Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 9(8): 898-907, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18604210

RESUMEN

The inhibitory signaling of natural killer (NK) cells is crucial in the regulation of innate immune responses. Here we show that the association of KIR2DL1, an inhibitory receptor of NK cells, with beta-arrestin 2 mediated recruitment of the tyrosine phosphatases SHP-1 and SHP-2 to KIR2DL1 and facilitated 'downstream' inhibitory signaling. Consequently, the cytotoxicity of NK cells was higher in beta-arrestin 2-deficient mice but was inhibited in beta-arrestin 2-transgenic mice. Moreover, beta-arrestin 2-deficient mice were less susceptible than wild-type mice to mouse cytomegalovirus infection, an effect that was abolished by depletion of NK cells. Our findings identify a previously unknown mechanism by which the inhibitory signaling in NK cells is regulated.


Asunto(s)
Arrestinas/farmacología , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Receptores Inmunológicos/inmunología , Transducción de Señal/inmunología , Animales , Células Cultivadas , Péptidos y Proteínas de Señalización Intracelular , Ratones , Receptores Inmunológicos/química , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Arrestina beta 2 , beta-Arrestinas
2.
Methods ; 92: 87-93, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26297537

RESUMEN

Many GPCRs are able to activate multiple distinct signaling pathways, and these may include biochemical cascades activated via either heterotrimeric G proteins or by ß-arrestins. The relative potencies and/or efficacies among a series of agonists that act on a common receptor can vary depending upon which signaling pathway is being activated. This phenomenon is known as biased signaling or functional selectivity, and is presumed to reflect underlying differences in ligand binding affinities for alternate conformational states of the receptor. The first part of this review discusses how various cellular GPCR interacting proteins (GIPs) can influence receptor conformation and thereby affect ligand-receptor interactions and contribute to signaling bias. Upon activation, receptors trigger biochemical cascades that lead to altered cellular function, and measuring points along the cascade (e.g., second messenger production) conveys information about receptor activity. As a signal continues along its way, the observed concentration dependence of a GPCR ligand may change due to amplification and saturation of biochemical steps. The second part of this review considers additional cellular factors that affect signal processing, focusing mainly on structural elements and deamplification mechanisms, and discusses the relevance of these to measurements of potency and functional selectivity.


Asunto(s)
Proteínas RGS/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Animales , Arrestinas/metabolismo , Arrestinas/farmacología , Humanos , Unión Proteica/fisiología , Transducción de Señal/efectos de los fármacos , beta-Arrestinas
3.
Methods ; 92: 64-71, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26320830

RESUMEN

The realization that G-protein coupled receptors (GPCR) engage several cell signaling mechanisms simultaneously has led to a multiplication of research aimed at developing biased ligands exerting a selective action on subsets of responses downstream of a given receptor. Several tools have been developed to identify such ligands using recombinant cell systems. However the validation of biased ligand activity in animal models remains a serious challenge. Here we present a general strategy that can be used to validate biased ligand activity in vivo and supports it as a strategy for further drug development. In doing so, we placed special attention on strategies allowing to discriminate between G-protein and beta-arrestin mediated mechanisms. We also underscore differences between in vitro and in vivo systems and suggest avenues for tool development to streamline the translation of biased ligands development to pre-clinical animal models.


Asunto(s)
Arrestinas/metabolismo , Modelos Animales , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Animales , Arrestinas/farmacología , Haloperidol/metabolismo , Haloperidol/farmacología , Humanos , Ligandos , Ratones Endogámicos C57BL , Ratones Noqueados , Unión Proteica/fisiología , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , beta-Arrestinas
4.
Mol Pharmacol ; 88(4): 816-24, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25934731

RESUMEN

Sustained activation of G protein-coupled receptors can lead to a rapid decline in signaling through acute receptor desensitization. In the case of the µ-opioid receptor (MOPr), this desensitization may play a role in the development of analgesic tolerance. It is understood that phosphorylation of MOPr promotes association with ß-arrestin proteins, which then facilitates desensitization and receptor internalization. Agonists that induce acute desensitization have been shown to induce a noncanonical high-affinity agonist binding state in MOPr, conferring a persistent memory of prior receptor activation. In the current study, live-cell confocal imaging was used to investigate the role of receptor phosphorylation in agonist binding to MOPr. A phosphorylation cluster in the C-terminal tail of MOPr was identified as a mediator of agonist-induced affinity changes in MOPr. This site is unique from the primary phosphorylation cluster responsible for ß-arrestin binding and internalization. Electrophysiologic measurements of receptor function suggest that both phosphorylation clusters may play a parallel role during acute receptor desensitization. Desensitization was unaffected by alanine mutation of either phosphorylation cluster, but was largely eliminated when both clusters were mutated. Overall, this work suggests that there are multiple effects of MOPr phosphorylation that appear to regulate MOPr function: one affecting ß-arrestin binding and a second affecting agonist binding.


Asunto(s)
Analgésicos Opioides/metabolismo , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Analgésicos Opioides/química , Analgésicos Opioides/farmacología , Animales , Arrestinas/química , Arrestinas/metabolismo , Arrestinas/farmacología , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Noqueados , Técnicas de Cultivo de Órganos , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , beta-Arrestinas
5.
Nature ; 457(7233): 1146-9, 2009 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-19122674

RESUMEN

Insulin resistance, a hallmark of type 2 diabetes, is a defect of insulin in stimulating insulin receptor signalling, which has become one of the most serious public health threats. Upon stimulation by insulin, insulin receptor recruits and phosphorylates insulin receptor substrate proteins, leading to activation of the phosphatidylinositol-3-OH kinase (PI(3)K)-Akt pathway. Activated Akt phosphorylates downstream kinases and transcription factors, thus mediating most of the metabolic actions of insulin. Beta-arrestins mediate biological functions of G-protein-coupled receptors by linking activated receptors with distinct sets of accessory and effecter proteins, thereby determining the specificity, efficiency and capacity of signals. Here we show that in diabetic mouse models, beta-arrestin-2 is severely downregulated. Knockdown of beta-arrestin-2 exacerbates insulin resistance, whereas administration of beta-arrestin-2 restores insulin sensitivity in mice. Further investigation reveals that insulin stimulates the formation of a new beta-arrestin-2 signal complex, in which beta-arrestin-2 scaffolds Akt and Src to insulin receptor. Loss or dysfunction of beta-arrestin-2 results in deficiency of this signal complex and disturbance of insulin signalling in vivo, thereby contributing to the development of insulin resistance and progression of type 2 diabetes. Our findings provide new insight into the molecular pathogenesis of insulin resistance, and implicate new preventive and therapeutic strategies against insulin resistance and type 2 diabetes.


Asunto(s)
Arrestinas/deficiencia , Resistencia a la Insulina/fisiología , Animales , Arrestinas/genética , Arrestinas/farmacología , Línea Celular , Línea Celular Tumoral , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Humanos , Insulina/farmacología , Resistencia a la Insulina/genética , Ratones , Ratones Noqueados , Mutación/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Receptor de Insulina/metabolismo , Transducción de Señal , Arrestina beta 2 , beta-Arrestinas
6.
EMBO J ; 29(19): 3222-35, 2010 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-20802461

RESUMEN

ß-Arrestins have been implicated in the regulation of multiple signalling pathways. However, their role in organism development is not well understood. In this study, we report a new in vivo function of the Drosophila ß-arrestin Kurtz (Krz) in the regulation of two distinct developmental signalling modules: MAPK ERK and NF-κB, which transmit signals from the activated receptor tyrosine kinases (RTKs) and the Toll receptor, respectively. Analysis of the expression of effectors and target genes of Toll and the RTK Torso in krz maternal mutants reveals that Krz limits the activity of both pathways in the early embryo. Protein interaction studies suggest a previously uncharacterized mechanism for ERK inhibition: Krz can directly bind and sequester an inactive form of ERK, thus preventing its activation by the upstream kinase, MEK. A simultaneous dysregulation of different signalling systems in krz mutants results in an abnormal patterning of the embryo and severe developmental defects. Our findings uncover a new in vivo function of ß-arrestins and present a new mechanism of ERK inhibition by the Drosophila ß-arrestin Krz.


Asunto(s)
Arrestinas/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Inhibidores Enzimáticos/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Transducción de Señal/fisiología , Receptores Toll-Like/metabolismo , Animales , Arrestinas/farmacología , Western Blotting , Células Cultivadas , Drosophila/metabolismo , Proteínas de Drosophila/farmacología , Inhibidores Enzimáticos/farmacología , Técnicas de Inactivación de Genes , Inmunoprecipitación , Hibridación Fluorescente in Situ , Mutación/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/efectos de los fármacos
7.
Oncol Rep ; 51(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38099418

RESUMEN

C­X­C motif chemokine 12 (CXCL12) promotes metastasis of several tumors by affecting cell migration and invasion via its receptors, C­X­C chemokine receptor type (CXCR)4 and CXCR7. Current therapeutic approaches focus on the selective inactivation of either CXCR4 or CXCR7 in patients with cancer. Alternative strategies may emerge from the analysis of downstream events that mediate the migratory effects of CXCL12 in cancer cells. While CXCR4 activates cell signaling through both G proteins and arrestins, CXCR7 is believed to preferentially signal through arrestins. The present study analyzed the CXCL12­dependent chemotaxis of A549, C33A, DLD­1, MDA­MB­231 and PC­3 cells, in which either the activity of G proteins, EGFR or Src kinase was inhibited pharmacologically or the expression of arrestins was inhibited by RNA interference. The results demonstrated that CXCL12­induced migration of A549, C33A, DLD­1, MDA­MB­231 and PC­3 cells was attenuated by the Gαi/o­inhibitor pertussis toxin (PTX), but was unaffected by small interfering RNA­mediated gene silencing of ß­arrestin1/2. In particular, the sensitivity of DLD­1 migration to PTX was unexpected, as it is solely dependent on the non­classical chemokine receptor, CXCR7. Furthermore, chemotactic responses to CXCL12 were additionally prevented by inhibiting EGFR activity via AG1478 and Src kinase activity via Src inhibitor­1. In conclusion, the results of the present study suggest that G protein­ and Src­dependent transactivation of EGFR is a common mechanism through which CXCL12­bound CXCR4 and/or CXCR7 control cancer cell migration and metastasis. These findings highlight EGFR as a potential therapeutic target that interferes with CXCL12­induced cancer expansion.


Asunto(s)
Neoplasias , Receptores CXCR , Humanos , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Activación Transcripcional , Receptores CXCR/genética , Receptores CXCR/metabolismo , Transducción de Señal , Proteínas de Unión al GTP , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Movimiento Celular , Arrestinas/genética , Arrestinas/metabolismo , Arrestinas/farmacología , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo
8.
Eur J Pharmacol ; 956: 175952, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37541367

RESUMEN

BACKGROUND: Beta arrestins had been known as intracellular adaptors that uncouple and inactivate the G protein-coupled receptors that they interact with. Their roles as signal initiators for some receptors have recently been recognized. SCOPE OF REVIEW: In this review, we focused on their role in mediating metabolic modulation primarily in relation to insulin signaling. Commenced by the upstream receptor, they seem to act like intracellular hubs that divert the metabolic profile of the cell. The amount of metabolic substrates in circulation and their usage/deposition by tissues are controlled by the contribution of all systems in the organism. This control is enabled by the release of hormones such as insulin, glucagon and glucagon-like peptide-1. Intriguingly, some ligands -either agonists or antagonists-of different classes of receptors have preferential properties mediated by ß arrestins. This is not surprizing considering that substrate supply and usage should parallel physiological function such as hormone release or muscle contraction. MAJOR CONCLUSIONS: Available data indicate that ß arrestins conduct the regulatory role in insulin secretion and action. They may be good candidates to target when the upstream signal demands the function that may compromise the cell. An example is carvedilol that is protective by preventing the stimulatory effects of excessive catecholamines, stimulates mitochondrial function and has preferential clinical outcomes in metabolic disorders.


Asunto(s)
Arrestinas , Transducción de Señal , beta-Arrestinas/metabolismo , Secreción de Insulina , Arrestinas/metabolismo , Arrestinas/farmacología , Insulina/metabolismo
9.
J Biol Chem ; 286(8): 6707-19, 2011 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-21156802

RESUMEN

Given the importance of G-protein-coupled receptors as pharmacological targets in medicine, efforts directed at understanding the molecular mechanism by which pharmacological compounds regulate their presence at the cell surface is of paramount importance. In this context, using confocal microscopy and bioluminescence resonance energy transfer, we have investigated internalization and intracellular trafficking of the cholecystokinin-2 receptor (CCK2R) in response to both natural and synthetic ligands with different pharmacological features. We found that CCK and gastrin, which are full agonists on CCK2R-induced inositol phosphate production, rapidly and abundantly stimulate internalization. Internalized CCK2R did not rapidly recycle to plasma membrane but instead was directed to late endosomes/lysosomes. CCK2R endocytosis involves clathrin-coated pits and dynamin and high affinity and prolonged binding of ß-arrestin1 or -2. Partial agonists and antagonists on CCK2R-induced inositol phosphate formation and ERK1/2 phosphorylation did not stimulate CCK2R internalization or ß-arrestin recruitment to the CCK2R but blocked full agonist-induced internalization and ß-arrestin recruitment. The extreme C-terminal region of the CCK2R (and more precisely phosphorylatable residues Ser(437)-Xaa(438)-Thr(439)-Thr(440)-Xaa(441)-Ser(442)-Thr(443)) were critical for ß-arrestin recruitment. However, this region and ß-arrestins were dispensable for CCK2R internalization. In conclusion, this study allowed us to classify the human CCK2R as a member of class B G-protein-coupled receptors with regard to its endocytosis features and identified biased agonists of the CCK2R. These new important insights will allow us to investigate the role of internalized CCK2R·ß-arrestin complexes in cancers expressing this receptor and to develop new diagnosis and therapeutic strategies targeting this receptor.


Asunto(s)
Arrestinas/farmacología , Colecistoquinina/farmacología , Gastrinas/farmacología , Receptor de Colecistoquinina B/agonistas , Receptor de Colecistoquinina B/metabolismo , Arrestinas/genética , Arrestinas/metabolismo , Colecistoquinina/genética , Colecistoquinina/metabolismo , Endocitosis/efectos de los fármacos , Endocitosis/fisiología , Endosomas/genética , Endosomas/metabolismo , Gastrinas/genética , Gastrinas/metabolismo , Células HEK293 , Humanos , Lisosomas/genética , Lisosomas/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Receptor de Colecistoquinina B/genética , beta-Arrestinas
10.
Cell Physiol Biochem ; 30(3): 642-52, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22854413

RESUMEN

Angiotensin II (AngII) is a key peptide in cardiovascular homeostasis and is a ligand for the Angiotensin II type 1 and 2 seven transmembrane receptors (AT(1)R and AT(2)R). The AT(1) receptor is a seven-transmembrane (7TM) G protein-coupled receptor (GPCR) mediating the majority of the physiological functions of AngII. The AT(1)R mediates its effects through both G protein-dependent and independent signaling, which can be separated by functionally selective agonists. In the present study we investigate the effect of AngII and the ß-arrestin biased agonist [SII]AngII on ischemia-reperfusion injury in rat hearts. Isolated hearts mounted in a Langendorff perfused rat heart preparations showed that preconditioning with [SII]AngII reduced the infarct size induced by global ischemia from 46±8.4% to 22±3.4%. In contrast, neither preconditioning with AngII nor postconditioning with AngII or [SII]AngII had a protective effect. Together these results demonstrate a cardioprotective effect of simultaneous blockade of G protein signaling and activation of G protein independent signaling through AT(1) receptors.


Asunto(s)
Receptor de Angiotensina Tipo 1/metabolismo , Daño por Reperfusión/metabolismo , Angiotensina II/farmacología , Animales , Arrestinas/farmacología , Cardiotónicos/farmacología , Proteínas de Unión al GTP/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Ventrículos Cardíacos/efectos de los fármacos , Hemodinámica/efectos de los fármacos , Técnicas In Vitro , Masculino , Presión , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/fisiopatología , beta-Arrestinas
11.
Br J Anaesth ; 107(5): 774-81, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21926413

RESUMEN

BACKGROUND: Tolerance to the analgesic effect of opioids complicates the management of persistent pain states. We tested whether the intrathecal infusion of small interfering RNA (siRNA) against ß-arrestin 2 would reduce tolerance to chronic morphine use and the severity of precipitated morphine withdrawal. METHODS: Intrathecal ß-arrestin 2 (2 µg siRNA per 10 µl per rat) was injected once daily for 3 days. Rats then received a continuous intrathecal infusion of morphine (2 nmol h⁻¹) or saline for 7 days. Daily tail-flick (TF) and intrathecal morphine challenge tests were performed to assess the effect of intrathecal ß-arrestin 2 siRNA on antinociception and tolerance to morphine. Naloxone withdrawal (2 mg kg⁻¹) was performed to assess morphine dependence. RESULTS: In the daily TF test, the antinociception of intrathecal morphine was increased and maintained in rats receiving ß-arrestin 2 siRNA compared with the control group (morphine alone). In the probe response test, rats receiving morphine infusion with ß-arrestin 2 siRNA treatment showed a significant left shift in their dose-response curve, as measured by per cent maximal possible effect (MPE), such that the AD50 was significantly decreased by a factor of 5.6 when compared with that of morphine-infused rats. In the naloxone-induced withdrawal tests, rats receiving ß-arrestin 2 siRNA injection with morphine infusion showed a significant reduction in four of the six signs of withdrawal. CONCLUSIONS: We show here that intrathecal ß-arrestin 2 siRNA in rats enhances analgesia and attenuates naloxone-induced withdrawal symptoms. This may warrant further investigation in the context of long-term use of intrathecal opioids for controlling chronic pain.


Asunto(s)
Analgésicos Opioides/farmacología , Arrestinas/farmacología , Morfina/farmacología , ARN Interferente Pequeño/farmacología , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Tolerancia a Medicamentos , Inyecciones Espinales , Masculino , Dependencia de Morfina/fisiopatología , Naloxona/administración & dosificación , Antagonistas de Narcóticos/administración & dosificación , Dolor/tratamiento farmacológico , Dimensión del Dolor , Ratas , Ratas Sprague-Dawley , Cloruro de Sodio/administración & dosificación , Síndrome de Abstinencia a Sustancias/fisiopatología , Arrestina beta 2 , beta-Arrestinas
12.
Trends Cell Biol ; 12(3): 130-8, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11859025

RESUMEN

It is well established that the function of most heptahelical receptors (seven-transmembrane-span receptors; 7TMRs) is tightly regulated by the desensitizing actions of arrestins. Desensitization is the waning of 7TMR-mediated signals after prolonged exposure to agonist and occurs when arrestins bind to agonist-occupied and phosphorylated receptors, uncoupling the receptors from G proteins and preventing further signaling. Recently, there has been a marked shift in the focus of research into arrestin function because it has become clear that they not only prevent signaling from 7TMRs but also initiate and direct new signals from the very 7TMRs that they desensitize.


Asunto(s)
Arrestinas/fisiología , Transducción de Señal/fisiología , Animales , Arrestinas/metabolismo , Arrestinas/farmacología , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/fisiología , Humanos , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/fisiología , Transducción de Señal/efectos de los fármacos
13.
Trends Pharmacol Sci ; 28(8): 416-22, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17644195

RESUMEN

Seven-transmembrane receptors (7TMRs), the most common molecular targets of modern drug therapy, are critically regulated by beta-arrestins, which both inhibit classic G-protein signaling and initiate distinct beta-arrestin signaling. The interplay of G-protein and beta-arrestin signals largely determines the cellular consequences of 7TMR-targeted drugs. Until recently, a drug's efficacy for beta-arrestin recruitment was believed to be proportional to its efficacy for G-protein activities. This paradigm restricts 7TMR drug effects to a linear spectrum of responses, ranging from inhibition of all responses to stimulation of all responses. However, it is now clear that 'biased ligands' can selectively activate G-protein or beta-arrestin functions and thus elicit novel biological effects from even well-studied 7TMRs. Here, we discuss the current state of beta-arrestin-biased ligand research and the prospects for beta-arrestin bias as a therapeutic target. Consideration of ligand bias might have profound influences on the way scientists approach 7TMR-targeted drug discovery.


Asunto(s)
Arrestinas/farmacología , Ligandos , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación Alostérica , Animales , Arrestinas/química , Arrestinas/metabolismo , Diseño de Fármacos , Humanos , Modelos Biológicos , Unión Proteica , Receptores Acoplados a Proteínas G/química , beta-Arrestinas
14.
Biochem Pharmacol ; 73(10): 1582-92, 2007 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-17284329

RESUMEN

Although mutant receptors are highly useful to dissect the signal transduction pathways of receptors, they are difficult to study in physiological target tissues, due to the presence of endogenous receptors. To study AT(1) angiotensin receptors in their physiological environment, we constructed a mutant receptor, which differs only from the AT(1A) receptor in its reduced affinity for candesartan, a biphenylimidazole antagonist. We have determined that the conserved S109Y substitution of the rat AT(1A) receptor eliminates its candesartan binding, without exerting any major effect on its angiotensin II and peptide angiotensin receptor antagonist binding, internalization kinetics, beta-arrestin binding, and potency or efficacy of the inositol phosphate response. To demonstrate the usefulness of this mutant receptor in signal transduction studies, we combined it with substitution of the highly conserved DRY sequence with AAY, which abolishes G protein activation. In rat C9 hepatocytes the S109Y receptor caused ERK activation with the same mechanism as the endogenous AT(1) receptor. After combination with the DRY/AAY mutation G protein-independent ERK activation was detected demonstrating that this approach can be used to study the angiotensin II-stimulated signaling pathways in cells endogenously expressing AT(1) receptors.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Bencimidazoles/farmacología , Proteínas de Unión al GTP/fisiología , Receptor de Angiotensina Tipo 1/metabolismo , Transducción de Señal/genética , Tetrazoles/farmacología , Sustitución de Aminoácidos , Animales , Arrestinas/farmacología , Compuestos de Bifenilo , Células COS , Células Cultivadas , Chlorocebus aethiops , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Músculos/citología , Mutación , Ratas , Receptor de Angiotensina Tipo 1/genética , Serina/genética , Tirosina/genética , beta-Arrestinas
15.
Cell Signal ; 18(11): 1914-23, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16580177

RESUMEN

Protease-activated receptor 1 (PAR1), a G protein-coupled receptor for thrombin, is irreversibly proteolytically activated. beta-Arrestin1 and beta-arrestin2 have been reported to have different effects on signal desensitization and transduction of PAR1. In this study, we investigated whether beta-arrestin1 and beta-arrestin2 regulate Src-dependent activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) induced by PAR1 in HEK 293 cells. Our results show that PAR1-mediated activation of Src and ERK1/2 in HEK 293 cells was increased with overexpression of beta-arrestin1 or depletion of beta-arrestin2. PAR1-mediated activation of Src and ERK1/2 in HEK 293 cells was decreased or eliminated with depletion of beta-arrestin1 or overexpression of beta-arrestin2. Furthermore, depletion of beta-arrestin2 blocked PAR1-induced degradation of Src. Thus, beta-arrestin1 and beta-arrestin2 have opposing roles in regulating the activation of Src induced by PAR1. beta-Arrestin2 also appears to promote PAR1-induced degradation of Src. This degradation of Src provides a possible mechanism for terminating PAR1 signaling.


Asunto(s)
Arrestinas/clasificación , Arrestinas/fisiología , Receptor PAR-1/metabolismo , Transducción de Señal , Familia-src Quinasas/metabolismo , Arrestinas/farmacología , Línea Celular , Células Cultivadas , Regulación hacia Abajo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Riñón/citología , Riñón/metabolismo , Fosforilación , Regulación hacia Arriba , beta-Arrestinas , Familia-src Quinasas/efectos de los fármacos
16.
Mol Endocrinol ; 15(1): 149-63, 2001 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11145746

RESUMEN

PTH promotes endocytosis of human PTH receptor 1 (PTH1Rc) by activating protein kinase C and recruiting beta-arrestin2. We examined the role of beta-arrestin2 in regulating the cellular distribution and cAMP signaling of two constitutively active PTH1Rc mutants, H223R and T410P. Overexpression of a beta-arrestin2-green fluorescent protein (GFP) conjugate in COS-7 cells inhibited constitutive cAMP accumulation by H223R and T410P in a dose-dependent manner, as well as the response to PTH of both mutant and wild-type PTH1Rcs. The cellular distribution of PTH1Rc-GFP conjugates, fluorescent ligands, and ssarrestin2-GFP was analyzed by fluorescence microscopy in HEK-293T cells. In cells expressing either receptor mutant, a ligand-independent mobilization of beta-arrestin2 to the cell membrane was observed. In the absence of ligand, H223R and wild-type PTH1Rcs were mainly localized on the cell membrane, whereas intracellular trafficking of T410P was also observed. While agonists promoted beta-arrestin2-mediated endocytosis of bot PTH1Rc mutants, antagonists were rapidly internalized only with T410P. The protein kinases inhibitor, staurosporine, significantly decreased internalization of ligand-PTH1Rc mutant complexes, although the recruitment of beta-arrestin2 to the cell membrane was unaffected. Moreover, in cells expressing a truncated wild-type PTH1Rc lacking the C-terminal cytoplasmic domain, agonists stimulated translocation of beta-arrestin2 to the cell membrane followed by ligand-receptor complex internalization without associated beta-arrestin2. In conclusion, cAMP signaling by constitutively active mutant and wild-type PTH1Rcs is inhibited by a receptor interaction with beta-arrestin2 on the cell membrane, possibly leading to uncoupling from G(s)alpha. This phenomenon is independent from protein kinases activity and the receptor C-terminal cytoplasmic domain. In addition, there are differences in the cellular localization and internalization features of constitutively active PTH1Rc mutants H223R and T410P.


Asunto(s)
Arrestinas/farmacología , AMP Cíclico/metabolismo , Mutación , Receptores de Hormona Paratiroidea/análisis , Transducción de Señal/efectos de los fármacos , Animales , Arrestinas/genética , Arrestinas/metabolismo , Células COS , Membrana Celular/química , Membrana Celular/metabolismo , Endocitosis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Proteínas Fluorescentes Verdes , Humanos , Proteínas Luminiscentes/genética , Microscopía Fluorescente , Inhibidores de Proteínas Quinasas , Receptor de Hormona Paratiroídea Tipo 1 , Receptores de Hormona Paratiroidea/genética , Receptores de Hormona Paratiroidea/metabolismo , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/metabolismo , Estaurosporina/farmacología , Transfección , beta-Arrestinas
17.
Curr Protoc Pharmacol ; 68: 2.12.1-2.12.26, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25737158

RESUMEN

Only one out of four mammalian arrestin subtypes, arrestin-3, facilitates the activation of JNK family kinases. Here we describe two different protocols used for elucidating the mechanisms involved. One is based on reconstitution of signaling modules from purified proteins: arrestin-3, MKK4, MKK7, JNK1, JNK2, and JNK3. The main advantage of this method is that it unambiguously establishes which effects are direct because only intended purified proteins are present in these assays. The key drawback is that the upstream-most kinases of these cascades, ASK1 or other MAPKKKs, are not available in purified form, limiting reconstitution to incomplete two-kinase modules. The other approach is used for analyzing the effects of arrestin-3 on JNK activation in intact cells. In this case, signaling modules include ASK1 and/or other MAPKKKs. However, as every cell expresses thousands of different proteins their possible effects on the readout cannot be excluded. Nonetheless, the combination of in vitro reconstitution from purified proteins and cell-based assays makes it possible to elucidate the mechanisms of arrestin-3-dependent activation of JNK family kinases.


Asunto(s)
Arrestinas/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , MAP Quinasa Quinasa 7/aislamiento & purificación , MAP Quinasa Quinasa Quinasa 4/aislamiento & purificación , Células Cultivadas , Activación Enzimática , Humanos , Técnicas In Vitro , Fosforilación , Unión Proteica , Transfección
18.
Endocrinology ; 143(10): 3854-65, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12239097

RESUMEN

We examined here the role of second messenger-dependent kinases and beta-arrestins in short-term regulation of the PTH receptor (PTHR) signaling. The inhibition of protein kinase C (PKC) in COS-7 cells transiently expressing PTHR, led to an approximately 2-fold increase in PTH-stimulated inositol phosphate (IP) and cAMP production. The inhibition of protein kinase A increased cAMP production 1.5-fold without affecting IP signaling. The effects of PKC inhibition on PTHR-mediated G(q) signaling were strongly decreased for a carboxy-terminally truncated PTHR (T480) that is phosphorylation deficient. PKC inhibition was associated with a decrease in agonist-stimulated PTHR phosphorylation and internalization without blocking PTH-dependent mobilization of beta-arrestin2 to the plasma membrane. Overexpression of beta-arrestins strongly decreased the PTHR-mediated IP signal, whereas cAMP production was impaired to a much lower extent. The regulation of PTH-stimulated signals by beta-arrestins was impaired for the truncated T480 receptor. Our data reveal mechanisms at, and distal to, the receptor regulating PTHR-mediated signaling pathways by second messenger-dependent kinases. We conclude that regulation of PTHR-mediated signaling by PKC and beta-arrestins are separable phenomena that both involve the carboxy terminus of the receptor. A major role for PKC and beta-arrestins in preferential regulation of PTHR-mediated G(q) signaling by independent mechanisms at the receptor level was established.


Asunto(s)
Arrestinas/fisiología , Proteína Quinasa C/fisiología , Receptores de Hormona Paratiroidea/fisiología , Transducción de Señal/fisiología , Animales , Arrestinas/farmacología , Células COS , AMP Cíclico/fisiología , Fosfatos de Inositol/fisiología , Hormona Paratiroidea/farmacología , Fragmentos de Péptidos/metabolismo , Fosfotransferasas/fisiología , Receptor de Hormona Paratiroídea Tipo 1 , Receptores de Hormona Paratiroidea/química , Receptores de Hormona Paratiroidea/metabolismo , Sistemas de Mensajero Secundario/fisiología , beta-Arrestinas
19.
FEBS Lett ; 501(2-3): 156-60, 2001 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-11470276

RESUMEN

We examined the pathway of prostaglandin E(2) (PGE(2))-induced internalization of the prostaglandin EP4 receptor in HEK 293 cells. Co-expression of dominant negative beta-arrestin (319-418) or dynamin I (K44A) with the EP4 receptor reduced internalization. The activated receptor co-localized with GFP-arrestin 2 and GFP-arrestin 3, confirming the requirement for beta-arrestins in internalization. Inhibition of clathrin-coated vesicle-mediated internalization resulted in inhibition of sequestration, whereas inhibition of caveola-mediated internalization had no effect. PGE(2) stimulation of the EP4 receptor resulted in rapid mitogen-activated protein (MAP) kinase activation. Examination of an internalization-resistant mutant and co-expression of mutant accessory proteins with EP4 revealed that MAP kinase activation proceeds independently of internalization.


Asunto(s)
Arrestinas/farmacología , Endocitosis/efectos de los fármacos , GTP Fosfohidrolasas/farmacología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Receptores de Prostaglandina E/agonistas , Ácido Acético/farmacología , Células Cultivadas , Dinamina I , Dinaminas , Activación Enzimática/efectos de los fármacos , Proteínas Fluorescentes Verdes , Humanos , Proteínas Luminiscentes/metabolismo , Fosfoproteínas/farmacología , Estructura Terciaria de Proteína , Receptores de Prostaglandina E/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E , Acetato de Tetradecanoilforbol/farmacología , beta-Arrestinas
20.
Neurosci Lett ; 346(1-2): 13-6, 2003 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-12850536

RESUMEN

Beta-arrestins have been suggested to regulate mu-, delta-, and kappa-opioid receptor-mediated responses. In the present study, we examined the effects of pretreatment with beta-arrestin-2 antibody on tail-flick inhibition induced by opioid receptor agonists in the mouse spinal cord. Intrathecal (i.t.) pretreatment with beta-arrestin-2 antibody potentiated the antinociception induced by i.t.-administered mu-opioid receptor agonists [D-Ala(2),NMePhe(4),Gly-ol(5)]enkephalin (DAMGO) and endomorphin-1, but not endomorphin-2, the delta-opioid receptor agonist [D-Ala(2)]deltorphin II or the kappa-opioid receptor agonist U50,488H. The present result suggests that beta-arrestin-2 may tonically down-regulate a selected population of mu-opioid receptors activated by endomorphin-1 or DAMGO in the mouse spinal cord.


Asunto(s)
Analgésicos/farmacología , Arrestinas/farmacología , Dimensión del Dolor/efectos de los fármacos , Receptores Opioides mu/agonistas , Médula Espinal/efectos de los fármacos , Analgésicos Opioides/farmacología , Animales , Anticuerpos/farmacología , Anticuerpos/fisiología , Arrestinas/fisiología , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Ratones Endogámicos ICR , Dimensión del Dolor/métodos , Receptores Opioides mu/fisiología , Médula Espinal/fisiología , Arrestina beta 2 , beta-Arrestinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA