Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 654
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 557(7705): 434-438, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29743671

RESUMEN

The dense microbial ecosystem in the gut is intimately connected to numerous facets of human biology, and manipulation of the gut microbiota has broad implications for human health. In the absence of profound perturbation, the bacterial strains that reside within an individual are mostly stable over time 1 . By contrast, the fate of exogenous commensal and probiotic strains applied to an established microbiota is variable, generally unpredictable and greatly influenced by the background microbiota2,3. Therefore, analysis of the factors that govern strain engraftment and abundance is of critical importance to the emerging field of microbiome reprogramming. Here we generate an exclusive metabolic niche in mice via administration of a marine polysaccharide, porphyran, and an exogenous Bacteroides strain harbouring a rare gene cluster for porphyran utilization. Privileged nutrient access enables reliable engraftment of the exogenous strain at predictable abundances in mice harbouring diverse communities of gut microbes. This targeted dietary support is sufficient to overcome priority exclusion by an isogenic strain 4 , and enables strain replacement. We demonstrate transfer of the 60-kb porphyran utilization locus into a naive strain of Bacteroides, and show finely tuned control of strain abundance in the mouse gut across multiple orders of magnitude by varying porphyran dosage. Finally, we show that this system enables the introduction of a new strain into the colonic crypt ecosystem. These data highlight the influence of nutrient availability in shaping microbiota membership, expand the ability to perform a broad spectrum of investigations in the context of a complex microbiota, and have implications for cell-based therapeutic strategies in the gut.


Asunto(s)
Colon/microbiología , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiología , Animales , Bacteroides/crecimiento & desarrollo , Bacteroides/aislamiento & purificación , Bacteroides/fisiología , Femenino , Humanos , Masculino , Ratones , Sefarosa/análogos & derivados , Sefarosa/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(39): 24484-24493, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32938803

RESUMEN

Mechanistic studies of anaerobic gut bacteria have been hindered by the lack of a fluorescent protein system to track and visualize proteins and dynamic cellular processes in actively growing bacteria. Although underappreciated, many gut "anaerobes" are able to respire using oxygen as the terminal electron acceptor. The oxygen continually released from gut epithelial cells creates an oxygen gradient from the mucus layer to the anaerobic lumen [L. Albenberg et al., Gastroenterology 147, 1055-1063.e8 (2014)], with oxygen available to bacteria growing at the mucus layer. Here, we show that Bacteroides species are metabolically and energetically robust and do not mount stress responses in the presence of 0.10 to 0.14% oxygen, defined as nanaerobic conditions [A. D. Baughn, M. H. Malamy, Nature 427, 441-444 (2004)]. Taking advantage of this metabolic capability, we show that nanaerobic growth provides sufficient oxygen for the maturation of oxygen-requiring fluorescent proteins in Bacteroides species. Type strains of four different Bacteroides species show bright GFP fluorescence when grown nanaerobically versus anaerobically. We compared four different red fluorescent proteins and found that mKate2 yields the highest red fluorescence intensity in our assay. We show that GFP-tagged proteins can be localized in nanaerobically growing bacteria. In addition, we used time-lapse fluorescence microscopy to image dynamic type VI secretion system processes in metabolically active Bacteroides fragilis The ability to visualize fluorescently labeled Bacteroides and fluorescently linked proteins in actively growing nanaerobic gut symbionts ushers in an age of imaging analyses not previously possible in these bacteria.


Asunto(s)
Bacteroides/metabolismo , Microbioma Gastrointestinal , Aerobiosis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteroides/clasificación , Bacteroides/genética , Bacteroides/crecimiento & desarrollo , Humanos , Oxígeno/metabolismo , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo
3.
J Biol Chem ; 296: 100552, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33744293

RESUMEN

The Cellulosome is an intricate macromolecular protein complex that centralizes the cellulolytic efforts of many anaerobic microorganisms through the promotion of enzyme synergy and protein stability. The assembly of numerous carbohydrate processing enzymes into a macromolecular multiprotein structure results from the interaction of enzyme-borne dockerin modules with repeated cohesin modules present in noncatalytic scaffold proteins, termed scaffoldins. Cohesin-dockerin (Coh-Doc) modules are typically classified into different types, depending on structural conformation and cellulosome role. Thus, type I Coh-Doc complexes are usually responsible for enzyme integration into the cellulosome, while type II Coh-Doc complexes tether the cellulosome to the bacterial wall. In contrast to other known cellulosomes, cohesin types from Bacteroides cellulosolvens, a cellulosome-producing bacterium capable of utilizing cellulose and cellobiose as carbon sources, are reversed for all scaffoldins, i.e., the type II cohesins are located on the enzyme-integrating primary scaffoldin, whereas the type I cohesins are located on the anchoring scaffoldins. It has been previously shown that type I B. cellulosolvens interactions possess a dual-binding mode that adds flexibility to scaffoldin assembly. Herein, we report the structural mechanism of enzyme recruitment into B. cellulosolvens cellulosome and the identification of the molecular determinants of its type II cohesin-dockerin interactions. The results indicate that, unlike other type II complexes, these possess a dual-binding mode of interaction, akin to type I complexes. Therefore, the plasticity of dual-binding mode interactions seems to play a pivotal role in the assembly of B. cellulosolvens cellulosome, which is consistent with its unmatched complexity and size.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteroides/metabolismo , Proteínas de Ciclo Celular/metabolismo , Celulosomas/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Clostridiales/metabolismo , Proteínas Bacterianas/genética , Bacteroides/genética , Bacteroides/crecimiento & desarrollo , Proteínas de Ciclo Celular/genética , Celobiosa/metabolismo , Celulosa/metabolismo , Proteínas Cromosómicas no Histona/genética , Clostridiales/genética , Clostridiales/crecimiento & desarrollo , Cohesinas
4.
Gastroenterology ; 161(3): 940-952.e15, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34111469

RESUMEN

BACKGROUND & AIMS: Perturbations in the early-life gut microbiome are associated with increased risk for complex immune disorders like inflammatory bowel diseases. We previously showed that maternal antibiotic-induced gut dysbiosis vertically transmitted to offspring increases experimental colitis risk in interleukin (IL) 10 gene deficient (IL10-/-) mice, a finding that may result from the loss/lack of essential microbes needed for appropriate immunologic education early in life. Here, we aimed to identify key microbes required for proper development of the early-life gut microbiome that decrease colitis risk in genetically susceptible animals. METHODS: Metagenomic sequencing followed by reconstruction of metagenome-assembled genomes was performed on fecal samples of IL10-/- mice with and without antibiotic-induced dysbiosis to identify potential missing microbial members needed for immunologic education. One high-value target strain was then engrafted early and/or late into the gut microbiomes of IL10-/- mice with antibiotic-induced dysbiosis. RESULTS: Early-, but not late-, life engraftment of a single dominant Bacteroides strain of non-antibiotic-treated IL10-/- mice was sufficient to restore the development of the gut microbiome, promote immune tolerance, and prevent colitis in IL10-/- mice that had antibiotic-induced dysbiosis. CONCLUSIONS: Restitution of a keystone microbial strain missing in the early-life antibiotic-induced gut dysbiosis results in recovery of the microbiome, proper development of immune tolerance, and reduced risk for colitis in genetically prone hosts.


Asunto(s)
Bacteroides/crecimiento & desarrollo , Colitis/prevención & control , Colon/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Interleucina-10/deficiencia , Animales , Antibacterianos , Bacteroides/inmunología , Colitis/inmunología , Colitis/metabolismo , Colitis/microbiología , Colon/inmunología , Colon/metabolismo , Colon/patología , Modelos Animales de Enfermedad , Disbiosis , Heces/microbiología , Interacciones Huésped-Patógeno , Tolerancia Inmunológica , Interleucina-10/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Prueba de Estudio Conceptual , Factores de Tiempo
5.
FASEB J ; 34(8): 10699-10719, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32584506

RESUMEN

Heart failure (HF) is an increasing global health crisis, affecting 40 million people and causing 50% mortality within 5 years of diagnosis. A fuller understanding of the genetic and environmental factors underlying HF, and novel therapeutic approaches to address it, are urgently warranted. Here, we discovered that cardiac-specific germline deletion in mice of potassium channel ß subunit-encoding Kcne2 (Kcne2CS-/- ) causes dilated cardiomyopathy and terminal HF (median longevity, 28 weeks). Mice with global Kcne2 deletion (Kcne2Glo-/- ) exhibit multiple HF risk factors, yet, paradoxically survived over twice as long as Kcne2CS-/- mice. Global Kcne2 deletion, which inhibits gastric acid secretion, reduced the relative abundance of species within Bacteroidales, a bacterial order that positively correlates with increased lifetime risk of human cardiovascular disease. Strikingly, the proton-pump inhibitor omeprazole similarly altered the microbiome and delayed terminal HF in Kcne2CS-/- mice, increasing survival 10-fold at 44 weeks. Thus, genetic or pharmacologic induction of hypochlorhydria and decreased gut Bacteroidales species are associated with lifespan extension in a novel HF model.


Asunto(s)
Aclorhidria/genética , Aclorhidria/mortalidad , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/mortalidad , Canales de Potasio con Entrada de Voltaje/genética , Animales , Bacteroides/crecimiento & desarrollo , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/mortalidad , Femenino , Ácido Gástrico/metabolismo , Microbioma Gastrointestinal/genética , Eliminación de Gen , Corazón/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Riesgo
6.
BJOG ; 127(2): 217-227, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31006170

RESUMEN

OBJECTIVE: To evaluate the potential impact of intrapartum antibiotics, and their specific classes, on the infant gut microbiota in the first year of life. DESIGN: Prospective study of infants in the New Hampshire Birth Cohort Study (NHBCS). SETTINGS: Rural New Hampshire, USA. POPULATION OR SAMPLE: Two hundred and sixty-six full-term infants from the NHBCS. METHODS: Intrapartum antibiotic use during labour and delivery was abstracted from medical records. Faecal samples collected at 6 weeks and 1 year of age were characterised by 16S rRNA sequencing, and metagenomics analysis in a subset of samples. EXPOSURES: Maternal exposure to antibiotics during labour and delivery. MAIN OUTCOME MEASURE: Taxonomic and functional profiles of faecal samples. RESULTS: Infant exposure to intrapartum antibiotics, particularly to two or more antibiotic classes, was independently associated with lower microbial diversity scores as well as a unique bacterial community at 6 weeks (GUnifrac, P = 0.02). At 1 year, infants in the penicillin-only group had significantly lower α diversity scores than infants not exposed to intrapartum antibiotics. Within the first year of life, intrapartum exposure to penicillins was related to a significantly lower increase in several taxa including Bacteroides, use of cephalosporins was associated with a significantly lower rise over time in Bifidobacterium and infants in the multi-class group experienced a significantly higher increase in Veillonella dispar. CONCLUSIONS: Our findings suggest that intrapartum antibiotics alter the developmental trajectory of the infant gut microbiome, and specific antibiotic types may impact community composition, diversity and keystone immune training taxa. TWEETABLE ABSTRACT: Class of intrapartum antibiotics administered during delivery relates to maturation of infant gut microbiota.


Asunto(s)
Profilaxis Antibiótica , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Vagina/microbiología , Bacteroides/crecimiento & desarrollo , Bacteroidetes , Bifidobacterium , Femenino , Humanos , Recién Nacido , Lactobacillus , Exposición Materna , Madres , Embarazo , Estudios Prospectivos , ARN Ribosómico 16S , Análisis de Secuencia de ARN , Nacimiento a Término , beta-Lactamasas
7.
Nature ; 506(7489): 498-502, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24463512

RESUMEN

A well-balanced human diet includes a significant intake of non-starch polysaccharides, collectively termed 'dietary fibre', from the cell walls of diverse fruits and vegetables. Owing to the paucity of alimentary enzymes encoded by the human genome, our ability to derive energy from dietary fibre depends on the saccharification and fermentation of complex carbohydrates by the massive microbial community residing in our distal gut. The xyloglucans (XyGs) are a ubiquitous family of highly branched plant cell wall polysaccharides whose mechanism(s) of degradation in the human gut and consequent importance in nutrition have been unclear. Here we demonstrate that a single, complex gene locus in Bacteroides ovatus confers XyG catabolism in this common colonic symbiont. Through targeted gene disruption, biochemical analysis of all predicted glycoside hydrolases and carbohydrate-binding proteins, and three-dimensional structural determination of the vanguard endo-xyloglucanase, we reveal the molecular mechanisms through which XyGs are hydrolysed to component monosaccharides for further metabolism. We also observe that orthologous XyG utilization loci (XyGULs) serve as genetic markers of XyG catabolism in Bacteroidetes, that XyGULs are restricted to a limited number of phylogenetically diverse strains, and that XyGULs are ubiquitous in surveyed human metagenomes. Our findings reveal that the metabolism of even highly abundant components of dietary fibre may be mediated by niche species, which has immediate fundamental and practical implications for gut symbiont population ecology in the context of human diet, nutrition and health.


Asunto(s)
Bacteroides/genética , Bacteroides/metabolismo , Tracto Gastrointestinal/microbiología , Sitios Genéticos/genética , Glucanos/metabolismo , Xilanos/metabolismo , Secuencia de Aminoácidos , Bacteroides/enzimología , Bacteroides/crecimiento & desarrollo , Metabolismo de los Hidratos de Carbono/genética , Secuencia de Carbohidratos , Pared Celular/química , Cristalografía por Rayos X , Dieta , Fibras de la Dieta , Evolución Molecular , Glucanos/química , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Humanos , Metagenoma , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína , Simbiosis , Xilanos/química
8.
Anaerobe ; 66: 102276, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32927049

RESUMEN

B. ovatus is a member of the human gut microbiota with a broad capability to degrade complex glycans. Here we show that B. ovatus degrades plant polysaccharides in a preferential order, and that glycan structural complexity plays a role in determining the prioritisation of polysaccharide usage.


Asunto(s)
Bacteroides/crecimiento & desarrollo , Bacteroides/metabolismo , Tracto Gastrointestinal/microbiología , Polisacáridos/metabolismo , Microbioma Gastrointestinal , Humanos , Plantas/química , Polisacáridos/química
9.
J Bacteriol ; 201(16)2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31209076

RESUMEN

Previous work from our group indicated an association between the gastrointestinal microbiota of infants with cystic fibrosis (CF) and airway disease in this population. Here we report that stool microbiota of infants with CF demonstrates an altered but largely unchanging within-individual bacterial diversity (alpha diversity) over the first year of life, in contrast to the infants without CF (control cohort), which showed the expected increase in alpha diversity over the first year. The beta diversity, or between-sample diversity, of these two cohorts was significantly different over the first year of life and was statistically significantly associated with airway exacerbations, confirming our earlier findings. Compared with control infants, infants with CF had reduced levels of Bacteroides, a bacterial genus associated with immune modulation, as early as 6 weeks of life, and this significant reduction of Bacteroides spp. in the cohort with CF persisted over the entire first year of life. Only two other genera were significantly different across the first year of life: Roseburia was significantly reduced and Veillonella was significantly increased. Other genera showed differences between the two cohorts but only at selected time points. In vitro studies demonstrated that exposure of the apical face of polarized intestinal cell lines to Bacteroides species supernatants significantly reduced production of interleukin 8 (IL-8), suggesting a mechanism whereby changes in the intestinal microbiota could impact inflammation in CF. This work further establishes an association between gastrointestinal microbiota, inflammation, and airway disease in infants with CF and presents a potential opportunity for therapeutic interventions beginning in early life.IMPORTANCE There is growing evidence for a link between gastrointestinal bacterial communities and airway disease progression in CF. We demonstrate that infants with CF ≤1 year of age show a distinct stool microbiota versus that of control infants of a comparable age. We detected associations between the gut microbiome and airway exacerbation events in the cohort of infants with CF, and in vitro studies provided one possible mechanism for this observation. These data clarify that current therapeutics do not establish in infants with CF a gastrointestinal microbiota like that in healthy infants, and we suggest that interventions that direct the gastrointestinal microbiota closer to a healthy state may provide systemic benefits to these patients during a critical window of immune programming that might have implications for lifelong health.


Asunto(s)
Bacterias/aislamiento & purificación , Fibrosis Quística/microbiología , Heces/microbiología , Microbioma Gastrointestinal , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacteroides/genética , Bacteroides/crecimiento & desarrollo , Bacteroides/aislamiento & purificación , Estudios de Cohortes , Fibrosis Quística/inmunología , Femenino , Humanos , Lactante , Masculino , Sistema Respiratorio/inmunología
10.
Microb Pathog ; 135: 103619, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31291601

RESUMEN

The yeast Candida albicans forms part of the natural gut microbiota of healthy human individuals and its interactions with other microbial symbionts can impact host well-being. We therefore studied binary interactions between potentially pathogenic representatives of the gut-associated bacterial genus Bacteroides and C. albicans using anaerobic bacteria/yeast co-cultures prepared with a quarter-strength brain heart infusion (» BHI; 9.25 g/l) broth. We found that, except for minor changes observed in the cell numbers of one out of four C. albicans strains tested, yeast growth was largely unaffected by the presence of the bacteria. In contrast, growth of Bacteroides fragilis NCTC 9343 and Bacteroides vulgatus ATCC 8482 was significantly enhanced in the presence of C. albicans. Supplementation of Bacteroides monocultures with dead Candida albicans CAB 392 cells, containing intact outer cell wall mannan layers, resulted in increased bacterial concentrations. Subsequent culturing of the Bacteroides strains in a liquid minimal medium supplemented with candidal mannan demonstrated that B. vulgatus ATCC 8482, unlike B. fragilis NCTC 9343, utilized the mannan. Furthermore, by reducing the initial oxygen levels in monocultures prepared with » BHI broth, bacterial numbers were significantly enhanced compared to in monocultures prepared with » BHI broth not supplemented with the reducing agent l-cysteine hydrochloride. This suggests that C. albicans can stimulate Bacteroides growth via aerobic respiration and/or antioxidant production. The cell-free supernatant of 24-h-old C. albicans CAB 392 monocultures was also found to increase Bacteroides growth and chloramphenicol sensitivity.


Asunto(s)
Bacteroides/crecimiento & desarrollo , Candida albicans/crecimiento & desarrollo , Microbioma Gastrointestinal/fisiología , Interacciones Microbianas/fisiología , Anaerobiosis , Bacteroides/efectos de los fármacos , Bacteroides fragilis/crecimiento & desarrollo , Candida albicans/efectos de los fármacos , Candida albicans/metabolismo , Pared Celular/química , Cloranfenicol/farmacología , Técnicas de Cocultivo , Medios de Cultivo/química , Humanos , Mananos , Viabilidad Microbiana , Oxígeno
11.
Nature ; 501(7467): 426-9, 2013 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-23955152

RESUMEN

Mammals harbour a complex gut microbiome, comprising bacteria that confer immunological, metabolic and neurological benefits. Despite advances in sequence-based microbial profiling and myriad studies defining microbiome composition during health and disease, little is known about the molecular processes used by symbiotic bacteria to stably colonize the gastrointestinal tract. We sought to define how mammals assemble and maintain the Bacteroides, one of the most numerically prominent genera of the human microbiome. Here we find that, whereas the gut normally contains hundreds of bacterial species, germ-free mice mono-associated with a single Bacteroides species are resistant to colonization by the same, but not different, species. To identify bacterial mechanisms for species-specific saturable colonization, we devised an in vivo genetic screen and discovered a unique class of polysaccharide utilization loci that is conserved among intestinal Bacteroides. We named this genetic locus the commensal colonization factors (ccf). Deletion of the ccf genes in the model symbiont, Bacteroides fragilis, results in colonization defects in mice and reduced horizontal transmission. The ccf genes of B. fragilis are upregulated during gut colonization, preferentially at the colonic surface. When we visualize microbial biogeography within the colon, B. fragilis penetrates the colonic mucus and resides deep within crypt channels, whereas ccf mutants are defective in crypt association. Notably, the CCF system is required for B. fragilis colonization following microbiome disruption with Citrobacter rodentium infection or antibiotic treatment, suggesting that the niche within colonic crypts represents a reservoir for bacteria to maintain long-term colonization. These findings reveal that intestinal Bacteroides have evolved species-specific physical interactions with the host that mediate stable and resilient gut colonization, and the CCF system represents a novel molecular mechanism for symbiosis.


Asunto(s)
Bacteroides/clasificación , Bacteroides/fisiología , Tracto Gastrointestinal/microbiología , Metagenoma/fisiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteroides/genética , Bacteroides/crecimiento & desarrollo , Bacteroides fragilis/genética , Bacteroides fragilis/crecimiento & desarrollo , Bacteroides fragilis/metabolismo , Colon/microbiología , Secuencia Conservada/genética , Evolución Molecular , Femenino , Eliminación de Gen , Genes Bacterianos/genética , Vida Libre de Gérmenes , Mucosa Intestinal/microbiología , Masculino , Ratones , Polisacáridos/metabolismo , Especificidad de la Especie , Simbiosis/genética
12.
Appl Microbiol Biotechnol ; 103(21-22): 9067-9076, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31659420

RESUMEN

Sialylated oligosaccharides are known to have beneficial effects, such as increasing the level of bifidobacteria, reducing the levels of blood endotoxin and blood ammonia, and enhancing the body's immune system. However, it is unknown whether sialylated lactuloses have modulatory effects on the intestinal microbiota. In this study, 60 healthy mice were randomly divided into six groups, namely, a normal control group, a lactulose group, a Kdn-α2,3-lactulose group, a Kdn-α2,6-lactulose group, a Neu5Ac-α2,3-lactulose group, and a Neu5Ac-α2,6-lactulose group. After 14 days of lactulose administration, the feces of three mice from each group were collected, and the intestinal microbiota were detected by Illumina MiSeq high-throughput sequencing targeting the V3-V4 region of the 16S rDNA gene. At the phylum level, the relative abundance of Firmicutes was increased in the sialylated lactulose groups, while the abundance of Bacteroidetes was decreased. At the family level, sialylated lactulose intervention decreased the relative abundance of Bacteroidales S24-7 group and Helicobacteraceae and enhanced the abundance of Lactobacillaceae, which reflects the modulatory effect of sialylated lactulose on intestinal microbiota. Diversity analysis indicated that the index of Chao was higher in the sialylated lactulose groups than in the normal control group, and the Shannon and Simpson diversity indices were higher in the Kdnα-2,6-lactulose group and the Neu5Ac-α2,3-lactulose group than in the normal control group. The results of the intestinal microbiota sample composition indicated that there were differences between the sialylated lactulose groups and the normal control group. Thus, sialylated lactulose could be used as a functional food component with potential therapeutic applications in manipulating intestinal microbiota to exert beneficial effects on the host's health.


Asunto(s)
Bacterias/crecimiento & desarrollo , Microbioma Gastrointestinal/efectos de los fármacos , Lactulosa/farmacología , Animales , Bacterias/genética , Bacteroides/genética , Bacteroides/crecimiento & desarrollo , Bacteroidetes/genética , Bacteroidetes/crecimiento & desarrollo , Firmicutes/genética , Firmicutes/crecimiento & desarrollo , Microbioma Gastrointestinal/genética , Helicobacteraceae/genética , Helicobacteraceae/crecimiento & desarrollo , Secuenciación de Nucleótidos de Alto Rendimiento , Lactobacillaceae/genética , Lactobacillaceae/crecimiento & desarrollo , Lactulosa/química , Ratones , ARN Ribosómico 16S/genética
13.
Lett Appl Microbiol ; 68(2): 142-148, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30444534

RESUMEN

Arabinoxylans are part of dietary fibre and have received attention given their emergent prebiotic character. Four arabinoxylans extracts were obtained from Argentinian soft and hard wheat. In vitro assays were performed to describe the extent to which the extracts from whole wheat flour support selective growth of Bifidobacterium breve and probiotic Lactobacillus reuteri ATCC23272 in a defined media. The prebiotic effect was evaluated by three quantitative scores: relative growth, prebiotic activity score and prebiotic index. For prebiotic index equation the growth of Bacteroides and Clostridium strains was compared to that of bifidobacteria and lactic acid bacteria. All the arabinoxylans extracts supported the growth of Lactobacillus and Bifidobacterium, reaching higher prebiotic activity score values than inulin (0·37 and 0·36 for Lactobacillus and Bifidobacterium respectively). AX2 from soft wheat and AX4 from hard showed similar prebiotic index value to commercial inulin (2·64, 2·52 and 2·22 respectively), and AX3 extract presented higher prebiotic index value (4·09) than the positive control and other prebiotic index reported for arabinoxylans. These extracts could be used as prebiotic, synbiotic compositions or novel food prototypes to treat dysbiosis associated with many diseases. SIGNIFICANCE AND IMPACT OF THE STUDY: The present work demonstrates that AX extracts from Argentinian soft and hard wheat promote efficiently the growth of probiotic strain L. reuteri ATCC23272 and B. breve 286, validated with three different parameters that consider the growth of representative strains of Bacteria genera found in the gut. The evaluation of AX extracts as a food supplement in a murine model could confirm their ability to modulate the microbiome. Novel food prototypes including AX and probiotics could relieve local symptoms and may act as psychobiotics with a beneficial effect on microbiome-brain axis.


Asunto(s)
Bifidobacterium breve/crecimiento & desarrollo , Limosilactobacillus reuteri/crecimiento & desarrollo , Preparaciones de Plantas/farmacología , Triticum/química , Xilanos/farmacología , Bacteroides/crecimiento & desarrollo , Clostridium/crecimiento & desarrollo , Fibras de la Dieta , Prebióticos/microbiología , Probióticos/metabolismo , Simbióticos
14.
Int J Food Sci Nutr ; 70(1): 53-62, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29768968

RESUMEN

Cells of Lactobacillus plantarum strains AN1 and Tennozu-SU2 exert anti-inflammatory responses in ICR mouse models of inflammatory bowel disease and protective effects against S. Typhimurium infection in BALB/c mice, respectively. To clarify the existence of L. plantarum-susceptible gut indigenous bacteria, AN1 and Tennozu-SU2 cells were administered to BALB/c mice via drinking water. Gene amplicon sequencing of 16S rRNA of caecal content revealed that the AN1 and Tennozu-SU2 cells affected the abundance of caecal indigenous lactobacilli, but the effect on the dominant Clostridiales and Bacteroidales was not clear. With Blood and Liver (BL) agar containing 5% v/v horse blood, six typical colonies from faecal samples were detected as the principal lactobacilli. Among them, two typical colonies were isolated and identified to be AN1 and Tennozu-SU2. Two and one typical colonies detected in all mice were identified to be L. reuteri and L. murinus, respectively. The other one was identified and estimated to be indigenous L. plantarum detected in the Tennozu-SU2 group.


Asunto(s)
Antibiosis , Microbioma Gastrointestinal , Intestinos/microbiología , Lactobacillus plantarum/crecimiento & desarrollo , Probióticos , Administración Oral , Animales , Bacteroides/genética , Bacteroides/crecimiento & desarrollo , Ciego/microbiología , Clostridiales/genética , Clostridiales/crecimiento & desarrollo , Heces/microbiología , Enfermedades Inflamatorias del Intestino , Lactobacillales/genética , Lactobacillales/crecimiento & desarrollo , Lactobacillus/genética , Lactobacillus/crecimiento & desarrollo , Lactobacillus plantarum/genética , Limosilactobacillus reuteri/genética , Limosilactobacillus reuteri/crecimiento & desarrollo , Masculino , Ratones Endogámicos BALB C , ARN Ribosómico 16S , Infecciones por Salmonella , Especificidad de la Especie
15.
Int J Mol Sci ; 21(1)2019 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31906096

RESUMEN

Metabolic syndrome is a cluster of disorders that increase the risk of cardiovascular disease and diabetes. This study has investigated the responses to rind of yellow mangosteen (Garcinia dulcis), usually discarded as waste, in a rat model of human metabolic syndrome. The rind contains higher concentrations of phytochemicals (such as garcinol, morelloflavone and citric acid) than the pulp. Male Wistar rats aged 8-9 weeks were fed either corn starch diet or high-carbohydrate, high-fat diet for 16 weeks, which were supplemented with 5% freeze-dried G. dulcis fruit rind powder during the last 8 weeks. We characterised metabolic, cardiovascular, liver and gut microbiota parameters. High-carbohydrate, high-fat diet-fed rats developed abdominal obesity, hypertension, increased left ventricular diastolic stiffness, decreased glucose tolerance, fatty liver and reduced Bacteroidia with increased Clostridia in the colonic microbiota. G. dulcis fruit rind powder attenuated these changes, improved cardiovascular and liver structure and function, and attenuated changes in colonic microbiota. G. dulcis fruit rind powder may be effective in metabolic syndrome by appetite suppression, inhibition of inflammatory processes and increased fat metabolism, possibly related to changes in the colonic microbiota. Hence, we propose the use of G. dulcis fruit rind as a functional food to ameliorate symptoms of metabolic syndrome.


Asunto(s)
Colon , Carbohidratos de la Dieta/efectos adversos , Grasas de la Dieta/efectos adversos , Garcinia/química , Microbioma Gastrointestinal/efectos de los fármacos , Síndrome Metabólico , Fitoquímicos , Animales , Bacteroides/clasificación , Bacteroides/crecimiento & desarrollo , Clostridium/clasificación , Clostridium/crecimiento & desarrollo , Colon/metabolismo , Colon/microbiología , Carbohidratos de la Dieta/farmacología , Grasas de la Dieta/farmacología , Masculino , Síndrome Metabólico/inducido químicamente , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/metabolismo , Síndrome Metabólico/microbiología , Fitoquímicos/química , Fitoquímicos/farmacología , Ratas , Ratas Wistar
16.
Eur J Nutr ; 57(2): 487-497, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27744545

RESUMEN

PURPOSE: Short-chain fatty acids (SCFAs) formation by intestinal bacteria is regulated by many different factors, among which dietary fibre is currently receiving most attention. However, since fibre-rich foods are usually good dietary sources of phenolic compounds, which are also known to affect the microbiota, authors hypothesize that the regular intake of these bioactive compounds could be associated with a modulation of faecal SCFA production by the intestinal microbiota. METHODS: In this work, food intake was recorded by means of a validated Food Frequency Questionnaire. Fibres were determined using Marlett food composition tables, and phenolic compounds were obtained from Phenol-Explorer Database. Analysis of SCFA was performed by gas chromatography-flame ionization/mass spectrometry and quantification of microbial populations in faeces by quantitative PCR. RESULTS: Klason lignin and its food contributors, as predictors of faecal butyrate production, were directly associated with Bacteroides and Bifidobacterium levels, as well as lignans with Bacteroides. Also, anthocyanidins, provided by strawberries, were associated with faecal propionate and inversely related to Lactobacillus group. CONCLUSIONS: These results support the hypothesis we put forward regarding the association between some vegetable foods (strawberries, pasta, lentils, lettuce and olive oil) and faecal SCFA. More studies are needed in order to elucidate whether these associations have been mediated by the bacterial modulatory effect of the bioactive compounds, anthocyanins, lignans or Klason lignin, present in foodstuffs.


Asunto(s)
Bacteroides/metabolismo , Bifidobacterium/metabolismo , Dieta Saludable , Fibras de la Dieta/uso terapéutico , Disbiosis/prevención & control , Microbioma Gastrointestinal , Cooperación del Paciente , Adulto , Anciano , Anciano de 80 o más Años , Bacteroides/clasificación , Bacteroides/crecimiento & desarrollo , Bacteroides/aislamiento & purificación , Bifidobacterium/clasificación , Bifidobacterium/crecimiento & desarrollo , Bifidobacterium/aislamiento & purificación , Estudios Transversales , Dieta/efectos adversos , Dieta/etnología , Dieta Saludable/etnología , Fibras de la Dieta/metabolismo , Disbiosis/etnología , Disbiosis/etiología , Disbiosis/microbiología , Ácidos Grasos Volátiles/análisis , Ácidos Grasos Volátiles/metabolismo , Heces/química , Heces/microbiología , Femenino , Fermentación , Humanos , Masculino , Persona de Mediana Edad , Tipificación Molecular , Evaluación Nutricional , Encuestas Nutricionales , Cooperación del Paciente/etnología , España , Adulto Joven
17.
Nature ; 492(7427): 113-7, 2012 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-23160491

RESUMEN

The mammalian gastrointestinal tract provides a complex and competitive environment for the microbiota. Successful colonization by pathogens requires scavenging nutrients, sensing chemical signals, competing with the resident bacteria and precisely regulating the expression of virulence genes. The gastrointestinal pathogen enterohaemorrhagic Escherichia coli (EHEC) relies on inter-kingdom chemical sensing systems to regulate virulence gene expression. Here we show that these systems control the expression of a novel two-component signal transduction system, named FusKR, where FusK is the histidine sensor kinase and FusR the response regulator. FusK senses fucose and controls expression of virulence and metabolic genes. This fucose-sensing system is required for robust EHEC colonization of the mammalian intestine. Fucose is highly abundant in the intestine. Bacteroides thetaiotaomicron produces multiple fucosidases that cleave fucose from host glycans, resulting in high fucose availability in the gut lumen. During growth in mucin, B. thetaiotaomicron contributes to EHEC virulence by cleaving fucose from mucin, thereby activating the FusKR signalling cascade, modulating the virulence gene expression of EHEC. Our findings suggest that EHEC uses fucose, a host-derived signal made available by the microbiota, to modulate EHEC pathogenicity and metabolism.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteroides/metabolismo , Escherichia coli Enterohemorrágica/crecimiento & desarrollo , Fucosa/metabolismo , Tracto Gastrointestinal/microbiología , Animales , Bacteroides/enzimología , Bacteroides/crecimiento & desarrollo , Escherichia coli Enterohemorrágica/genética , Escherichia coli Enterohemorrágica/patogenicidad , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Tracto Gastrointestinal/metabolismo , Regulación Bacteriana de la Expresión Génica , Mucinas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Conejos , Receptores Adrenérgicos/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Virulencia/genética , Factores de Virulencia/genética , alfa-L-Fucosidasa/metabolismo
18.
Anaerobe ; 52: 122-124, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30018028

RESUMEN

Eravacycline, a novel fluorocycline antibiotic, has been evaluated against complicated mixed aerobic/anaerobic intra-abdominal infections but scant supporting in vitro data against anaerobes has been published. We found that eravacycline had good anaerobic in vitro activity with MICs of 4 µg/ml or less against all Bacteroides and Parabacteroides strains tested, except for two B. ovatus strains that had MICs of 8 µg/ml and one strain that had an MIC of 16 µg/ml. Eravacycline was four-to-eight fold more active than tigecycline.


Asunto(s)
Antibacterianos/farmacología , Bacteroides/efectos de los fármacos , Bacteroidetes/efectos de los fármacos , Infecciones Intraabdominales/microbiología , Tetraciclinas/farmacología , Bacteroides/crecimiento & desarrollo , Bacteroidetes/crecimiento & desarrollo , Humanos , Pruebas de Sensibilidad Microbiana , Minociclina/análogos & derivados , Minociclina/farmacología , Tigeciclina
19.
J Biol Chem ; 291(38): 20220-31, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27502277

RESUMEN

The molecular details and impact of oligosaccharide uptake by distinct human gut microbiota (HGM) are currently not well understood. Non-digestible dietary galacto- and gluco-α-(1,6)-oligosaccharides from legumes and starch, respectively, are preferentially fermented by mainly bifidobacteria and lactobacilli in the human gut. Here we show that the solute binding protein (BlG16BP) associated with an ATP binding cassette (ABC) transporter from the probiotic Bifidobacterium animalis subsp. lactis Bl-04 binds α-(1,6)-linked glucosides and galactosides of varying size, linkage, and monosaccharide composition with preference for the trisaccharides raffinose and panose. This preference is also reflected in the α-(1,6)-galactoside uptake profile of the bacterium. Structures of BlG16BP in complex with raffinose and panose revealed the basis for the remarkable ligand binding plasticity of BlG16BP, which recognizes the non-reducing α-(1,6)-diglycoside in its ligands. BlG16BP homologues occur predominantly in bifidobacteria and a few Firmicutes but lack in other HGMs. Among seven bifidobacterial taxa, only those possessing this transporter displayed growth on α-(1,6)-glycosides. Competition assays revealed that the dominant HGM commensal Bacteroides ovatus was out-competed by B. animalis subsp. lactis Bl-04 in mixed cultures growing on raffinose, the preferred ligand for the BlG16BP. By comparison, B. ovatus mono-cultures grew very efficiently on this trisaccharide. These findings suggest that the ABC-mediated uptake of raffinose provides an important competitive advantage, particularly against dominant Bacteroides that lack glycan-specific ABC-transporters. This novel insight highlights the role of glycan transport in defining the metabolic specialization of gut bacteria.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Bifidobacterium animalis/crecimiento & desarrollo , Oligosacáridos/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas/genética , Bacteroides/genética , Bacteroides/crecimiento & desarrollo , Bifidobacterium animalis/genética , Humanos
20.
Environ Microbiol ; 19(8): 3251-3267, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28618173

RESUMEN

Gut microbiota research reveals a vital role for the luminal and mucosal gut microbiota in human health. Fewer studies, however, have characterized the microbiome associated with undigested, insoluble dietary particles in the gut. These particles can act as a food source for bacteria and offer a physical platform to which they can attach. In this study, the microbiome colonizing wheat bran particles was analyzed. In a batch experiment, wheat bran particles were separately incubated with the faecal microbiota derived from 10 donors and washed after 48 h to remove loosely attached bacteria. The response of the luminal community to wheat bran and inulin, acting as a well-characterized control, was largely donor-dependent, both functionally, and with respect to the microbiome composition. Depending on the donor, wheat bran and inulin fermentation yielded proportionally higher propionate or butyrate production. Clostridium cluster XIVa and, depending on the donor, Prevotella, Roseburia, Megamonas, Bifidobacterium and Bacteroides species were enriched on the wheat bran particles. These genera include species with the documented ability to serve as primary degraders of wheat bran components and other species depending on cross-feeding to obtain their energy. Both functional groups were present in all donors, despite the large inter-individual differences.


Asunto(s)
Bacteroides/metabolismo , Bifidobacterium/metabolismo , Clostridium/metabolismo , Fibras de la Dieta/metabolismo , Microbioma Gastrointestinal/fisiología , Inulina/metabolismo , Prevotella/metabolismo , Bacteroides/crecimiento & desarrollo , Bifidobacterium/crecimiento & desarrollo , Butiratos/metabolismo , Clostridium/crecimiento & desarrollo , Dieta , Fibras de la Dieta/microbiología , Heces/microbiología , Fermentación , Humanos , Prevotella/crecimiento & desarrollo , Propionatos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA