L233F variant. Further investigation of Ankyrin-G in mouse and human 15q13.3 microdeletion and OTUD7AL233F/L233F models revealed protein instability, increased polyubiquitination, and decreased levels in the axon initial segment, while structured illumination microscopy identified reduced Ankyrin-G nanodomains in dendritic spines. Functional analysis of human 15q13.3 microdeletion and OTUD7AL233F/L233F models revealed shared and distinct impairments to axonal growth and intrinsic excitability. Importantly, restoring OTUD7A or Ankyrin-G expression in 15q13.3 microdeletion neurons led to a reversal of abnormalities. These data reveal a critical OTUD7A-Ankyrin pathway in neuronal development, which is impaired in the 15q13.3 microdeletion syndrome, leading to neuronal dysfunction. Furthermore, our study highlights the utility of targeting CNV genes using cell type-specific proteomics to identify shared and unexplored disease mechanisms across NDDs.


Asunto(s)
Ancirinas , Epilepsia , Humanos , Ratones , Animales , Ancirinas/genética , Variaciones en el Número de Copia de ADN , Epilepsia/genética , Neuronas
14.
Cell ; 136(6): 1148-60, 2009 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-19268344

RESUMEN

Distinct molecules are segregated into somatodendritic and axonal compartments of polarized neurons, but mechanisms underlying the development and maintenance of such segregation remain largely unclear. In cultured hippocampal neurons, we observed an ankyrin G- and F-actin-dependent structure that emerged in the cytoplasm of the axon initial segment (AIS) within 2 days after axon/dendrite differentiation, imposing a selective filter for diffusion of macromolecules and transport of vesicular carriers into the axon. Axonal entry was allowed for KIF5-driven carriers of synaptic vesicle protein VAMP2, but not for KIF17-driven carriers of dendrite-targeting NMDA receptor subunit NR2B. Comparisons of transport rates between chimeric forms of KIF17 and KIF5B, with the motor and cargo-binding domains switched, and between KIF5 loaded with VAMP2 versus GluR2 suggest that axonal entry of vesicular carriers depends on the transport efficacy of KIF-cargo complexes. This selective AIS filtering may contribute to preferential trafficking and segregation of cellular components in polarized neurons.


Asunto(s)
Transporte Axonal , Neuronas/metabolismo , Actinas , Animales , Ancirinas/metabolismo , Axones/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Ratas , Receptores de N-Metil-D-Aspartato/metabolismo , Transferrina/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
15.
J Nat Prod ; 87(2): 358-364, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38320400

RESUMEN

Bioassay-guided isolation of the extract from the marine sponge Diacarnus spinipoculum showing inhibitory activity against human transient receptor potential ankyrin 1 (hTRPA1) resulted in the isolation of 12 norditerpene cyclic peroxides (1-12) and eight norsesterterpene cyclic peroxides (13-20). Among these, 10 (5-7, 11, 12, 16-20) are unprecedented analogs. Compounds with either a hydroxy (5, 11) or a methoxy (6, 12) group attached to the cyclohexanone moiety were obtained as epimeric mixtures at C-11, while compounds 4, 6, 10, and 12 are likely the artifacts of isolation. The absolute configurations of the new compounds were established based on an NMR-based empirical method and comparison of specific rotation values. Mosher ester analysis revealed the absolute configurations of compounds 17-20. The inhibitory activity of the isolated compounds against hTRPA1 varied significantly depending on their structures, with the norsesterterpenoid 19 displaying the most potent activity (IC50 2.0 µM).


Asunto(s)
Diterpenos , Poríferos , Animales , Humanos , Ancirinas/antagonistas & inhibidores , Estructura Molecular , Peróxidos/farmacología , Peróxidos/química , Poríferos/química , Terpenos/farmacología , Terpenos/química
16.
Cereb Cortex ; 33(20): 10634-10648, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37642601

RESUMEN

Postnatal regulation of dendritic spine formation and refinement in cortical pyramidal neurons is critical for excitatory/inhibitory balance in neocortical networks. Recent studies have identified a selective spine pruning mechanism in the mouse prefrontal cortex mediated by class 3 Semaphorins and the L1 cell adhesion molecules, neuron-glia related cell adhesion molecule, Close Homolog of L1, and L1. L1 cell adhesion molecules bind Ankyrin B, an actin-spectrin adaptor encoded by Ankyrin2, a high-confidence gene for autism spectrum disorder. In a new inducible mouse model (Nex1Cre-ERT2: Ank2flox: RCE), Ankyrin2 deletion in early postnatal pyramidal neurons increased spine density on apical dendrites in prefrontal cortex layer 2/3 of homozygous and heterozygous Ankyrin2-deficient mice. In contrast, Ankyrin2 deletion in adulthood had no effect on spine density. Sema3F-induced spine pruning was impaired in cortical neuron cultures from Ankyrin B-null mice and was rescued by re-expression of the 220 kDa Ankyrin B isoform but not 440 kDa Ankyrin B. Ankyrin B bound to neuron-glia related CAM at a cytoplasmic domain motif (FIGQY1231), and mutation to FIGQH inhibited binding, impairing Sema3F-induced spine pruning in neuronal cultures. Identification of a novel function for Ankyrin B in dendritic spine regulation provides insight into cortical circuit development, as well as potential molecular deficiencies in autism spectrum disorder.


Asunto(s)
Trastorno del Espectro Autista , Espinas Dendríticas , Ratones , Animales , Espinas Dendríticas/fisiología , Ancirinas/genética , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Células Piramidales/fisiología , Corteza Prefrontal/metabolismo , Ratones Noqueados
17.
BMC Psychiatry ; 24(1): 335, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702695

RESUMEN

OBJECTIVE: Alcohol withdrawal syndrome (AWS) is a complex condition associated with alcohol use disorder (AUD), characterized by significant variations in symptom severity among patients. The psychological and emotional symptoms accompanying AWS significantly contribute to withdrawal distress and relapse risk. Despite the importance of neural adaptation processes in AWS, limited genetic investigations have been conducted. This study primarily focuses on exploring the single and interaction effects of single-nucleotide polymorphisms in the ANK3 and ZNF804A genes on anxiety and aggression severity manifested in AWS. By examining genetic associations with withdrawal-related psychopathology, we ultimately aim to advance understanding the genetic underpinnings that modulate AWS severity. METHODS: The study involved 449 male patients diagnosed with alcohol use disorder. The Self-Rating Anxiety Scale (SAS) and Buss-Perry Aggression Questionnaire (BPAQ) were used to assess emotional and behavioral symptoms related to AWS. Genomic DNA was extracted from peripheral blood, and genotyping was performed using PCR. RESULTS: Single-gene analysis revealed that naturally occurring allelic variants in ANK3 rs10994336 (CC homozygous vs. T allele carriers) were associated with mood and behavioral symptoms related to AWS. Furthermore, the interaction between ANK3 and ZNF804A was significantly associated with the severity of psychiatric symptoms related to AWS, as indicated by MANOVA. Two-way ANOVA further demonstrated a significant interaction effect between ANK3 rs10994336 and ZNF804A rs7597593 on anxiety, physical aggression, verbal aggression, anger, and hostility. Hierarchical regression analyses confirmed these findings. Additionally, simple effects analysis and multiple comparisons revealed that carriers of the ANK3 rs10994336 T allele experienced more severe AWS, while the ZNF804A rs7597593 T allele appeared to provide protection against the risk associated with the ANK3 rs10994336 mutation. CONCLUSION: This study highlights the gene-gene interaction between ANK3 and ZNF804A, which plays a crucial role in modulating emotional and behavioral symptoms related to AWS. The ANK3 rs10994336 T allele is identified as a risk allele, while the ZNF804A rs7597593 T allele offers protection against the risk associated with the ANK3 rs10994336 mutation. These findings provide initial support for gene-gene interactions as an explanation for psychiatric risk, offering valuable insights into the pathophysiological mechanisms involved in AWS.


Asunto(s)
Ancirinas , Factores de Transcripción de Tipo Kruppel , Polimorfismo de Nucleótido Simple , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética , Ancirinas/genética , Adulto , Factores de Transcripción de Tipo Kruppel/genética , Persona de Mediana Edad , Síndrome de Abstinencia a Sustancias/genética , Síndrome de Abstinencia a Sustancias/psicología , Alcoholismo/genética , Alcoholismo/psicología , Agresión/psicología , Agresión/fisiología , Ansiedad/genética , Ansiedad/psicología , Epistasis Genética , Síntomas Conductuales/genética , Predisposición Genética a la Enfermedad/genética , Alelos
18.
Planta Med ; 90(5): 380-387, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38219731

RESUMEN

In previous studies, we demonstrated that the ethanolic extract of Heliopsis longipes roots and its main alkamide, affinin, elicit a vasorelaxant effect through a mechanism involving activation of the gasotransmitter pathways and stimulation of cannabinoid type 1 receptors and transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1 channels. However, it has not yet been demonstrated whether the EEH and affinin are capable of lowering high blood pressure. Therefore, the aim of the present study was to determine the effect of the oral administration of the EEH and affinin on the systolic blood pressure of NG-nitro-L-arginine methyl ester-induced hypertensive rats and to explore the participation of cannabinoid receptors and transient receptor potential channels in the mechanism of action of this alkamide. Our results showed that the ethanolic extract of H. longipes and affinin significantly lowered systolic blood pressure and induced an improvement in endothelial function, which is associated with increased serum nitric oxide levels. Inhibition of cannabinoid type 1 receptors by rimonabant (3 mg/kg), transient receptor potential ankyrin 1 channels by HC-030031 (8 mg/kg), and transient receptor potential vanilloid 1 channels by capsazepine (5 mg/kg) significantly decreased the antihypertensive effect induced by affinin, suggesting that the blood pressure-lowering effect of this alkamide involves activation of cannabinoid type 1 receptors and transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1 channels.


Asunto(s)
Antihipertensivos , Cannabinoides , Alcamidas Poliinsaturadas , Ratas , Animales , Antihipertensivos/farmacología , Receptores de Cannabinoides , Ancirinas , Capsaicina , Extractos Vegetales/farmacología , Canales Catiónicos TRPV , Receptor Cannabinoide CB1
19.
PLoS Genet ; 17(6): e1009594, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34097698

RESUMEN

The number of grains per panicle is an important yield-related trait in cereals which depends in part on panicle branching complexity. One component of this complexity is the number of secondary branches per panicle. Previously, a GWAS site associated with secondary branch and spikelet numbers per panicle in rice was identified. Here we combined gene capture, bi-parental genetic population analysis, expression profiling and transgenic approaches in order to investigate the functional significance of a cluster of 6 ANK and ANK-TPR genes within the QTL. Four of the ANK and ANK-TPR genes present a differential expression associated with panicle secondary branch number in contrasted accessions. These differential expression patterns correlate in the different alleles of these genes with specific deletions of potential cis-regulatory sequences in their promoters. Two of these genes were confirmed through functional analysis as playing a role in the control of panicle architecture. Our findings indicate that secondary branching diversity in the rice panicle is governed in part by differentially expressed genes within this cluster encoding ANK and ANK-TPR domain proteins that may act as positive or negative regulators of panicle meristem's identity transition from indeterminate to determinate state.


Asunto(s)
Ancirinas/genética , Oryza/genética , Secuencias Repetitivas de Ácidos Nucleicos , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Sitios de Carácter Cuantitativo
20.
Eur Arch Otorhinolaryngol ; 281(8): 4071-4080, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38507076

RESUMEN

PURPOSE: To describe the clinical, audiological, and psychometric features observed in patients with chronic tinnitus and rare variants in the ANK2 gene. METHODS: We report a case series of 12 patients with chronic tinnitus and heterozygous variants in the ANK2 gene. Tinnitus phenotyping included audiological (standard and high-frequency audiometry, Auditory Brainstem Responses (ABR) and Auditory Middle Latency Responses (AMLR)), psychoacoustic and psychometric assessment by a Visual Analog Scale (VAS) for tinnitus annoyance, the Tinnitus Handicap Inventory (THI), the test on Hypersensitivity to Sound (THS-GÜF), the Patient Health Questionnaire (PHQ-9), the Hospital Anxiety and Depression Scale (HADS) and the Montreal Cognitive Assessment (MoCA). RESULTS: All patients reported a persistent, unilateral noise-type tinnitus, mainly described as white noise or narrowband noise. Seven patients (58%) were considered to have extreme phenotype (THI score > 76), and all patients reported some degree of hyperacusis (THS-GÜF score > 18 in 75% of patients). Seven patients scored MoCA < 26, regardless of the age reported, suggesting a mild cognitive disorder. ABR showed no significant differences in latencies and amplitudes between ears with or without tinnitus. Similarly, the latencies of Pa, Pb waves, and NaPa complex in the AMLR did not differ based on the presence of tinnitus. However, there were statistical differences in the amplitudes of Pa waves in AMLR, with significantly greater amplitudes observed in ears with tinnitus. CONCLUSION: Patients with ANK2 variants and severe tinnitus exhibit an endophenotype featuring hyperacusis, persistent noise-like tinnitus, high-frequency hearing loss, and decreased amplitudes in AMLR. However, anxiety, depression, and cognitive symptoms vary among individuals.


Asunto(s)
Ancirinas , Fenotipo , Acúfeno , Humanos , Acúfeno/genética , Acúfeno/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Ancirinas/genética , Potenciales Evocados Auditivos del Tronco Encefálico , Anciano , Psicometría , Enfermedad Crónica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA