Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.307
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(4): 712-728.e14, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35063084

RESUMEN

Tau (MAPT) drives neuronal dysfunction in Alzheimer disease (AD) and other tauopathies. To dissect the underlying mechanisms, we combined an engineered ascorbic acid peroxidase (APEX) approach with quantitative affinity purification mass spectrometry (AP-MS) followed by proximity ligation assay (PLA) to characterize Tau interactomes modified by neuronal activity and mutations that cause frontotemporal dementia (FTD) in human induced pluripotent stem cell (iPSC)-derived neurons. We established interactions of Tau with presynaptic vesicle proteins during activity-dependent Tau secretion and mapped the Tau-binding sites to the cytosolic domains of integral synaptic vesicle proteins. We showed that FTD mutations impair bioenergetics and markedly diminished Tau's interaction with mitochondria proteins, which were downregulated in AD brains of multiple cohorts and correlated with disease severity. These multimodal and dynamic Tau interactomes with exquisite spatial resolution shed light on Tau's role in neuronal function and disease and highlight potential therapeutic targets to block Tau-mediated pathogenesis.


Asunto(s)
Mitocondrias/metabolismo , Degeneración Nerviosa/metabolismo , Mapas de Interacción de Proteínas , Sinapsis/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Aminoácidos/metabolismo , Biotinilación , Encéfalo/metabolismo , Encéfalo/patología , Núcleo Celular/metabolismo , Progresión de la Enfermedad , Metabolismo Energético , Demencia Frontotemporal/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Mutantes/metabolismo , Mutación/genética , Degeneración Nerviosa/patología , Neuronas/metabolismo , Unión Proteica , Dominios Proteicos , Proteómica , Índice de Severidad de la Enfermedad , Fracciones Subcelulares/metabolismo , Tauopatías/genética , Proteínas tau/química
2.
Cell ; 183(4): 847-849, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33186527

RESUMEN

In this issue of Cell, Liu et al. present FucoID, a glycosyltransferase-mediated tagging platform, to biochemically label and capture antigen-specific T cells. With this technology, the authors isolate and characterize tumor-specific CD8+ and CD4+ T cells in murine tumor models. FucoID shows promise as a tool to enhance the understanding of anti-tumor immune responses.


Asunto(s)
Linfocitos T CD8-positivos , Células Dendríticas , Animales , Antígenos de Neoplasias , Biotinilación , Linfocitos T CD4-Positivos , Ratones , Azúcares
3.
Cell ; 183(4): 1117-1133.e19, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33096019

RESUMEN

Re-activation and clonal expansion of tumor-specific antigen (TSA)-reactive T cells are critical to the success of checkpoint blockade and adoptive transfer of tumor-infiltrating lymphocyte (TIL)-based therapies. There are no reliable markers to specifically identify the repertoire of TSA-reactive T cells due to their heterogeneous composition. We introduce FucoID as a general platform to detect endogenous antigen-specific T cells for studying their biology. Through this interaction-dependent labeling approach, intratumoral TSA-reactive CD4+, CD8+ T cells, and TSA-suppressive CD4+ T cells can be detected and separated from bystander T cells based on their cell-surface enzymatic fucosyl-biotinylation. Compared to bystander TILs, TSA-reactive TILs possess a distinct T cell receptor (TCR) repertoire and unique gene features. Although exhibiting a dysfunctional phenotype, TSA-reactive CD8+ TILs possess substantial capabilities of proliferation and tumor-specific killing. Featuring genetic manipulation-free procedures and a quick turnover cycle, FucoID should have the potential of accelerating the pace of personalized cancer treatment.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Comunicación Celular , Fucosa/metabolismo , Linfocitos T/inmunología , Linfocitos T/patología , Adulto , Secuencia de Aminoácidos , Animales , Biomarcadores de Tumor/metabolismo , Biotinilación , Efecto Espectador/inmunología , Linfocitos T CD8-positivos/inmunología , Membrana Celular/metabolismo , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Femenino , Fucosiltransferasas/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Helicobacter pylori/enzimología , Humanos , Inmunidad , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma Experimental/genética , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones Endogámicos C57BL , Péptidos/química , Fenotipo , Receptor de Muerte Celular Programada 1/metabolismo , Bazo/metabolismo
4.
Cell ; 170(5): 1028-1043.e19, 2017 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-28841410

RESUMEN

Cis-regulatory elements (CREs) are commonly recognized by correlative chromatin features, yet the molecular composition of the vast majority of CREs in chromatin remains unknown. Here, we describe a CRISPR affinity purification in situ of regulatory elements (CAPTURE) approach to unbiasedly identify locus-specific chromatin-regulating protein complexes and long-range DNA interactions. Using an in vivo biotinylated nuclease-deficient Cas9 protein and sequence-specific guide RNAs, we show high-resolution and selective isolation of chromatin interactions at a single-copy genomic locus. Purification of human telomeres using CAPTURE identifies known and new telomeric factors. In situ capture of individual constituents of the enhancer cluster controlling human ß-globin genes establishes evidence for composition-based hierarchical organization. Furthermore, unbiased analysis of chromatin interactions at disease-associated cis-elements and developmentally regulated super-enhancers reveals spatial features that causally control gene transcription. Thus, comprehensive and unbiased analysis of locus-specific regulatory composition provides mechanistic insight into genome structure and function in development and disease.


Asunto(s)
Sistemas CRISPR-Cas , Endonucleasas/metabolismo , Técnicas Genéticas , Elementos Reguladores de la Transcripción , Animales , Biotinilación , Células Cultivadas , Células Madre Embrionarias/metabolismo , Endonucleasas/genética , Elementos de Facilitación Genéticos , Humanos , Células K562 , Ratones , ARN Guía de Kinetoplastida/metabolismo , Telómero/metabolismo , Globinas beta/genética
5.
Cell ; 163(6): 1484-99, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26638075

RESUMEN

The centrosome is the primary microtubule organizing center of the cells and templates the formation of cilia, thereby operating at a nexus of critical cellular functions. Here, we use proximity-dependent biotinylation (BioID) to map the centrosome-cilium interface; with 58 bait proteins we generate a protein topology network comprising >7,000 interactions. Analysis of interaction profiles coupled with high resolution phenotypic profiling implicates a number of protein modules in centriole duplication, ciliogenesis, and centriolar satellite biogenesis and highlights extensive interplay between these processes. By monitoring dynamic changes in the centrosome-cilium protein interaction landscape during ciliogenesis, we also identify satellite proteins that support cilia formation. Systematic profiling of proximity interactions combined with functional analysis thus provides a rich resource for better understanding human centrosome and cilia biology. Similar strategies may be applied to other complex biological structures or pathways.


Asunto(s)
Centrosoma/metabolismo , Cilios/metabolismo , Mapas de Interacción de Proteínas , Biotinilación , Ciclo Celular , Humanos , Centro Organizador de los Microtúbulos/metabolismo
6.
Nature ; 616(7958): 764-773, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046092

RESUMEN

Astrocytes and neurons extensively interact in the brain. Identifying astrocyte and neuron proteomes is essential for elucidating the protein networks that dictate their respective contributions to physiology and disease. Here we used cell-specific and subcompartment-specific proximity-dependent biotinylation1 to study the proteomes of striatal astrocytes and neurons in vivo. We evaluated cytosolic and plasma membrane compartments for astrocytes and neurons to discover how these cells differ at the protein level in their signalling machinery. We also assessed subcellular compartments of astrocytes, including end feet and fine processes, to reveal their subproteomes and the molecular basis of essential astrocyte signalling and homeostatic functions. Notably, SAPAP3 (encoded by Dlgap3), which is associated with obsessive-compulsive disorder (OCD) and repetitive behaviours2-8, was detected at high levels in striatal astrocytes and was enriched within specific astrocyte subcompartments where it regulated actin cytoskeleton organization. Furthermore, genetic rescue experiments combined with behavioural analyses and molecular assessments in a mouse model of OCD4 lacking SAPAP3 revealed distinct contributions of astrocytic and neuronal SAPAP3 to repetitive and anxiety-related OCD-like phenotypes. Our data define how astrocytes and neurons differ at the protein level and in their major signalling pathways. Moreover, they reveal how astrocyte subproteomes vary between physiological subcompartments and how both astrocyte and neuronal SAPAP3 mechanisms contribute to OCD phenotypes in mice. Our data indicate that therapeutic strategies that target both astrocytes and neurons may be useful to explore in OCD and potentially other brain disorders.


Asunto(s)
Astrocitos , Neuronas , Trastorno Obsesivo Compulsivo , Proteoma , Animales , Ratones , Astrocitos/metabolismo , Neuronas/metabolismo , Trastorno Obsesivo Compulsivo/metabolismo , Trastorno Obsesivo Compulsivo/fisiopatología , Proteoma/metabolismo , Biotinilación , Membrana Celular/metabolismo , Transducción de Señal , Citosol/metabolismo , Homeostasis , Fenotipo , Citoesqueleto de Actina/metabolismo
7.
Mol Cell ; 81(21): 4552-4567.e8, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34551281

RESUMEN

ADP-ribose (ADPr) readers are essential components of ADP-ribosylation signaling, which regulates genome maintenance and immunity. The identification and discrimination between monoADPr (MAR) and polyADPr (PAR) readers is difficult because of a lack of suitable affinity-enrichment reagents. We synthesized well-defined ADPr probes and used these for affinity purifications combined with relative and absolute quantitative mass spectrometry to generate proteome-wide MAR and PAR interactomes, including determination of apparent binding affinities. Among the main findings, MAR and PAR readers regulate various common and distinct processes, such as the DNA-damage response, cellular metabolism, RNA trafficking, and transcription. We monitored the dynamics of PAR interactions upon induction of oxidative DNA damage and uncovered the mechanistic connections between ubiquitin signaling and ADP-ribosylation. Taken together, chemical biology enables exploration of MAR and PAR readers using interaction proteomics. Furthermore, the generated MAR and PAR interaction maps significantly expand our current understanding of ADPr signaling.


Asunto(s)
ADP-Ribosilación , Adenosina Difosfato Ribosa/química , Adenosina Difosfato/química , Proteómica/métodos , Ubiquitina-Proteína Ligasas/química , Sitio Alostérico , Animales , Anticuerpos Monoclonales/química , Sitios de Unión , Biotinilación , Comunicación Celular , Daño del ADN , Técnicas Genéticas , Células HeLa , Humanos , Espectrometría de Masas , Ratones , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteoma , Transducción de Señal , Ubiquitina
8.
Mol Cell ; 79(2): 342-358.e12, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32645368

RESUMEN

Short linear motifs (SLiMs) drive dynamic protein-protein interactions essential for signaling, but sequence degeneracy and low binding affinities make them difficult to identify. We harnessed unbiased systematic approaches for SLiM discovery to elucidate the regulatory network of calcineurin (CN)/PP2B, the Ca2+-activated phosphatase that recognizes LxVP and PxIxIT motifs. In vitro proteome-wide detection of CN-binding peptides, in vivo SLiM-dependent proximity labeling, and in silico modeling of motif determinants uncovered unanticipated CN interactors, including NOTCH1, which we establish as a CN substrate. Unexpectedly, CN shows SLiM-dependent proximity to centrosomal and nuclear pore complex (NPC) proteins-structures where Ca2+ signaling is largely uncharacterized. CN dephosphorylates human and yeast NPC proteins and promotes accumulation of a nuclear transport reporter, suggesting conserved NPC regulation by CN. The CN network assembled here provides a resource to investigate Ca2+ and CN signaling and demonstrates synergy between experimental and computational methods, establishing a blueprint for examining SLiM-based networks.


Asunto(s)
Calcineurina/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Transporte Activo de Núcleo Celular , Secuencias de Aminoácidos , Biotinilación , Centrosoma/metabolismo , Simulación por Computador , Células HEK293 , Células HeLa , Humanos , Espectrometría de Masas , Monoéster Fosfórico Hidrolasas/química , Fosforilación , Mapas de Interacción de Proteínas , Proteoma/metabolismo , Receptor Notch1/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal
9.
Cell ; 149(4): 768-79, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22579282

RESUMEN

Cellular granules lacking boundary membranes harbor RNAs and their associated proteins and play diverse roles controlling the timing and location of protein synthesis. Formation of such granules was emulated by treatment of mouse brain extracts and human cell lysates with a biotinylated isoxazole (b-isox) chemical. Deep sequencing of the associated RNAs revealed an enrichment for mRNAs known to be recruited to neuronal granules used for dendritic transport and localized translation at synapses. Precipitated mRNAs contain extended 3' UTR sequences and an enrichment in binding sites for known granule-associated proteins. Hydrogels composed of the low complexity (LC) sequence domain of FUS recruited and retained the same mRNAs as were selectively precipitated by the b-isox chemical. Phosphorylation of the LC domain of FUS prevented hydrogel retention, offering a conceptual means of dynamic, signal-dependent control of RNA granule assembly.


Asunto(s)
Encéfalo/citología , ARN/análisis , ARN/metabolismo , Ribonucleoproteínas/química , Animales , Biotinilación , Encéfalo/metabolismo , Línea Celular , Sistema Libre de Células , Humanos , Isoxazoles/metabolismo , Ratones , Transporte de ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
10.
Nature ; 595(7865): 120-124, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34079125

RESUMEN

Compartmentalization is a defining characteristic of eukaryotic cells, and partitions distinct biochemical processes into discrete subcellular locations. Microscopy1 and biochemical fractionation coupled with mass spectrometry2-4 have defined the proteomes of a variety of different organelles, but many intracellular compartments have remained refractory to such approaches. Proximity-dependent biotinylation techniques such as BioID provide an alternative approach to define the composition of cellular compartments in living cells5-7. Here we present a BioID-based map of a human cell on the basis of 192 subcellular markers, and define the intracellular locations of 4,145 unique proteins in HEK293 cells. Our localization predictions exceed the specificity of previous approaches, and enabled the discovery of proteins at the interface between the mitochondrial outer membrane and the endoplasmic reticulum that are crucial for mitochondrial homeostasis. On the basis of this dataset, we created humancellmap.org as a community resource that provides online tools for localization analysis of user BioID data, and demonstrate how this resource can be used to understand BioID results better.


Asunto(s)
Biotinilación , Compartimento Celular , Transporte de Proteínas , Proteoma/análisis , Proteoma/química , Células Cultivadas , Conjuntos de Datos como Asunto , Retículo Endoplásmico/química , Retículo Endoplásmico/metabolismo , Células HEK293 , Células HeLa , Homeostasis , Humanos , Espectrometría de Masas , Mitocondrias/química , Mitocondrias/metabolismo , Orgánulos/química , Orgánulos/metabolismo , Proteoma/metabolismo , Reproducibilidad de los Resultados
11.
Genes Dev ; 33(1-2): 75-89, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30567999

RESUMEN

Numerous DNA repair and signaling proteins function at DNA damage sites to protect the genome. Here, we show that fusion of the promiscuous biotin ligase BirAR118G with RAD18 leads to localized protein biotinylation at DNA damage sites, allowing identification of ZPET (zinc finger protein proximal to RAD eighteen)/ZNF280C as a potential DNA damage response (DDR) protein. ZPET binds ssDNA and localizes to DNA double-strand breaks (DSBs) and stalled replication forks. In vitro, ZPET inhibits MRE11 binding to ssDNA. In cells, ZPET delays MRE11 binding to chromatin after DSB formation and slows DNA end resection through binding ssDNA. ZPET hinders resection independently of 53BP1 and HELB. Cells lacking ZPET displayed enhanced homologous recombination (HR), accelerated replication forks under stress, and increased resistance to DSBs and PARP inhibition. These results not only reveal ZPET as an HR repressor but also suggest that localized protein biotinylation at DNA damage sites is a useful strategy to identify DDR proteins.


Asunto(s)
Biotinilación/métodos , Daño del ADN , Reparación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Recombinación Homóloga/genética , Factores de Transcripción/metabolismo , Ligasas de Carbono-Nitrógeno/genética , Línea Celular , Roturas del ADN de Doble Cadena , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Escherichia coli/genética , Técnicas de Silenciamiento del Gen , Humanos , Proteína Homóloga de MRE11/metabolismo , Unión Proteica , Transporte de Proteínas/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
12.
Plant Cell ; 35(3): 975-993, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36660928

RESUMEN

Elucidating enzyme-substrate relationships in posttranslational modification (PTM) networks is crucial for understanding signal transduction pathways but is technically difficult because enzyme-substrate interactions tend to be transient. Here, we demonstrate that TurboID-based proximity labeling (TbPL) effectively and specifically captures the substrates of kinases and phosphatases. TbPL-mass spectrometry (TbPL-MS) identified over 400 proximal proteins of Arabidopsis thaliana BRASSINOSTEROID-INSENSITIVE2 (BIN2), a member of the GLYCOGEN SYNTHASE KINASE 3 (GSK3) family that integrates signaling pathways controlling diverse developmental and acclimation processes. A large portion of the BIN2-proximal proteins showed BIN2-dependent phosphorylation in vivo or in vitro, suggesting that these are BIN2 substrates. Protein-protein interaction network analysis showed that the BIN2-proximal proteins include interactors of BIN2 substrates, revealing a high level of interactions among the BIN2-proximal proteins. Our proteomic analysis establishes the BIN2 signaling network and uncovers BIN2 functions in regulating key cellular processes such as transcription, RNA processing, translation initiation, vesicle trafficking, and cytoskeleton organization. We further discovered significant overlap between the GSK3 phosphorylome and the O-GlcNAcylome, suggesting an evolutionarily ancient relationship between GSK3 and the nutrient-sensing O-glycosylation pathway. Our work presents a powerful method for mapping PTM networks, a large dataset of GSK3 kinase substrates, and important insights into the signaling network that controls key cellular functions underlying plant growth and acclimation.


Asunto(s)
Proteínas Quinasas , Proteómica , Transducción de Señal , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biotina/química , Biotinilación , Brasinoesteroides/metabolismo , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteómica/métodos , Transducción de Señal/fisiología
13.
Nat Chem Biol ; 20(9): 1227-1236, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38514884

RESUMEN

Protein ubiquitylation controls diverse processes within eukaryotic cells, including protein degradation, and is often dysregulated in disease. Moreover, small-molecule degraders that redirect ubiquitylation activities toward disease targets are an emerging and promising therapeutic class. Over 600 E3 ubiquitin ligases are expressed in humans, but their substrates remain largely elusive, necessitating the development of new methods for their discovery. Here we report the development of E3-substrate tagging by ubiquitin biotinylation (E-STUB), a ubiquitin-specific proximity labeling method that biotinylates ubiquitylated substrates in proximity to an E3 ligase of interest. E-STUB accurately identifies the direct ubiquitylated targets of protein degraders, including collateral targets and ubiquitylation events that do not lead to substrate degradation. It also detects known substrates of E3 ligase CRBN and VHL with high specificity. With the ability to elucidate proximal ubiquitylation events, E-STUB may facilitate the development of proximity-inducing therapeutics and act as a generalizable method for E3-substrate mapping.


Asunto(s)
Biotinilación , Ubiquitina-Proteína Ligasas , Ubiquitina , Ubiquitinación , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/química , Humanos , Ubiquitina/metabolismo , Ubiquitina/química , Especificidad por Sustrato , Células HEK293 , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Proteolisis
14.
Nat Chem Biol ; 20(5): 555-565, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38233583

RESUMEN

Drug-ID is a novel method applying proximity biotinylation to identify drug-protein interactions inside living cells. The covalent conjugation of a drug with a biotin ligase enables targeted biotinylation and identification of the drug-bound proteome. We established Drug-ID for two small-molecule drugs, JQ1 and SAHA, and applied it for RNaseH-recruiting antisense oligonucleotides (ASOs). Drug-ID profiles the drug-protein interactome de novo under native conditions, directly inside living cells and at pharmacologically effective drug concentrations. It requires minimal amounts of cell material and might even become applicable in vivo. We studied the dose-dependent aggregation of ASOs and the effect of different wing chemistries (locked nucleic acid, 2'-methoxyethyl and 2'-Fluoro) and ASO lengths on the interactome. Finally, we demonstrate the detection of stress-induced, intracellular interactome changes (actinomycin D treatment) with an in situ variant of the approach, which uses a recombinant biotin ligase and does not require genetic manipulation of the target cell.


Asunto(s)
Biotinilación , Humanos , Oligonucleótidos Antisentido/metabolismo , Oligonucleótidos Antisentido/química , Ribonucleasa H/metabolismo , Ligasas de Carbono-Nitrógeno/metabolismo , Biotina/metabolismo , Biotina/química , Unión Proteica
15.
Nat Chem Biol ; 20(7): 894-905, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38658655

RESUMEN

Calcium ions serve as key intracellular signals. Local, transient increases in calcium concentrations can activate calcium sensor proteins that in turn trigger downstream effectors. In neurons, calcium transients play a central role in regulating neurotransmitter release and synaptic plasticity. However, it is challenging to capture the molecular events associated with these localized and ephemeral calcium signals. Here we present an engineered biotin ligase that generates permanent molecular traces in a calcium-dependent manner. The enzyme, calcium-dependent BioID (Cal-ID), biotinylates nearby proteins within minutes in response to elevated local calcium levels. The biotinylated proteins can be identified via mass spectrometry and visualized using microscopy. In neurons, Cal-ID labeling is triggered by neuronal activity, leading to prominent protein biotinylation that enables transcription-independent activity labeling in the brain. In summary, Cal-ID produces a biochemical record of calcium signals and neuronal activity with high spatial resolution and molecular specificity.


Asunto(s)
Biotinilación , Señalización del Calcio , Calcio , Neuronas , Calcio/metabolismo , Neuronas/metabolismo , Animales , Ligasas de Carbono-Nitrógeno/metabolismo , Ligasas de Carbono-Nitrógeno/química , Humanos , Ratones , Células HEK293 , Proteínas Represoras , Proteínas de Escherichia coli
16.
Trends Biochem Sci ; 46(12): 950-952, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34598839

RESUMEN

In a recent study, Go, Knight et al. combined a panel of protein markers with BioID proximity-dependent labeling to profile the composition of 20 distinct subcellular compartments. Comparison with similar global datasets acquired using imaging or fractionation-based approaches confirmed the consistency of the results while highlighting unique advantages.


Asunto(s)
Mapeo de Interacción de Proteínas , Proteínas , Biotinilación , Orgánulos/metabolismo , Mapeo de Interacción de Proteínas/métodos , Proteínas/metabolismo
17.
J Biol Chem ; 300(8): 107588, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39032654

RESUMEN

Protein phosphorylation by kinases regulates mammalian cell functions, such as growth, division, and signal transduction. Among human kinases, NME1 and NME2 are associated with metastatic tumor suppression but remain understudied due to the lack of tools to monitor their cellular substrates. In particular, NME1 and NME2 are multispecificity kinases phosphorylating serine, threonine, histidine, and aspartic acid residues of substrate proteins, and the heat and acid sensitivity of phosphohistidine and phosphoaspartate complicates substrate discovery and validation. To provide new substrate monitoring tools, we established the γ-phosphate-modified ATP analog, ATP-biotin, as a cosubstrate for phosphorylbiotinylation of NME1 and NME2 cellular substrates. Building upon this ATP-biotin compatibility, the Kinase-catalyzed Biotinylation with Inactivated Lysates for Discovery of Substrates method enabled validation of a known substrate and the discovery of seven NME1 and three NME2 substrates. Given the paucity of methods to study kinase substrates, ATP-biotin and the Kinase-catalyzed Biotinylation with Inactivated Lysates for Discovery of Substrates method are valuable tools to characterize the roles of NME1 and NME2 in human cell biology.


Asunto(s)
Biotinilación , Nucleósido Difosfato Quinasas NM23 , Humanos , Nucleósido Difosfato Quinasas NM23/metabolismo , Nucleósido Difosfato Quinasas NM23/química , Nucleósido Difosfato Quinasas NM23/genética , Especificidad por Sustrato , Fosforilación , Biotina/metabolismo , Biotina/química , Biotina/análogos & derivados , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/química , Células HEK293 , Catálisis
18.
Plant J ; 118(1): 7-23, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38261530

RESUMEN

The cytosol-facing outer membrane (OM) of organelles communicates with other cellular compartments to exchange proteins, metabolites, and signaling molecules. Cellular surveillance systems also target OM-resident proteins to control organellar homeostasis and ensure cell survival under stress. However, the OM proximity proteomes have never been mapped in plant cells since using traditional approaches to discover OM proteins and identify their dynamically interacting partners remains challenging. In this study, we developed an OM proximity labeling (OMPL) system using biotin ligase-mediated proximity biotinylation to identify the proximity proteins of the OMs of mitochondria, chloroplasts, and peroxisomes in living Arabidopsis (Arabidopsis thaliana) cells. Using this approach, we mapped the OM proximity proteome of these three organelles under normal conditions and examined the effects of the ultraviolet-B (UV-B) or high light (HL) stress on the abundances of OM proximity proteins. We demonstrate the power of this system with the discovery of cytosolic factors and OM receptor candidates potentially involved in local protein translation and translocation. The candidate proteins that are involved in mitochondrion-peroxisome, mitochondrion-chloroplast, or peroxisome-chloroplast contacts, and in the organellar quality control system are also proposed based on OMPL analysis. OMPL-generated OM proximity proteomes are valuable sources of candidates for functional validation and suggest directions for further investigation of important questions in cell biology.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Proteoma/metabolismo , Citosol/metabolismo , Biotinilación , Peroxisomas/metabolismo , Proteínas de la Membrana/metabolismo
19.
J Cell Sci ; 136(19)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37756605

RESUMEN

Proximity labeling with genetically encoded enzymes is widely used to study protein-protein interactions in cells. However, the accuracy of proximity labeling is limited by a lack of control over the enzymatic labeling process. Here, we present a light-activated proximity labeling technology for mapping protein-protein interactions at the cell membrane with high accuracy and precision. Our technology, called light-activated BioID (LAB), fuses the two halves of the split-TurboID proximity labeling enzyme to the photodimeric proteins CRY2 and CIB1. We demonstrate, in multiple cell lines, that upon illumination with blue light, CRY2 and CIB1 dimerize, reconstitute split-TurboID and initiate biotinylation. Turning off the light leads to the dissociation of CRY2 and CIB1 and halts biotinylation. We benchmark LAB against the widely used TurboID proximity labeling method by measuring the proteome of E-cadherin, an essential cell-cell adhesion protein. We show that LAB can map E-cadherin-binding partners with higher accuracy and significantly fewer false positives than TurboID.


Asunto(s)
Cadherinas , Proteoma , Línea Celular , Cadherinas/genética , Cadherinas/metabolismo , Biotinilación
20.
J Cell Sci ; 136(20)2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37772444

RESUMEN

The malaria-causing parasite, Plasmodium falciparum completely remodels its host red blood cell (RBC) through the export of several hundred parasite proteins, including transmembrane proteins, across multiple membranes to the RBC. However, the process by which these exported membrane proteins are extracted from the parasite plasma membrane for export remains unknown. To address this question, we fused the exported membrane protein, skeleton binding protein 1 (SBP1), with TurboID, a rapid, efficient and promiscuous biotin ligase (SBP1TbID). Using time-resolved proximity biotinylation and label-free quantitative proteomics, we identified two groups of SBP1TbID interactors - early interactors (pre-export) and late interactors (post-export). Notably, two promising membrane-associated proteins were identified as pre-export interactors, one of which possesses a predicted translocon domain, that could facilitate the export of membrane proteins. Further investigation using conditional mutants of these candidate proteins showed that these proteins were essential for asexual growth and localize to the host-parasite interface during early stages of the intraerythrocytic cycle. These data suggest that they might play a role in ushering membrane proteins from the parasite plasma membrane for export to the host RBC.


Asunto(s)
Malaria , Plasmodium falciparum , Animales , Humanos , Biotinilación , Eritrocitos/metabolismo , Malaria/parasitología , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Porinas/metabolismo , Transporte de Proteínas , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA