Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.957
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 182(2): 447-462.e14, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32758418

RESUMEN

The precise mechanism by which oral infection contributes to the pathogenesis of extra-oral diseases remains unclear. Here, we report that periodontal inflammation exacerbates gut inflammation in vivo. Periodontitis leads to expansion of oral pathobionts, including Klebsiella and Enterobacter species, in the oral cavity. Amassed oral pathobionts are ingested and translocate to the gut, where they activate the inflammasome in colonic mononuclear phagocytes, triggering inflammation. In parallel, periodontitis results in generation of oral pathobiont-reactive Th17 cells in the oral cavity. Oral pathobiont-reactive Th17 cells are imprinted with gut tropism and migrate to the inflamed gut. When in the gut, Th17 cells of oral origin can be activated by translocated oral pathobionts and cause development of colitis, but they are not activated by gut-resident microbes. Thus, oral inflammation, such as periodontitis, exacerbates gut inflammation by supplying the gut with both colitogenic pathobionts and pathogenic T cells.


Asunto(s)
Colitis/patología , Enterobacter/fisiología , Microbioma Gastrointestinal , Klebsiella/fisiología , Boca/microbiología , Animales , Colitis/microbiología , Colon/microbiología , Colon/patología , Modelos Animales de Enfermedad , Enterobacter/aislamiento & purificación , Femenino , Inflamasomas/metabolismo , Interleucina-10/deficiencia , Interleucina-10/genética , Interleucina-1beta/metabolismo , Klebsiella/aislamiento & purificación , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Periodontitis/microbiología , Periodontitis/patología , Células Th17/citología , Células Th17/inmunología , Células Th17/metabolismo
2.
Nature ; 628(8007): 424-432, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38509359

RESUMEN

Fusobacterium nucleatum (Fn), a bacterium present in the human oral cavity and rarely found in the lower gastrointestinal tract of healthy individuals1, is enriched in human colorectal cancer (CRC) tumours2-5. High intratumoural Fn loads are associated with recurrence, metastases and poorer patient prognosis5-8. Here, to delineate Fn genetic factors facilitating tumour colonization, we generated closed genomes for 135 Fn strains; 80 oral strains from individuals without cancer and 55 unique cancer strains cultured from tumours from 51 patients with CRC. Pangenomic analyses identified 483 CRC-enriched genetic factors. Tumour-isolated strains predominantly belong to Fn subspecies animalis (Fna). However, genomic analyses reveal that Fna, considered a single subspecies, is instead composed of two distinct clades (Fna C1 and Fna C2). Of these, only Fna C2 dominates the CRC tumour niche. Inter-Fna analyses identified 195 Fna C2-associated genetic factors consistent with increased metabolic potential and colonization of the gastrointestinal tract. In support of this, Fna C2-treated mice had an increased number of intestinal adenomas and altered metabolites. Microbiome analysis of human tumour tissue from 116 patients with CRC demonstrated Fna C2 enrichment. Comparison of 62 paired specimens showed that only Fna C2 is tumour enriched compared to normal adjacent tissue. This was further supported by metagenomic analysis of stool samples from 627 patients with CRC and 619 healthy individuals. Collectively, our results identify the Fna clade bifurcation, show that specifically Fna C2 drives the reported Fn enrichment in human CRC and reveal the genetic underpinnings of pathoadaptation of Fna C2 to the CRC niche.


Asunto(s)
Neoplasias Colorrectales , Fusobacterium nucleatum , Animales , Humanos , Ratones , Adenoma/microbiología , Estudios de Casos y Controles , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/patología , Heces/microbiología , Fusobacterium nucleatum/clasificación , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/aislamiento & purificación , Fusobacterium nucleatum/patogenicidad , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Genoma Bacteriano/genética , Boca/microbiología , Femenino
3.
Cell ; 158(6): 1402-1414, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25215495

RESUMEN

In complex biological systems, small molecules often mediate microbe-microbe and microbe-host interactions. Using a systematic approach, we identified 3,118 small-molecule biosynthetic gene clusters (BGCs) in genomes of human-associated bacteria and studied their representation in 752 metagenomic samples from the NIH Human Microbiome Project. Remarkably, we discovered that BGCs for a class of antibiotics in clinical trials, thiopeptides, are widely distributed in genomes and metagenomes of the human microbiota. We purified and solved the structure of a thiopeptide antibiotic, lactocillin, from a prominent member of the vaginal microbiota. We demonstrate that lactocillin has potent antibacterial activity against a range of Gram-positive vaginal pathogens, and we show that lactocillin and other thiopeptide BGCs are expressed in vivo by analyzing human metatranscriptomic sequencing data. Our findings illustrate the widespread distribution of small-molecule-encoding BGCs in the human microbiome, and they demonstrate the bacterial production of drug-like molecules in humans. PAPERCLIP:


Asunto(s)
Bacterias/química , Bacterias/genética , Metagenómica/métodos , Microbiota , Secuencia de Aminoácidos , Bacterias/clasificación , Bacterias/metabolismo , Vías Biosintéticas , Tracto Gastrointestinal/microbiología , Humanos , Datos de Secuencia Molecular , Boca/microbiología , Familia de Multigenes , Biosíntesis de Péptidos Independientes de Ácidos Nucleicos , Policétidos/análisis
4.
Nature ; 614(7946): 125-135, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36653448

RESUMEN

The human microbiome is an integral component of the human body and a co-determinant of several health conditions1,2. However, the extent to which interpersonal relations shape the individual genetic makeup of the microbiome and its transmission within and across populations remains largely unknown3,4. Here, capitalizing on more than 9,700 human metagenomes and computational strain-level profiling, we detected extensive bacterial strain sharing across individuals (more than 10 million instances) with distinct mother-to-infant, intra-household and intra-population transmission patterns. Mother-to-infant gut microbiome transmission was considerable and stable during infancy (around 50% of the same strains among shared species (strain-sharing rate)) and remained detectable at older ages. By contrast, the transmission of the oral microbiome occurred largely horizontally and was enhanced by the duration of cohabitation. There was substantial strain sharing among cohabiting individuals, with 12% and 32% median strain-sharing rates for the gut and oral microbiomes, and time since cohabitation affected strain sharing more than age or genetics did. Bacterial strain sharing additionally recapitulated host population structures better than species-level profiles did. Finally, distinct taxa appeared as efficient spreaders across transmission modes and were associated with different predicted bacterial phenotypes linked with out-of-host survival capabilities. The extent of microorganism transmission that we describe underscores its relevance in human microbiome studies5, especially those on non-infectious, microbiome-associated diseases.


Asunto(s)
Bacterias , Transmisión de Enfermedad Infecciosa , Microbioma Gastrointestinal , Ambiente en el Hogar , Microbiota , Boca , Femenino , Humanos , Lactante , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Microbioma Gastrointestinal/genética , Metagenoma , Microbiota/genética , Madres , Boca/microbiología , Transmisión Vertical de Enfermedad Infecciosa , Composición Familiar , Envejecimiento , Factores de Tiempo , Viabilidad Microbiana
5.
Nature ; 600(7887): 110-115, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34819672

RESUMEN

The human microbiome encodes a large repertoire of biochemical enzymes and pathways, most of which remain uncharacterized. Here, using a metagenomics-based search strategy, we discovered that bacterial members of the human gut and oral microbiome encode enzymes that selectively phosphorylate a clinically used antidiabetic drug, acarbose1,2, resulting in its inactivation. Acarbose is an inhibitor of both human and bacterial α-glucosidases3, limiting the ability of the target organism to metabolize complex carbohydrates. Using biochemical assays, X-ray crystallography and metagenomic analyses, we show that microbiome-derived acarbose kinases are specific for acarbose, provide their harbouring organism with a protective advantage against the activity of acarbose, and are widespread in the microbiomes of western and non-western human populations. These results provide an example of widespread microbiome resistance to a non-antibiotic drug, and suggest that acarbose resistance has disseminated in the human microbiome as a defensive strategy against a potential endogenous producer of a closely related molecule.


Asunto(s)
Acarbosa/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Hipoglucemiantes/farmacología , Inactivación Metabólica , Metagenoma/genética , Boca/microbiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Acarbosa/metabolismo , Amilasas/metabolismo , Animales , Humanos , Hipoglucemiantes/metabolismo , Metagenoma/efectos de los fármacos , Modelos Moleculares , Boca/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
6.
Nature ; 588(7839): 676-681, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33268897

RESUMEN

Mapping the complex biogeography of microbial communities in situ with high taxonomic and spatial resolution poses a major challenge because of the high density1 and rich diversity2 of species in environmental microbiomes and the limitations of optical imaging technology3-6. Here we introduce high-phylogenetic-resolution microbiome mapping by fluorescence in situ hybridization (HiPR-FISH), a versatile technology that uses binary encoding, spectral imaging and decoding based on machine learning to create micrometre-scale maps of the locations and identities of hundreds of microbial species in complex communities. We show that 10-bit HiPR-FISH can distinguish between 1,023 isolates of Escherichia coli, each fluorescently labelled with a unique binary barcode. HiPR-FISH, in conjunction with custom algorithms for automated probe design and analysis of single-cell images, reveals the disruption of spatial networks in the mouse gut microbiome in response to treatment with antibiotics, and the longitudinal stability of spatial architectures in the human oral plaque microbiome. Combined with super-resolution imaging, HiPR-FISH shows the diverse strategies of ribosome organization that are exhibited by taxa in the human oral microbiome. HiPR-FISH provides a framework for analysing the spatial ecology of environmental microbial communities at single-cell resolution.


Asunto(s)
Hibridación Fluorescente in Situ/métodos , Microbiota , Algoritmos , Animales , Antibacterianos/farmacología , Biopelículas , Escherichia coli/clasificación , Escherichia coli/citología , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Ratones , Microbiota/efectos de los fármacos , Boca/efectos de los fármacos , Boca/microbiología , Ribosomas/metabolismo , Análisis de la Célula Individual
7.
Nat Immunol ; 14(7): 646-53, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23778791

RESUMEN

The body is composed of various tissue microenvironments with finely tuned local immunosurveillance systems, many of which are in close apposition with distinct commensal niches. Mammals have formed an evolutionary partnership with the microbiota that is critical for metabolism, tissue development and host defense. Despite our growing understanding of the impact of this host-microbe alliance on immunity in the gastrointestinal tract, the extent to which individual microenvironments are controlled by resident microbiota remains unclear. In this Perspective, we discuss how resident commensals outside the gastrointestinal tract can control unique physiological niches and the potential implications of the dialog between these commensals and the host for the establishment of immune homeostasis, protective responses and tissue pathology.


Asunto(s)
Ecosistema , Metagenoma/inmunología , Animales , Femenino , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/microbiología , Humanos , Vigilancia Inmunológica , Metagenoma/genética , Boca/inmunología , Boca/microbiología , Cavidad Nasal/inmunología , Cavidad Nasal/microbiología , Sistema Respiratorio/inmunología , Sistema Respiratorio/microbiología , Piel/inmunología , Piel/microbiología , Vagina/inmunología , Vagina/microbiología
8.
Nature ; 569(7754): 126-130, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30988509

RESUMEN

The intestinal immune system has the challenging task of tolerating foreign nutrients and the commensal microbiome, while excluding or eliminating ingested pathogens. Failure of this balance leads to conditions such as inflammatory bowel diseases, food allergies and invasive gastrointestinal infections1. Multiple immune mechanisms are therefore in place to maintain tissue integrity, including balanced generation of effector T (TH) cells and FOXP3+ regulatory T (pTreg) cells, which mediate resistance to pathogens and regulate excessive immune activation, respectively1-4. The gut-draining lymph nodes (gLNs) are key sites for orchestrating adaptive immunity to luminal perturbations5-7. However, it is unclear how they simultaneously support tolerogenic and inflammatory reactions. Here we show that gLNs are immunologically specific to the functional gut segment that they drain. Stromal and dendritic cell gene signatures and polarization of T cells against the same luminal antigen differ between gLNs, with the proximal small intestine-draining gLNs preferentially giving rise to tolerogenic responses and the distal gLNs to pro-inflammatory T cell responses. This segregation permitted the targeting of distal gLNs for vaccination and the maintenance of duodenal pTreg cell induction during colonic infection. Conversely, the compartmentalized dichotomy was perturbed by surgical removal of select distal gLNs and duodenal infection, with effects on both lymphoid organ and tissue immune responses. Our findings reveal that the conflict between tolerogenic and inflammatory intestinal responses is in part resolved by discrete gLN drainage, and encourage antigen targeting to specific gut segments for therapeutic immune modulation.


Asunto(s)
Duodeno/inmunología , Ganglios Linfáticos/inmunología , Linfocitos T/inmunología , Animales , Antígenos CD4/metabolismo , Diferenciación Celular , Movimiento Celular , Polaridad Celular , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Duodeno/citología , Duodeno/microbiología , Femenino , Ganglios Linfáticos/citología , Ganglios Linfáticos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Boca/inmunología , Boca/microbiología , Ratas , Ratas Wistar , Células del Estroma/inmunología , Células del Estroma/microbiología , Linfocitos T/citología , Linfocitos T/microbiología
9.
Proc Natl Acad Sci U S A ; 119(41): e2209589119, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36197997

RESUMEN

Environmental enteric dysfunction (EED) is an inflammatory syndrome postulated to contribute to stunted child growth and to be associated with intestinal dysbiosis and nutrient malabsorption. However, the small intestinal contributions to EED remain poorly understood. This study aimed to assess changes in the proximal and distal intestinal microbiota in the context of stunting and EED and to test for a causal role of these bacterial isolates in the underlying pathophysiology. We performed a cross-sectional study in two African countries recruiting roughly 1,000 children aged 2 to 5 years and assessed the microbiota in the stomach, duodenum, and feces. Upper gastrointestinal samples were obtained from stunted children and stratified according to stunting severity. Fecal samples were collected. We then investigated the role of clinical isolates in EED pathophysiology using tissue culture and animal models. We find that small intestinal bacterial overgrowth (SIBO) is extremely common (>80%) in stunted children. SIBO is frequently characterized by an overgrowth of oral bacteria, leading to increased permeability and inflammation and to replacement of classical small intestinal strains. These duodenal bacterial isolates decrease lipid absorption in both cultured enterocytes and mice, providing a mechanism by which they may exacerbate EED and stunting. Further, we find a specific fecal signature associated with the EED markers fecal calprotectin and alpha-antitrypsin. Our study shows a causal implication of ectopic colonization of oral bacterial isolated from the small intestine in nutrient malabsorption and gut leakiness in vitro. These findings have important therapeutic implications for modulating the microbiota through microbiota-targeted interventions.


Asunto(s)
Microbioma Gastrointestinal , Trastornos del Crecimiento , Intestino Delgado , Lípidos , Boca , Animales , Bacterias , Preescolar , Estudios Transversales , Trastornos del Crecimiento/etiología , Humanos , Complejo de Antígeno L1 de Leucocito , Metabolismo de los Lípidos , Síndromes de Malabsorción , Ratones , Modelos Teóricos , Boca/microbiología
10.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34992141

RESUMEN

Saccharibacteria are a group of widespread and genetically diverse ultrasmall bacteria with highly reduced genomes that belong to the Candidate Phyla Radiation. Comparative genomic analyses suggest convergent evolution of key functions enabling the adaptation of environmental Saccharibacteria to mammalian microbiomes. Currently, our understanding of this environment-to-mammal niche transition within Saccharibacteria and their obligate episymbiotic association with host bacteria is limited. Here, we identified a complete arginine deiminase system (ADS), found in further genome streamlined mammal-associated Saccharibacteria but missing in their environmental counterparts, suggesting acquisition during environment-to-mammal niche transition. Using TM7x, the first cultured Saccharibacteria strain from the human oral microbiome and its host bacterium Actinomyces odontolyticus, we experimentally tested the function and impact of the ADS. We demonstrated that by catabolizing arginine and generating adenosine triphosphate, the ADS allows metabolically restrained TM7x to maintain higher viability and infectivity when disassociated from the host bacterium. Furthermore, the ADS protects TM7x and its host bacterium from acid stress, a condition frequently encountered within the human oral cavity due to bacterial metabolism of dietary carbohydrates. Intriguingly, with a restricted host range, TM7x forms obligate associations with Actinomyces spp. lacking the ADS but not those carrying the ADS, suggesting the acquired ADS may also contribute to partner selection for cooperative episymbiosis within a mammalian microbiome. These data present experimental characterization of a mutualistic interaction between TM7x and their host bacteria, and illustrate the benefits of acquiring a novel pathway in the transition of Saccharibacteria to mammalian microbiomes.


Asunto(s)
Bacterias/enzimología , Hidrolasas/metabolismo , Actinomyces , Adaptación Fisiológica , Animales , Arginina/metabolismo , Bacterias/clasificación , Bacterias/genética , Genoma Bacteriano , Especificidad del Huésped , Humanos , Hidrolasas/genética , Mamíferos/genética , Microbiota , Boca/microbiología , Filogenia , Simbiosis
11.
J Infect Dis ; 230(3): 726-735, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-38181070

RESUMEN

BACKGROUND: Oral human papillomavirus (HPV) infection and the oral microbiome are associated with oropharyngeal cancer. However, population-based data on the association of oral microbiome with oral HPV infection are limited. METHOD: A cross-sectional analysis of 5496 20-59-year-old participants in the 2009-2012 National Health and Nutrition Examination Survey was performed. Associations with oral HPV infection were assessed using multivariable logistic regression for oral microbiome α-diversity (within-sample diversity), and using principal coordinate analysis and permutational multivariate analysis of variance for ß-diversity (between-sample heterogeneity). RESULTS: Overall, for α-diversity, a lower number of observed amplicon sequence variants (adjusted odds ratio [aOR] = 0.996; 95% confidence interval [CI] = .992-.999) and reduced Faith's phylogenetic diversity (aOR = 0.95; 95% CI = .90-.99) were associated with high-risk oral HPV infection. ß-diversity showed differentiation of oral microbiome community by high-risk oral HPV infection as measured by Bray-Curtis dissimilarity (R2 = 0.054%; P = .029) and unweighted UniFrac distance (R2 = 0.046%; P = .045). There were differential associations when stratified by sex. CONCLUSIONS: Both oral microbiome α-diversity and ß-diversity were marginally associated with oral HPV infection. Longitudinal studies are needed to characterize the role of the microbiome in the natural history of oral HPV infection.


Asunto(s)
Microbiota , Boca , Encuestas Nutricionales , Infecciones por Papillomavirus , Humanos , Infecciones por Papillomavirus/epidemiología , Infecciones por Papillomavirus/virología , Infecciones por Papillomavirus/microbiología , Masculino , Femenino , Adulto , Estudios Transversales , Persona de Mediana Edad , Boca/microbiología , Boca/virología , Adulto Joven , Papillomaviridae/genética , Papillomaviridae/aislamiento & purificación , Papillomaviridae/clasificación , Estados Unidos/epidemiología
12.
J Infect Dis ; 229(6): 1628-1636, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38124508

RESUMEN

BACKGROUND: Treponema pallidum prevalence and burden at oral and lesion sites in adults with early syphilis were assessed by quantitative polymerase chain reaction (qPCR). Factors associated with oral shedding were also examined. METHODS: Pretreatment oral and lesion swabs were collected from adults with early syphilis in a US multicenter syphilis treatment trial. Oral swabs were collected in the presence and absence of oral lesions. Following DNA extraction, qPCR and whole-genome sequencing (WGS) were performed to assess burden and strain variability. RESULTS: All 32 participants were male, mean age was 35 years, and 90.6% with human immunodeficiency virus (HIV). T. pallidum oral PCR positivity varied by stage: 16.7% primary, 44.4% secondary, and 62.5% in early latent syphilis. Median oral T. pallidum burden was highest in secondary syphilis at 63.2 copies/µL. Lesion PCR positivity was similar in primary (40.0%) and secondary syphilis (38.5%). Age 18-29 years was significantly associated with oral shedding (vs age 40+ years) in adjusted models. WGS identified 2 distinct strains. CONCLUSIONS: T. pallidum DNA was directly detected at oral and lesion sites in a significant proportion of men with early syphilis. Younger age was associated with oral shedding. Ease of oral specimen collection and increased PCR availability suggest opportunities to improve syphilis diagnostic testing. Clinical Trials Registration. NCT03637660.


Asunto(s)
Sífilis , Treponema pallidum , Humanos , Masculino , Sífilis/diagnóstico , Sífilis/microbiología , Sífilis/epidemiología , Treponema pallidum/genética , Treponema pallidum/aislamiento & purificación , Adulto , Prevalencia , Adulto Joven , Adolescente , Boca/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Persona de Mediana Edad , ADN Bacteriano/genética , Estados Unidos/epidemiología , Secuenciación Completa del Genoma , Infecciones por VIH/epidemiología , Femenino
13.
Gut ; 73(7): 1098-1109, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38267200

RESUMEN

BACKGROUND: The mechanism by which proton pump inhibitors (PPIs) alter gut microbiota remains to be elucidated. We aimed to learn whether PPI induced gut microbiota alterations by promoting oral microbial translocation. METHODS: Healthy adult volunteers were randomly assigned: PP group (n=8, 40 mg esomeprazole daily for seven days) and PM group (n=8, 40 mg esomeprazole along with chlorhexidine mouthwash after each meal for seven days). Fecal and saliva samples were analysed using 16S ribosomal RNA sequencing. Mouse models were introduced to confirm the findings in vivo, while the effect of pH on oral bacteria proliferation activity was investigated in vitro. RESULTS: Taxon-based analysis indicated that PPI administration increased Streptococcus abundance in gut microbiota (P<0.001), and the increased species of Streptococcus were found to be from the oral site or oral/nasal sites, in which Streptococcus anginosus was identified as the significantly changed species (P<0.004). Microbial source tracker revealed that PPI significantly increased the contribution of oral bacteria to gut microbiota (P=0.026), and no significant difference was found in PM group (P=0.467). Compared to the baseline, there was a 42-fold increase in gut abundance of Streptococcus anginosus in PP group (P=0.002), and the times decreased to 16-fold in PM group (P=0.029). Mouse models showed that combination of PPI and Streptococcus anginosus significantly increased the gut abundance of Streptococcus anginosus compared with using PPI or Streptococcus anginosus only. Furthermore, Streptococcus anginosus cannot survive in vitro at a pH lower than 5. CONCLUSIONS: PPIs altered gut microbiota by promoting oral-originated Streptococcus translocation into gut.


Asunto(s)
Esomeprazol , Heces , Microbioma Gastrointestinal , Inhibidores de la Bomba de Protones , Saliva , Adulto , Animales , Femenino , Humanos , Masculino , Ratones , Adulto Joven , Traslocación Bacteriana/efectos de los fármacos , Clorhexidina/farmacología , Esomeprazol/farmacología , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Voluntarios Sanos , Concentración de Iones de Hidrógeno , Boca/microbiología , Antisépticos Bucales/farmacología , Estudios Prospectivos , Inhibidores de la Bomba de Protones/farmacología , ARN Ribosómico 16S , Saliva/microbiología , Streptococcus anginosus/efectos de los fármacos , Streptococcus anginosus/aislamiento & purificación
14.
J Bacteriol ; 206(9): e0022724, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39171915

RESUMEN

As a biological byproduct from both humans and microbes, glycerol's contribution to microbial homeostasis in the oral cavity remains understudied. In this study, we examined glycerol metabolism by Streptococcus sanguinis, a commensal associated with oral health. Genetic mutants of glucose-PTS enzyme II (manL), glycerol metabolism (glp and dha pathways), and transcriptional regulators were characterized with regard to glycerol catabolism, growth, production of hydrogen peroxide (H2O2), transcription, and competition with Streptococcus mutans. Biochemical assays identified the glp pathway as a novel source for H2O2 production by S. sanguinis that is independent of pyruvate oxidase (SpxB). Genetic analysis indicated that the glp pathway requires glycerol and a transcriptional regulator, GlpR, for expression and is negatively regulated by PTS, but not the catabolite control protein, CcpA. Conversely, deletion of either manL or ccpA increased the expression of spxB and a second, H2O2-non-producing glycerol metabolic pathway (dha), indicative of a mode of regulation consistent with conventional carbon catabolite repression (CCR). In a plate-based antagonism assay and competition assays performed with planktonic and biofilm-grown cells, glycerol greatly benefited the competitive fitness of S. sanguinis against S. mutans. The glp pathway appears to be conserved in several commensal streptococci and actively expressed in caries-free plaque samples. Our study suggests that glycerol metabolism plays a more significant role in the ecology of the oral cavity than previously understood. Commensal streptococci, though not able to use glycerol as a sole carbohydrate source for growth, benefit from the catabolism of glycerol through production of both ATP and H2O2. IMPORTANCE: Glycerol is an abundant carbohydrate in the oral cavity. However, little is understood regarding the metabolism of glycerol by commensal streptococci, some of the most abundant oral bacteria. This was in part because most streptococci cannot grow on glycerol as the sole carbon source. In this study, we show that Streptococcus sanguinis, a commensal associated with dental health, can degrade glycerol for persistence and competition through two pathways, one of which generates hydrogen peroxide at levels capable of inhibiting Streptococcus mutans. Preliminary studies suggest that several additional commensal streptococci are also able to catabolize glycerol, and glycerol-related genes are actively expressed in human dental plaque samples. Our findings reveal the potential of glycerol to significantly impact microbial homeostasis, which warrants further exploration.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Glicerol , Peróxido de Hidrógeno , Boca , Streptococcus mutans , Glicerol/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Streptococcus mutans/crecimiento & desarrollo , Boca/microbiología , Streptococcus sanguis/metabolismo , Streptococcus sanguis/genética , Humanos , Biopelículas/crecimiento & desarrollo
15.
BMC Bioinformatics ; 25(1): 58, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317062

RESUMEN

BACKGROUND: Data from microbiomes from multiple niches is often collected, but methods to analyse these often ignore associations between niches. One interesting case is that of the oral microbiome. Its composition is receiving increasing attention due to reports on its associations with general health. While the oral cavity includes different niches, multi-niche microbiome data analysis is conducted using a single niche at a time and, therefore, ignores other niches that could act as confounding variables. Understanding the interaction between niches would assist interpretation of the results, and help improve our understanding of multi-niche microbiomes. METHODS: In this study, we used a machine learning technique called latent Dirichlet allocation (LDA) on two microbiome datasets consisting of several niches. LDA was used on both individual niches and all niches simultaneously. On individual niches, LDA was used to decompose each niche into bacterial sub-communities unveiling their taxonomic structure. These sub-communities were then used to assess the relationship between microbial niches using the global test. On all niches simultaneously, LDA allowed us to extract meaningful microbial patterns. Sets of co-occurring operational taxonomic units (OTUs) comprising those patterns were then used to predict the original location of each sample. RESULTS: Our approach showed that the per-niche sub-communities displayed a strong association between supragingival plaque and saliva, as well as between the anterior and posterior tongue. In addition, the LDA-derived microbial signatures were able to predict the original sample niche illustrating the meaningfulness of our sub-communities. For the multi-niche oral microbiome dataset we had an overall accuracy of 76%, and per-niche sensitivity of up to 83%. Finally, for a second multi-niche microbiome dataset from the entire body, microbial niches from the oral cavity displayed stronger associations to each other than with those from other parts of the body, such as niches within the vagina and the skin. CONCLUSION: Our LDA-based approach produces sets of co-occurring taxa that can describe niche composition. LDA-derived microbial signatures can also be instrumental in summarizing microbiome data, for both descriptions as well as prediction.


Asunto(s)
Microbiota , Femenino , Humanos , Boca/microbiología , Bacterias/genética , Saliva , Piel/microbiología
16.
BMC Bioinformatics ; 25(1): 189, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745271

RESUMEN

BACKGROUND: The selection of primer pairs in sequencing-based research can greatly influence the results, highlighting the need for a tool capable of analysing their performance in-silico prior to the sequencing process. We therefore propose PrimerEvalPy, a Python-based package designed to test the performance of any primer or primer pair against any sequencing database. The package calculates a coverage metric and returns the amplicon sequences found, along with information such as their average start and end positions. It also allows the analysis of coverage for different taxonomic levels. RESULTS: As a case study, PrimerEvalPy was used to test the most commonly used primers in the literature against two oral 16S rRNA gene databases containing bacteria and archaea. The results showed that the most commonly used primer pairs in the oral cavity did not match those with the highest coverage. The best performing primer pairs were found for the detection of oral bacteria and archaea. CONCLUSIONS: This demonstrates the importance of a coverage analysis tool such as PrimerEvalPy to find the best primer pairs for specific niches. The software is available under the MIT licence at https://gitlab.citius.usc.es/lara.vazquez/PrimerEvalPy .


Asunto(s)
Archaea , Bacterias , Cartilla de ADN , Microbiota , ARN Ribosómico 16S , Programas Informáticos , Microbiota/genética , ARN Ribosómico 16S/genética , Bacterias/genética , Bacterias/clasificación , Archaea/genética , Cartilla de ADN/metabolismo , Cartilla de ADN/genética , Humanos , Boca/microbiología , Simulación por Computador
17.
Infect Immun ; 92(7): e0004824, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38814083

RESUMEN

Commensal bacteria are crucial in maintaining host physiological homeostasis, immune system development, and protection against pathogens. Despite their significance, the factors influencing persistent bacterial colonization and their impact on the host still need to be fully understood. Animal models have served as valuable tools to investigate these interactions, but most have limitations. The bacterial genus Neisseria, which includes both commensal and pathogenic species, has been studied from a pathogenicity to humans perspective but lacks models that study immune responses in the context of long-term persistence. Neisseria musculi, a recently described natural commensal of mice, offers a unique opportunity to study long-term host-commensal interactions. In this study, for the first time, we have used this model to study the transcriptional, phenotypic, and functional dynamics of immune cell signatures in the mucosal and systemic tissue of mice in response to N. musculi colonization. We found key genes and pathways vital for immune homeostasis in palate tissue, validated by flow cytometry of immune cells from the lung, blood, and spleen. This study offers a novel avenue for advancing our understanding of host-bacteria dynamics and may provide a platform for developing efficacious interventions against mucosal persistence by pathogenic Neisseria.


Asunto(s)
Neisseria , Animales , Ratones , Neisseria/inmunología , Interacciones Huésped-Patógeno/inmunología , Femenino , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Boca/microbiología , Boca/inmunología
18.
J Transl Med ; 22(1): 819, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227984

RESUMEN

BACKGROUND: Periodontitis results from host-microbe dysbiosis and the resultant dysregulated immunoinflammatory response. Importantly, it closely links to numerous systemic comorbidities, and perplexingly contributes to adverse pregnancy outcomes (APOs). Currently, there are limited studies on the distal consequences of periodontitis via oral-gut axis in pregnant women. This study investigated the integrative microbiome-metabolome profiles through multi-omics approaches in first-trimester pregnant women and explored the translational potentials. METHODS: We collected samples of subgingival plaques, saliva, sera and stool from 54 Chinese pregnant women at the first trimester, including 31 maternal periodontitis (Perio) subjects and 23 Non-Perio controls. By integrating 16S rRNA sequencing, untargeted metabolomics and clinical traits, we explored the oral-gut microbial and metabolic connection resulting from periodontitis among early pregnant women. RESULTS: We demonstrated a novel bacterial distinguisher Coprococcus from feces of periodontitis subjects in association with subgingival periodontopathogens, being different from other fecal genera in Lachnospiraceae family. The ratio of fecal Coprococcus to Lachnoclostridium could discriminate between Perio and Non-Perio groups as the ratio of subgingival Porphyromonas to Rothia did. Furthermore, there were differentially abundant fecal metabolic features pivotally enriched in periodontitis subjects like L-urobilin and kynurenic acid. We revealed a periodontitis-oriented integrative network cluster, which was centered with fecal Coprococcus and L-urobilin as well as serum triglyceride. CONCLUSIONS: The current findings about the notable influence of periodontitis on fecal microbiota and metabolites in first-trimester pregnant women via oral-gut axis signify the importance and translational implications of preconceptional oral/periodontal healthcare for enhancing maternal wellbeing.


Asunto(s)
Heces , Metaboloma , Periodontitis , Primer Trimestre del Embarazo , Humanos , Femenino , Embarazo , Periodontitis/microbiología , Periodontitis/metabolismo , Adulto , Heces/microbiología , Boca/microbiología , Microbiota , Microbioma Gastrointestinal , ARN Ribosómico 16S/genética
19.
J Transl Med ; 22(1): 947, 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39420333

RESUMEN

BACKGROUND: Mounting evidence suggests a significant role of the gut microbiota in the development and progression of colorectal cancer (CRC). In particular, an over-representation of oral pathogens has been linked to CRC. The aim of this study was to further investigate the faecal microbial landscape of CRC patients, with a focus on the oral pathogens Parvimonas micra and Fusobacterium nucleatum. METHODS: In this study, 16S rRNA sequencing was conducted using faecal samples from CRC patients (n = 275) and controls without pathological findings (n = 95). RESULTS: We discovered a significant difference in microbial composition depending on tumour location and microsatellite instability (MSI) status, with P. micra, F. nucleatum, and Peptostreptococcus stomatis found to be more abundant in patients with MSI tumours. Moreover, P. micra and F. nucleatum were associated with a cluster of CRC-related bacteria including Bacteroides fragilis as well as with other oral pathogens such as P. stomatis and various Porphyromonas species. This cluster was distinctly different in the control group, suggesting its potential linkage with CRC. CONCLUSIONS: Our results suggest a similar distribution of several CRC-associated bacteria within CRC patients, underscoring the importance of considering the concomitant presence of bacterial species in studies investigating the mechanisms of CRC development and progression.


Asunto(s)
Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/patología , Femenino , Masculino , Persona de Mediana Edad , Anciano , Heces/microbiología , ARN Ribosómico 16S/genética , Boca/microbiología , Firmicutes/aislamiento & purificación , Firmicutes/genética , Fusobacterium nucleatum/aislamiento & purificación , Estudios de Casos y Controles , Inestabilidad de Microsatélites , Adulto , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación
20.
J Transl Med ; 22(1): 396, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685022

RESUMEN

BACKGROUND: The aim of this study was to assess the microbial variations and biomarkers in the vaginal and oral environments of patients with human papillomavirus (HPV) and cervical cancer (CC) and to develop novel prediction models. MATERIALS AND METHODS: This study included 164 samples collected from both the vaginal tract and oral subgingival plaque of 82 women. The participants were divided into four distinct groups based on their vaginal and oral samples: the control group (Z/KZ, n = 22), abortion group (AB/KAB, n = 17), HPV-infected group (HP/KHP, n = 21), and cervical cancer group (CC/KCC, n = 22). Microbiota analysis was conducted using full-length 16S rDNA gene sequencing with the PacBio platform. RESULTS: The vaginal bacterial community in the Z and AB groups exhibited a relatively simple structure predominantly dominated by Lactobacillus. However, CC group shows high abundances of anaerobic bacteria and alpha diversity. Biomarkers such as Bacteroides, Mycoplasma, Bacillus, Dialister, Porphyromonas, Anaerococcus, and Prevotella were identified as indicators of CC. Correlations were established between elevated blood C-reactive protein (CRP) levels and local/systemic inflammation, pregnancy, childbirth, and abortion, which contribute to unevenness in the vaginal microenvironment. The altered microbial diversity in the CC group was confirmed by amino acid metabolism. Oral microbial diversity exhibited an inverse pattern to that of the vaginal microbiome, indicating a unique relationship. The microbial diversity of the KCC group was significantly lower than that of the KZ group, indicating a link between oral health and cancer development. Several microbes, including Fusobacterium, Campylobacter, Capnocytophaga, Veillonella, Streptococcus, Lachnoanaerobaculum, Propionibacterium, Prevotella, Lactobacillus, and Neisseria, were identified as CC biomarkers. Moreover, periodontal pathogens were associated with blood CRP levels and oral hygiene conditions. Elevated oral microbial amino acid metabolism in the CC group was closely linked to the presence of pathogens. Positive correlations indicated a synergistic relationship between vaginal and oral bacteria. CONCLUSION: HPV infection and CC impact both the vaginal and oral microenvironments, affecting systemic metabolism and the synergy between bacteria. This suggests that the use of oral flora markers is a potential screening tool for the diagnosis of CC.


Asunto(s)
Microbiota , Boca , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Vagina , Humanos , Femenino , Vagina/microbiología , Vagina/virología , Neoplasias del Cuello Uterino/microbiología , Neoplasias del Cuello Uterino/virología , Infecciones por Papillomavirus/virología , Infecciones por Papillomavirus/microbiología , Boca/microbiología , Boca/virología , Adulto , Persona de Mediana Edad , Papillomaviridae/aislamiento & purificación , Papillomaviridae/genética , ARN Ribosómico 16S/genética , Virus del Papiloma Humano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA