Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 15(11): e1008398, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31682601

RESUMEN

Galls are plant tissues whose development is induced by another organism for the inducer's benefit. 30,000 arthropod species induce galls, and in most cases the inducing effectors and target plant systems are unknown. Cynipid gall wasps are a speciose monophyletic radiation that induce structurally complex galls on oaks and other plants. We used a model system comprising the gall wasp Biorhiza pallida and the oak Quercus robur to characterise inducer and host plant gene expression at defined stages through the development of galled and ungalled plant tissues, and tested alternative hypotheses for the origin and type of galling effectors and plant metabolic pathways involved. Oak gene expression patterns diverged markedly during development of galled and normal buds. Young galls showed elevated expression of oak genes similar to legume root nodule Nod factor-induced early nodulin (ENOD) genes and developmental parallels with oak buds. In contrast, mature galls showed substantially different patterns of gene expression to mature leaves. While most oak transcripts could be functionally annotated, many gall wasp transcripts of interest were novel. We found no evidence in the gall wasp for involvement of third-party symbionts in gall induction, for effector delivery using virus-like-particles, or for gallwasp expression of genes coding for plant hormones. Many differentially and highly expressed genes in young larvae encoded secretory peptides, which we hypothesise are effector proteins exported to plant tissues. Specifically, we propose that host arabinogalactan proteins and gall wasp chitinases interact in young galls to generate a somatic embryogenesis-like process in oak tissues surrounding the gall wasp larvae. Gall wasp larvae also expressed genes encoding multiple plant cell wall degrading enzymes (PCWDEs). These have functional orthologues in other gall inducing cynipids but not in figitid parasitoid sister groups, suggesting that they may be evolutionary innovations associated with cynipid gall induction.


Asunto(s)
Interacciones Huésped-Parásitos/genética , Tumores de Planta/genética , Quercus/genética , Avispas/genética , Animales , Regulación de la Expresión Génica de las Plantas/genética , Genómica , Larva/genética , Redes y Vías Metabólicas/genética , Fenotipo , Reguladores del Crecimiento de las Plantas/genética , Hojas de la Planta , Tumores de Planta/parasitología , Quercus/parasitología , Avispas/patogenicidad
2.
PLoS Pathog ; 15(10): e1008084, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31589659

RESUMEN

It is common to find abundant genetic variation in host resistance and parasite infectivity within populations, with the outcome of infection frequently depending on genotype-specific interactions. Underlying these effects are complex immune defenses that are under the control of both host and parasite genes. We have found extensive variation in Drosophila melanogaster's immune response against the parasitoid wasp Leptopilina boulardi. Some aspects of the immune response, such as phenoloxidase activity, are predominantly affected by the host genotype. Some, such as upregulation of the complement-like protein Tep1, are controlled by the parasite genotype. Others, like the differentiation of immune cells called lamellocytes, depend on the specific combination of host and parasite genotypes. These observations illustrate how the outcome of infection depends on independent genetic effects on different aspects of host immunity. As parasite-killing results from the concerted action of different components of the immune response, these observations provide a physiological mechanism to generate phenomena like epistasis and genotype-interactions that underlie models of coevolution.


Asunto(s)
Drosophila melanogaster/inmunología , Drosophila melanogaster/parasitología , Hemocitos/inmunología , Interacciones Huésped-Parásitos , Inmunidad Humoral/inmunología , Avispas/inmunología , Animales , Drosophila melanogaster/genética , Femenino , Genotipo , Hemocitos/parasitología , Masculino , Monofenol Monooxigenasa/metabolismo , Avispas/genética , Avispas/patogenicidad
3.
Arch Insect Biochem Physiol ; 107(2): e21786, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33818830

RESUMEN

Cotesia kariyai (Ck) larvae implanted into the body cavity of the Mythimna separata (armyworm) larvae get melanized and encapsulated after adhesion by hemocytes called hyperspread cells (HSCs). The present study showed that HSCs could not adhere to the implanted Ck larvae in armyworm larvae after injection of Ck polydnavirus (CkPDV) + venom (V), thus melanization and encapsulation could not occur. A C-type lectin called Mys-IML of the host armyworm larvae was considered to be involved in the recognition of foreign substances which always expressed in hemocytes. The CkPDV DNA encodes a C-type lectin called Cky811 that has high amino acid homology to Mys-IML. HSCs did not adhere when CkPDV + V was mixed with the hemolymph of armyworm larvae on glass slides and incubated in vitro, but the addition of anti-Cky811 antibody enabled HSCs to adhere. The messenger RNA (mRNA) expression of Mys-IML in armyworm larvae injected with CkPDV + V became undetectable by 6 h. On the contrary, Cky811 mRNA was well expressed in the hemocytes of armyworm larvae injected with CkPDV + V from 0.5 to 6 h. Cky811 protein was also detected in the crude extracts from Ck venom gland + Ck venom reservoir, suggesting that these proteins regulate foreign substance recognition by the armyworm within 0.5 h. These results suggest that CkPDV + V suppresses mRNA expression of Mys-IML, and that Cky811 protein expressed in hemocytes regulates foreign substance recognition of Mys-IML, resulting in inhibition of the downstream reaction steps: HSCs adhesion, melanization, and encapsulation.


Asunto(s)
Lectinas Tipo C/inmunología , Mariposas Nocturnas/parasitología , Polydnaviridae , Avispas , Animales , Anticuerpos Antivirales/metabolismo , Hemocitos/inmunología , Hemocitos/metabolismo , Interacciones Huésped-Parásitos/inmunología , Inmunidad , Larva/inmunología , Larva/metabolismo , Larva/parasitología , Lectinas Tipo C/metabolismo , Mariposas Nocturnas/inmunología , Polydnaviridae/metabolismo , Proteínas Virales/inmunología , Proteínas Virales/metabolismo , Avispas/patogenicidad , Avispas/virología
4.
Genomics ; 112(2): 1096-1104, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31247332

RESUMEN

Hymenopteran parasitoid wasps are a diverse collection of species that infect arthropod hosts and use factors found in their venoms to manipulate host immune responses, physiology, and behaviour. Whole parasitoid venoms have been profiled using proteomic approaches, and here we present a bioinformatic characterization of the venom protein content from Ganaspis sp. 1, a parasitoid that infects flies of the genus Drosophila. We find evidence that diverse evolutionary processes including multifunctionalization, co-option, gene duplication, and horizontal gene transfer may be acting in concert to drive venom gene evolution in Ganaspis sp.1. One major role of parasitoid wasp venom is host immune evasion. We previously demonstrated that Ganaspis sp. 1 venom inhibits immune cell activation in infected Drosophila melanogaster hosts, and our current analysis has uncovered additional predicted virulence functions. Overall, this analysis represents an important step towards understanding the composition and activity of parasitoid wasp venoms.


Asunto(s)
Venenos de Artrópodos/genética , Evolución Molecular , Avispas/genética , Animales , Venenos de Artrópodos/metabolismo , Drosophila melanogaster/inmunología , Drosophila melanogaster/parasitología , Duplicación de Gen , Transferencia de Gen Horizontal , Evasión Inmune , Proteoma/genética , Proteoma/metabolismo , Avispas/patogenicidad
5.
Mol Genet Genomics ; 295(1): 107-120, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31506717

RESUMEN

The oriental gall wasp Dryocosmus kuriphilus represents a limiting pest for the European Chestnut (Castanea sativa, Fagaceae) as it creates severe yield losses. The European Chestnut is a deciduous tree, having major social, economic and environmental importance in Southern Europe, covering an area of 2.53 million hectares, including 75,000 ha devoted to fruit production. Cultivars show different susceptibility and very few are resistant to gall wasp. To deeply investigate the plant response and understand which factors can lead the plant to develop or not the gall, the study of transcriptome is basic (fundamental). To date, little transcriptomic information are available for C. sativa species. Hence, we present a de novo assembly of the chestnut transcriptome of the resistant Euro-Japanese hybrid 'Bouche de Bétizac' (BB) and the susceptible cultivar 'Madonna' (M), collecting RNA from buds at different stages of budburst. The two transcriptomes were assembled into 34,081 (BB) and 30,605 (M) unigenes, respectively. The former was used as a reference sequence for further characterization analyses, highlighting the presence of 1444 putative resistance gene analogs (RGAs) and about 1135 unigenes, as putative MiRNA targets. A global quantitative transcriptome profiling comparing the resistant and the susceptible cultivars, in the presence or not of the gall wasp, revealed some GO enrichments as "response to stimulus" (GO:0050896), and "developmental processes" (e.g., post-embryonic development, GO:0009791). Many up-regulated genes appeared to be transcription factors (e.g., RAV1, AP2/ERF, WRKY33) or protein regulators (e.g., RAPTOR1B) and storage proteins (e.g., LEA D29) involved in "post-embryonic development". Our analysis was able to provide a large amount of information, including 7k simple sequence repeat (SSR) and 335k single-nucleotide polymorphism (SNP)/INDEL markers, and generated the first reference unigene catalog for the European Chestnut. The transcriptome data for C. sativa will contribute to understand the genetic basis of the resistance to gall wasp and will provide useful information for next molecular genetic studies of this species and its relatives.


Asunto(s)
Fagaceae/genética , Transcriptoma/genética , Avispas/patogenicidad , Animales , Europa (Continente) , Fagaceae/parasitología , Perfilación de la Expresión Génica/métodos , Repeticiones de Microsatélite/genética , Anotación de Secuencia Molecular/métodos , Enfermedades de las Plantas/parasitología , Polimorfismo de Nucleótido Simple/genética , Factores de Transcripción/genética , Árboles/genética , Árboles/parasitología , Regulación hacia Arriba/genética
6.
Heredity (Edinb) ; 124(4): 592-602, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31896821

RESUMEN

The ability of an insect to survive attack by natural enemies can be modulated by the presence of defensive symbionts. Study of aphid-symbiont-enemy interactions has indicated that protection may depend on the interplay of symbiont, host and attacking parasite genotypes. However, the importance of these interactions is poorly understood outside of this model system. Here, we study interactions within a Drosophila model system, in which Spiroplasma protect their host against parasitoid wasps and nematodes. We examine whether the strength of protection conferred by Spiroplasma to its host, Drosophila melanogaster varies with strain of attacking Leptopilina heterotoma wasp. We perform this analysis in the presence and absence of ethanol, an environmental factor that also impacts the outcome of parasitism. We observed that Spiroplasma killed all strains of wasp. However, the protection produced by Spiroplasma following wasp attack depended on wasp strain. A composite measure of protection, including both the chance of the fly surviving attack and the relative fecundity/fertility of the survivors, varied from a <4% positive effect of the symbiont following attack of the fly host by the Lh14 strain of wasp to 21% for the Lh-Fr strain in the absence of ethanol. We also observed that environmental ethanol altered the pattern of protection against wasp strains. These data indicate that the dynamics of the Spiroplasma-Drosophila-wasp tripartite interaction depend upon the genetic diversity within the attacking wasp population, and that prediction of symbiont dynamics in natural systems will thus require analysis across natural enemy genotypes and levels of environmental ethanol.


Asunto(s)
Drosophila melanogaster/microbiología , Spiroplasma , Simbiosis , Avispas , Animales , Drosophila melanogaster/parasitología , Etanol , Genotipo , Spiroplasma/fisiología , Avispas/genética , Avispas/patogenicidad
7.
PLoS Pathog ; 13(10): e1006683, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29049362

RESUMEN

A priority for biomedical research is to understand the causes of variation in susceptibility to infection. To investigate genetic variation in a model system, we used flies collected from single populations of three different species of Drosophila and artificially selected them for resistance to the parasitoid wasp Leptopilina boulardi, and found that survival rates increased 3 to 30 fold within 6 generations. Resistance in all three species involves a large increase in the number of the circulating hemocytes that kill parasitoids. However, the different species achieve this in different ways, with D. melanogaster moving sessile hemocytes into circulation while the other species simply produce more cells. Therefore, the convergent evolution of the immune phenotype has different developmental bases. These changes are costly, as resistant populations of all three species had greatly reduced larval survival. In all three species resistance is only costly when food is in short supply, and resistance was rapidly lost from D. melanogaster populations when food is restricted. Furthermore, evolving resistance to L. boulardi resulted in cross-resistance against other parasitoids. Therefore, whether a population evolves resistance will depend on ecological conditions including food availability and the presence of different parasite species.


Asunto(s)
Evolución Biológica , Resistencia a la Enfermedad/genética , Drosophila/inmunología , Drosophila/parasitología , Avispas/patogenicidad , Animales , Resistencia a la Enfermedad/inmunología , Drosophila/genética , Inmunidad Celular/genética , Inmunidad Celular/inmunología , Especificidad de la Especie , Avispas/inmunología
8.
BMC Biol ; 16(1): 54, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29776407

RESUMEN

BACKGROUND: Trichogrammatids are minute parasitoid wasps that develop within other insect eggs. They are less than half a millimeter long, smaller than some protozoans. The Trichogrammatidae are one of the earliest branching families of Chalcidoidea: a diverse superfamily of approximately half a million species of parasitoid wasps, proposed to have evolved from a miniaturized ancestor. Trichogramma are frequently used in agriculture, released as biological control agents against major moth and butterfly pests. Additionally, Trichogramma are well known for their symbiotic bacteria that induce asexual reproduction in infected females. Knowledge of the genome sequence of Trichogramma is a major step towards further understanding its biology and potential applications in pest control. RESULTS: We report the 195-Mb genome sequence of Trichogramma pretiosum and uncover signatures of miniaturization and adaptation in Trichogramma and related parasitoids. Comparative analyses reveal relatively rapid evolution of proteins involved in ribosome biogenesis and function, transcriptional regulation, and ploidy regulation. Chalcids also show loss or especially rapid evolution of 285 gene clusters conserved in other Hymenoptera, including many that are involved in signal transduction and embryonic development. Comparisons between sexual and asexual lineages of Trichogramma pretiosum reveal that there is no strong evidence for genome degradation (e.g., gene loss) in the asexual lineage, although it does contain a lower repeat content than the sexual lineage. Trichogramma shows particularly rapid genome evolution compared to other hymenopterans. We speculate these changes reflect adaptations to miniaturization, and to life as a specialized egg parasitoid. CONCLUSIONS: The genomes of Trichogramma and related parasitoids are a valuable resource for future studies of these diverse and economically important insects, including explorations of parasitoid biology, symbiosis, asexuality, biological control, and the evolution of miniaturization. Understanding the molecular determinants of parasitism can also inform mass rearing of Trichogramma and other parasitoids for biological control.


Asunto(s)
Evolución Molecular , Control Biológico de Vectores , Avispas/clasificación , Avispas/genética , Animales , Genómica , Mariposas Nocturnas/parasitología , Filogenia , Avispas/patogenicidad , Secuenciación Completa del Genoma/métodos
9.
Biochem Biophys Res Commun ; 502(3): 415-421, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-29856996

RESUMEN

Acute inflammation can cause serious tissue damage and disease in physiologically-challenged organisms. The precise mechanisms leading to these detrimental effects remain to be determined. In this study, we utilize a reproducible means to induce cellular immune activity in Drosophila larvae in response to mechanical stress. That is, forceps squeeze-administered stress induces lamellocytes, a defensive hemocyte type that normally appears in response to wasp infestation of larvae. The posterior signaling center (PSC) is a cellular microenvironment in the larval hematopoietic lymph gland that is vital for lamellocyte induction upon parasitoid attack. However, we found the PSC was not required for mechanical stress-induced lamellocyte production. In addition, we observed that mechanical injury caused a systemic expression of Unpaired3. This cytokine is both necessary and sufficient to activate the cellular immune response to the imposed stress. These findings provide new insights into the communication between injured tissues and immune system induction, using stress-challenged Drosophila larvae as a tractable model system.


Asunto(s)
Drosophila melanogaster/inmunología , Drosophila melanogaster/metabolismo , Animales , Animales Modificados Genéticamente , Microambiente Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/parasitología , Hemocitos/citología , Hemocitos/inmunología , Inmunidad Celular , Quinasas Janus/metabolismo , Larva/inmunología , Larva/metabolismo , Larva/parasitología , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Estrés Mecánico , Factores de Transcripción/metabolismo , Avispas/inmunología , Avispas/patogenicidad
10.
J Math Biol ; 76(1-2): 457-482, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28638944

RESUMEN

In the "producer-scrounger" model, a producer discovers a resource and is in turn discovered by a second individual, the scrounger, who attempts to steal it. This resource can be food or a territory, and in some situations, potentially divisible. In a previous paper we considered a producer and scrounger competing for an indivisible resource, where each individual could choose the level of energy that they would invest in the contest. The higher the investment, the higher the probability of success, but also the higher the costs incurred in the contest. In that paper decisions were sequential with the scrounger choosing their strategy before the producer. In this paper we consider a version of the game where decisions are made simultaneously. For the same cost functions as before, we analyse this case in detail, and then make comparisons between the two cases. Finally we discuss some real examples with potentially variable and asymmetric energetic investments, including intraspecific contests amongst spiders and amongst parasitoid wasps. In the case of the spiders, detailed estimates of energetic expenditure are available which demonstrate the asymmetric values assumed in our models. For the wasps the value of the resource can affect the probabilities of success of the defender and attacker, and differential energetic investment can be inferred. In general for real populations energy usage varies markedly depending upon crucial parameters extrinsic to the individual such as resource value and intrinsic ones such as age, and is thus an important factor to consider when modelling.


Asunto(s)
Agresión , Conducta Animal , Teoría del Juego , Modelos Biológicos , Animales , Conducta Competitiva , Biología Computacional , Toma de Decisiones , Interacciones Huésped-Parásitos/fisiología , Conceptos Matemáticos , Arañas/parasitología , Arañas/fisiología , Avispas/patogenicidad , Avispas/fisiología
11.
Mol Biol Evol ; 33(4): 1042-52, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26715630

RESUMEN

Parasitoid wasps use venom to manipulate the immunity and metabolism of their host insects in a variety of ways to provide resources for their offspring. Yet, how genes are recruited and evolve to perform venom functions remain open questions. A recently recognized source of eukaryotic genome innovation is lateral gene transfer (LGT). Glycoside hydrolase family 19 (GH19) chitinases are widespread in bacteria, microsporidia, and plants where they are used in nutrient acquisition or defense, but have previously not been known in metazoans. In this study, a GH19 chitinase LGT is described from the unicellular microsporidia/Rozella clade into parasitoid wasps of the superfamily Chalcidoidea, where it has become recruited as a venom protein. The GH19 chitinase is present in 15 species of chalcidoid wasps representing four families, and phylogenetic analysis indicates that it was laterally transferred near or before the origin of Chalcidoidea (∼95 Ma). The GH19 chitinase gene is highly expressed in the venom gland of at least seven species, indicating a role in the complex host manipulations performed by parasitoid wasp venom. RNAi knockdown in the model parasitoid Nasonia vitripennis reveals that-following envenomation-the GH19 chitinase induces fly hosts to upregulate genes involved in an immune response to fungi. A second, independent LGT of GH19 chitinase from microsporidia into mosquitoes was also found, also supported by phylogenetic reconstructions. Besides these two LGT events, GH19 chitinase is not found in any other sequenced animal genome, or in any fungi outside the microsporidia/Rozella clade.


Asunto(s)
Quitinasas/genética , Transferencia de Gen Horizontal/genética , Filogenia , Venenos de Avispas/genética , Animales , Genoma de los Insectos , Interacciones Huésped-Parásitos/genética , Microsporidios/genética , Avispas/genética , Avispas/patogenicidad
12.
Biochem Biophys Res Commun ; 486(4): 893-897, 2017 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-28342875

RESUMEN

In vertebrates, interaction between the nervous system and immune system is important to protect a challenged host from stress inputs from external sources. In this study, we demonstrate that sensory neurons are involved in the cellular immune response elicited by wasp infestation of Drosophila larvae. Multidendritic class IV neurons sense contacts from external stimuli and induce avoidance behaviors for host defense. Our findings show that inactivation of these sensory neurons impairs the cellular response against wasp parasitization. We also demonstrate that the nociception genes encoding the mechanosensory receptors Painless and Piezo, both expressed in class IV neurons, are essential for the normal cellular immune response to parasite challenge.


Asunto(s)
Proteínas de Drosophila/inmunología , Drosophila/inmunología , Drosophila/parasitología , Canales Iónicos/inmunología , Nociceptores/fisiología , Avispas/patogenicidad , Animales , Larva/inmunología , Larva/parasitología , Neuroinmunomodulación/inmunología
14.
J Emerg Med ; 52(4): e115-e116, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27998634

RESUMEN

BACKGROUND: Insect venom anaphylaxis is a potentially life-threatening disorder. Transient coagulopathy in insect venom anaphylaxis is a rare phenomenon. CASE REPORT: A 41-year-old man presented to the Emergency Department (ED) with hypotension after a run in a park. History and examination revealed signs of anaphylactic shock. A deranged coagulation profile with a normal platelet count led to the diagnosis of wasp sting anaphylaxis. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Transient deranged coagulation profile with a normal platelet count may arise from insect venom anaphylaxis. This specific finding may aid the emergency physician in making a diagnosis of anaphylactic shock in an otherwise healthy patient presenting with shock with no apparent cause.


Asunto(s)
Mordeduras y Picaduras de Insectos/complicaciones , Avispas/patogenicidad , Adulto , Anafilaxia/etiología , Animales , Antialérgicos/farmacología , Antialérgicos/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Trastornos de la Coagulación Sanguínea/etiología , Difenhidramina/farmacología , Difenhidramina/uso terapéutico , Servicio de Urgencia en Hospital/organización & administración , Epinefrina/farmacología , Epinefrina/uso terapéutico , Humanos , Hidrocortisona/farmacología , Hidrocortisona/uso terapéutico , Hipotensión/etiología , Masculino , Síncope/etiología , Taquicardia/etiología , Venenos de Avispas/efectos adversos
15.
J Exp Biol ; 219(Pt 19): 2984-2990, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27707863

RESUMEN

The success of maternally transmitted endosymbiotic bacteria, such as Wolbachia, is directly linked to their host reproduction but in direct conflict with other parasites that kill the host before it reaches reproductive maturity. Therefore, symbionts that have evolved strategies to increase their host's ability to evade lethal parasites may have high penetrance, while detrimental symbionts would be selected against, leading to lower penetrance or extinction from the host population. In a natural population of the parasitoid wasp Hyposoter horticola in the Åland Islands (Finland), the Wolbachia strain wHho persists at an intermediate prevalence (∼50%). Additionally, there is a negative correlation between the prevalence of Wolbachia and a hyperparasitoid wasp, Mesochorus cf. stigmaticus, in the landscape. Using a manipulative field experiment, we addressed the persistence of Wolbachia at this intermediate level, and tested whether the observed negative correlation could be due to Wolbachia inducing either susceptibility or resistance to parasitism. We show that infection with Wolbachia does not influence the ability of the wasp to parasitize its butterfly host, Melitaea cinxia, but that hyperparasitism of the wasp increases in the presence of wHho. Consequently, the symbiont is detrimental, and in order to persist in the host population, must also have a positive effect on fitness that outweighs the costly burden of susceptibility to widespread parasitism.


Asunto(s)
Parásitos/microbiología , Avispas/microbiología , Wolbachia/fisiología , Animales , Mariposas Diurnas/parasitología , Resistencia a la Enfermedad , Estonia , Finlandia , Interacciones Huésped-Patógeno , Larva/parasitología , Especificidad de la Especie , Virulencia , Avispas/patogenicidad
16.
Proc Natl Acad Sci U S A ; 110(23): 9427-32, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23690612

RESUMEN

Because parasite virulence factors target host immune responses, identification and functional characterization of these factors can provide insight into poorly understood host immune mechanisms. The fruit fly Drosophila melanogaster is a model system for understanding humoral innate immunity, but Drosophila cellular innate immune responses remain incompletely characterized. Fruit flies are regularly infected by parasitoid wasps in nature and, following infection, flies mount a cellular immune response culminating in the cellular encapsulation of the wasp egg. The mechanistic basis of this response is largely unknown, but wasps use a mixture of virulence proteins derived from the venom gland to suppress cellular encapsulation. To gain insight into the mechanisms underlying wasp virulence and fly cellular immunity, we used a joint transcriptomic/proteomic approach to identify venom genes from Ganaspis sp.1 (G1), a previously uncharacterized Drosophila parasitoid species, and found that G1 venom contains a highly abundant sarco/endoplasmic reticulum calcium ATPase (SERCA) pump. Accordingly, we found that fly immune cells termed plasmatocytes normally undergo a cytoplasmic calcium burst following infection, and that this calcium burst is required for activation of the cellular immune response. We further found that the plasmatocyte calcium burst is suppressed by G1 venom in a SERCA-dependent manner, leading to the failure of plasmatocytes to become activated and migrate toward G1 eggs. Finally, by genetically manipulating plasmatocyte calcium levels, we were able to alter fly immune success against G1 and other parasitoid species. Our characterization of parasitoid wasp venom proteins led us to identify plasmatocyte cytoplasmic calcium bursts as an important aspect of fly cellular immunity.


Asunto(s)
Calcio/metabolismo , Drosophila melanogaster/inmunología , Drosophila melanogaster/parasitología , Inmunidad Celular/efectos de los fármacos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/farmacología , Venenos de Avispas/enzimología , Avispas/química , Animales , Secuencia de Bases , Western Blotting , Drosophila melanogaster/metabolismo , Perfilación de la Expresión Génica , Hemocitos/inmunología , Hemocitos/metabolismo , Espectrometría de Masas , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico/métodos , Reacción en Cadena de la Polimerasa , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/análisis , Análisis de Secuencia de ADN , Factores de Virulencia/farmacología , Avispas/genética , Avispas/patogenicidad
17.
Proc Natl Acad Sci U S A ; 110(4): 1369-74, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23297195

RESUMEN

Food resources contaminated with spoilage or pathogenic microorganisms pose severe problems to all higher organisms. Here, we describe a food-hygienic strategy of the emerald cockroach wasp Ampulex compressa. The wasp larvae develop on and inside the American cockroach Periplaneta americana, a host that can harbor various putrefactive microbes, as well as human and insect pathogens. From P. americana, we isolated the Gram-negative bacterium Serratia marcescens, which is a potent entomopathogen that can rapidly kill insect larvae. It is also known as a food contaminant and as an opportunistic human pathogen. Using behavioral observations and chemical analyses, we demonstrated that A. compressa larvae impregnate their cockroach hosts from inside with large amounts of an oral secretion containing a blend of γ-lactones and isocoumarins with (R)-(-)-mellein [(R)-(-)-3,4-diydro-8-hydroxy-3-methylisocoumarin] and micromolide [(4R,9Z)-octadec-9-en-4-olide] as dominant components. We fractionated hexane extracts of the secretion and investigated the antimicrobial properties of the fraction containing the lactones and isocoumarins, as well as of synthetic (R)-(-)-mellein and micromolide, against S. marcescens and a Gram-positive bacterium, Staphylococcus hyicus, in broth microdilution assays. The test fraction inhibited growth of both tested bacteria. The activity of the fraction against S. marcescens was explained by (R)-(-)-mellein alone, and the activity against S. hyicus was explained by the combined action of (R)-(-)-mellein and micromolide. Our data suggest that the specific combination of antimicrobials in the larval secretion provides an effective frontline defense against the unpredictable spectrum of microbes that A. compressa larvae may encounter during their development inside their cockroach hosts.


Asunto(s)
Antiinfecciosos/metabolismo , Interacciones Huésped-Parásitos/fisiología , Periplaneta/microbiología , Periplaneta/parasitología , Avispas/fisiología , Animales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Genes Bacterianos , Humanos , Isocumarinas/química , Isocumarinas/metabolismo , Isocumarinas/farmacología , Lactonas/química , Lactonas/metabolismo , Lactonas/farmacología , Datos de Secuencia Molecular , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Serratia marcescens/efectos de los fármacos , Serratia marcescens/genética , Serratia marcescens/crecimiento & desarrollo , Serratia marcescens/patogenicidad , Staphylococcus hyicus/efectos de los fármacos , Staphylococcus hyicus/genética , Staphylococcus hyicus/crecimiento & desarrollo , Staphylococcus hyicus/patogenicidad , Avispas/microbiología , Avispas/patogenicidad
18.
J Virol ; 87(17): 9649-60, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23804644

RESUMEN

The relationship between parasitoid wasps and polydnaviruses constitutes one of the few known mutualisms between viruses and eukaryotes. Viral particles are injected with the wasp eggs into parasitized larvae, and the viral genes thus introduced are used to manipulate lepidopteran host physiology. The genome packaged in the particles is composed of 35 double-stranded DNA (dsDNA) circles produced in wasp ovaries by amplification of viral sequences from proviral segments integrated in tandem arrays in the wasp genome. These segments and their flanking regions within the genome of the wasp Cotesia congregata were recently isolated, allowing extensive mapping of amplified sequences. The bracovirus DNAs packaged in the particles were found to be amplified within more than 12 replication units. Strikingly, the nudiviral cluster, the genes of which encode particle structural components, was also amplified, although not encapsidated. Amplification of bracoviral sequences was shown to involve successive head-to-head and tail-to-tail concatemers, which was not expected given the nudiviral origin of bracoviruses.


Asunto(s)
Genoma Viral , Polydnaviridae/genética , Avispas/patogenicidad , Avispas/virología , Animales , Secuencia de Bases , ADN Viral/química , ADN Viral/genética , Femenino , Amplificación de Genes , Manduca/parasitología , Manduca/virología , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Provirus/genética , Replicón , Simbiosis , Virión/genética
19.
J Evol Biol ; 27(12): 2871-5, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25399504

RESUMEN

By definition, insect parasitoids kill their host during their development. Data are presented showing that ladybirds not only can survive parasitism by Dinocampus coccinellae, but also can retain their capacity to reproduce following parasitoid emergence. We hypothesize that host behaviour manipulation constitutes a preadaptation leading to the attenuation of parasitoid virulence. Following larval development, the parasitoid egresses from the host and spins a cocoon between the ladybird's legs. Throughout parasitoid pupation, the manipulated host acts as a bodyguard to protect the parasitoid cocoon from predation. The parasitoid has evolved mechanisms to avoid killing the host prematurely so that its own survival is not compromised. Bodyguard manipulation may thus constitute a selective trait for the evolution of true parasitism in some host-parasitoid associations.


Asunto(s)
Conducta Animal/fisiología , Evolución Biológica , Escarabajos/fisiología , Escarabajos/parasitología , Interacciones Huésped-Parásitos/fisiología , Avispas/patogenicidad , Animales , Virulencia
20.
Oecologia ; 173(3): 985-96, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23624672

RESUMEN

Mutualisms with facultative, non-essential heritable microorganisms influence the biology of many insects, and they can have major effects on insect host fitness in certain situations. One of the best-known examples is found in aphids where the facultative endosymbiotic bacterium Hamiltonella defensa confers protection against hymenopterous parasitoids. This symbiont is widely distributed in aphids and related insects, yet its defensive properties have only been tested in two aphid species. In a wild population of the grain aphid, Sitobion avenae, we identified several distinct strains of endosymbiotic bacteria, including Hamiltonella. The symbiont had no consistent effect on grain aphid fecundity, though we did find a significant interaction between aphid genotype by symbiont status. In contrast to findings in other aphid species, Hamiltonella did not reduce aphid susceptibility to two species of parasitoids (Aphidius ervi and Ephedrus plagiator), nor did it affect the fitness of wasps that successfully completed development. Despite this, experienced females of both parasitoid species preferentially oviposited into uninfected hosts when given a choice between genetically identical individuals with or without Hamiltonella. Thus, although Hamiltonella does not always increase resistance to parasitism, it may reduce the risk of parasitism in its aphid hosts by making them less attractive to searching parasitoids.


Asunto(s)
Áfidos/microbiología , Áfidos/parasitología , Enterobacteriaceae/fisiología , Simbiosis/fisiología , Avispas/fisiología , Animales , Áfidos/fisiología , Femenino , Fertilidad/fisiología , Genotipo , Interacciones Huésped-Parásitos , Modelos Lineales , Oviposición/fisiología , Avispas/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA