RESUMEN
Conifers dominate the world's forest ecosystems and are the most widely planted tree species. Their giant and complex genomes present great challenges for assembling a complete reference genome for evolutionary and genomic studies. We present a 25.4-Gb chromosome-level assembly of Chinese pine (Pinus tabuliformis) and revealed that its genome size is mostly attributable to huge intergenic regions and long introns with high transposable element (TE) content. Large genes with long introns exhibited higher expressions levels. Despite a lack of recent whole-genome duplication, 91.2% of genes were duplicated through dispersed duplication, and expanded gene families are mainly related to stress responses, which may underpin conifers' adaptation, particularly in cold and/or arid conditions. The reproductive regulation network is distinct compared with angiosperms. Slow removal of TEs with high-level methylation may have contributed to genomic expansion. This study provides insights into conifer evolution and resources for advancing research on conifer adaptation and development.
Asunto(s)
Epigenoma , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Pinus/genética , Aclimatación/genética , Cromosomas de las Plantas/genética , Cycadopsida/genética , Elementos Transponibles de ADN/genética , Bosques , Redes Reguladoras de Genes , Tamaño del Genoma , Genómica/métodos , Intrones , Magnoliopsida/genéticaRESUMEN
Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1-6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth's 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world's most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.
Asunto(s)
Bosques , Árboles , Clima Tropical , Biodiversidad , Árboles/anatomía & histología , Árboles/clasificación , Árboles/crecimiento & desarrollo , África , Asia SudorientalRESUMEN
Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species coexistence and the diversity of local tree species6,7. Previous analyses supporting such a latitudinal gradient in CNDD8,9 have suffered from methodological limitations related to the use of static data10-12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizing CNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests.
Asunto(s)
Biodiversidad , Bosques , Mapeo Geográfico , Árboles , Modelos Biológicos , Especificidad de la Especie , Árboles/clasificación , Árboles/fisiología , Clima TropicalRESUMEN
The largest ever primate and one of the largest of the southeast Asian megafauna, Gigantopithecus blacki1, persisted in China from about 2.0 million years until the late middle Pleistocene when it became extinct2-4. Its demise is enigmatic considering that it was one of the few Asian great apes to go extinct in the last 2.6 million years, whereas others, including orangutan, survived until the present5. The cause of the disappearance of G. blacki remains unresolved but could shed light on primate resilience and the fate of megafauna in this region6. Here we applied three multidisciplinary analyses-timing, past environments and behaviour-to 22 caves in southern China. We used 157 radiometric ages from six dating techniques to establish a timeline for the demise of G. blacki. We show that from 2.3 million years ago the environment was a mosaic of forests and grasses, providing ideal conditions for thriving G. blacki populations. However, just before and during the extinction window between 295,000 and 215,000 years ago there was enhanced environmental variability from increased seasonality, which caused changes in plant communities and an increase in open forest environments. Although its close relative Pongo weidenreichi managed to adapt its dietary preferences and behaviour to this variability, G. blacki showed signs of chronic stress and dwindling populations. Ultimately its struggle to adapt led to the extinction of the greatest primate to ever inhabit the Earth.
Asunto(s)
Extinción Biológica , Fósiles , Hominidae , Animales , Cuevas , China , Dieta/veterinaria , Bosques , Hominidae/clasificación , Plantas , Pongo , Datación Radiométrica , Estaciones del Año , Factores de TiempoRESUMEN
The 2023 Canadian forest fires have been extreme in scale and intensity with more than seven times the average annual area burned compared to the previous four decades1. Here, we quantify the carbon emissions from these fires from May to September 2023 on the basis of inverse modelling of satellite carbon monoxide observations. We find that the magnitude of the carbon emissions is 647 TgC (570-727 TgC), comparable to the annual fossil fuel emissions of large nations, with only India, China and the USA releasing more carbon per year2. We find that widespread hot-dry weather was a principal driver of fire spread, with 2023 being the warmest and driest year since at least 19803. Although temperatures were extreme relative to the historical record, climate projections indicate that these temperatures are likely to be typical during the 2050s, even under a moderate climate mitigation scenario (shared socioeconomic pathway, SSP 2-4.5)4. Such conditions are likely to drive increased fire activity and suppress carbon uptake by Canadian forests, adding to concerns about the long-term durability of these forests as a carbon sink5-8.
Asunto(s)
Carbono , Bosques , Incendios Forestales , Canadá , Carbono/análisis , Carbono/química , Dióxido de Carbono/análisis , Monóxido de Carbono/análisis , Secuestro de Carbono , Modelos Climáticos , Sequías , Combustibles Fósiles/efectos adversos , Historia del Siglo XXI , Calor , Factores Socioeconómicos , Incendios Forestales/historia , Incendios Forestales/estadística & datos numéricosRESUMEN
Climate warming has caused a widespread increase in extreme fire weather, making forest fires longer-lived and larger1-3. The average forest fire size in Canada, the USA and Australia has doubled or even tripled in recent decades4,5. In return, forest fires feed back to climate by modulating land-atmospheric carbon, nitrogen, aerosol, energy and water fluxes6-8. However, the surface climate impacts of increasingly large fires and their implications for land management remain to be established. Here we use satellite observations to show that in temperate and boreal forests in the Northern Hemisphere, fire size persistently amplified decade-long postfire land surface warming in summer per unit burnt area. Both warming and its amplification with fire size were found to diminish with an increasing abundance of broadleaf trees, consistent with their lower fire vulnerability compared with coniferous species9,10. Fire-size-enhanced warming may affect the success and composition of postfire stand regeneration11,12 as well as permafrost degradation13, presenting previously overlooked, additional feedback effects to future climate and fire dynamics. Given the projected increase in fire size in northern forests14,15, climate-smart forestry should aim to mitigate the climate risks of large fires, possibly by increasing the share of broadleaf trees, where appropriate, and avoiding active pyrophytes.
Asunto(s)
Retroalimentación , Bosques , Calentamiento Global , Calor , Árboles , Incendios Forestales , Agricultura Forestal/métodos , Agricultura Forestal/tendencias , Calentamiento Global/estadística & datos numéricos , Estaciones del Año , Taiga , Árboles/anatomía & histología , Árboles/clasificación , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Incendios Forestales/estadística & datos numéricos , Factores de TiempoRESUMEN
The capacity for terrestrial ecosystems to sequester additional carbon (C) with rising CO2 concentrations depends on soil nutrient availability1,2. Previous evidence suggested that mature forests growing on phosphorus (P)-deprived soils had limited capacity to sequester extra biomass under elevated CO2 (refs. 3-6), but uncertainty about ecosystem P cycling and its CO2 response represents a crucial bottleneck for mechanistic prediction of the land C sink under climate change7. Here, by compiling the first comprehensive P budget for a P-limited mature forest exposed to elevated CO2, we show a high likelihood that P captured by soil microorganisms constrains ecosystem P recycling and availability for plant uptake. Trees used P efficiently, but microbial pre-emption of mineralized soil P seemed to limit the capacity of trees for increased P uptake and assimilation under elevated CO2 and, therefore, their capacity to sequester extra C. Plant strategies to stimulate microbial P cycling and plant P uptake, such as increasing rhizosphere C release to soil, will probably be necessary for P-limited forests to increase C capture into new biomass. Our results identify the key mechanisms by which P availability limits CO2 fertilization of tree growth and will guide the development of Earth system models to predict future long-term C storage.
Asunto(s)
Dióxido de Carbono , Secuestro de Carbono , Bosques , Fósforo , Microbiología del Suelo , Árboles , Biomasa , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análisis , Fósforo/metabolismo , Rizosfera , Suelo/química , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Cambio ClimáticoRESUMEN
Roads are expanding at the fastest pace in human history. This is the case especially in biodiversity-rich tropical nations, where roads can result in forest loss and fragmentation, wildfires, illicit land invasions and negative societal effects1-5. Many roads are being constructed illegally or informally and do not appear on any existing road map6-10; the toll of such 'ghost roads' on ecosystems is poorly understood. Here we use around 7,000 h of effort by trained volunteers to map ghost roads across the tropical Asia-Pacific region, sampling 1.42 million plots, each 1 km2 in area. Our intensive sampling revealed a total of 1.37 million km of roads in our plots-from 3.0 to 6.6 times more roads than were found in leading datasets of roads globally. Across our study area, road building almost always preceded local forest loss, and road density was by far the strongest correlate11 of deforestation out of 38 potential biophysical and socioeconomic covariates. The relationship between road density and forest loss was nonlinear, with deforestation peaking soon after roads penetrate a landscape and then declining as roads multiply and remaining accessible forests largely disappear. Notably, after controlling for lower road density inside protected areas, we found that protected areas had only modest additional effects on preventing forest loss, implying that their most vital conservation function is limiting roads and road-related environmental disruption. Collectively, our findings suggest that burgeoning, poorly studied ghost roads are among the gravest of all direct threats to tropical forests.
Asunto(s)
Automóviles , Conservación de los Recursos Naturales , Agricultura Forestal , Bosques , Árboles , Clima Tropical , Asia , Conservación de los Recursos Naturales/estadística & datos numéricos , Conservación de los Recursos Naturales/tendencias , Árboles/crecimiento & desarrollo , Conjuntos de Datos como Asunto , Agricultura Forestal/métodos , Agricultura Forestal/estadística & datos numéricos , Agricultura Forestal/tendenciasRESUMEN
Logged and disturbed forests are often viewed as degraded and depauperate environments compared with primary forest. However, they are dynamic ecosystems1 that provide refugia for large amounts of biodiversity2,3, so we cannot afford to underestimate their conservation value4. Here we present empirically defined thresholds for categorizing the conservation value of logged forests, using one of the most comprehensive assessments of taxon responses to habitat degradation in any tropical forest environment. We analysed the impact of logging intensity on the individual occurrence patterns of 1,681 taxa belonging to 86 taxonomic orders and 126 functional groups in Sabah, Malaysia. Our results demonstrate the existence of two conservation-relevant thresholds. First, lightly logged forests (<29% biomass removal) retain high conservation value and a largely intact functional composition, and are therefore likely to recover their pre-logging values if allowed to undergo natural regeneration. Second, the most extreme impacts occur in heavily degraded forests with more than two-thirds (>68%) of their biomass removed, and these are likely to require more expensive measures to recover their biodiversity value. Overall, our data confirm that primary forests are irreplaceable5, but they also reinforce the message that logged forests retain considerable conservation value that should not be overlooked.
Asunto(s)
Conservación de los Recursos Naturales , Agricultura Forestal , Bosques , Árboles , Clima Tropical , Biodiversidad , Biomasa , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/estadística & datos numéricos , Agricultura Forestal/estadística & datos numéricos , Malasia , Árboles/clasificación , Árboles/crecimiento & desarrollo , AnimalesRESUMEN
The possibility that the Amazon forest system could soon reach a tipping point, inducing large-scale collapse, has raised global concern1-3. For 65 million years, Amazonian forests remained relatively resilient to climatic variability. Now, the region is increasingly exposed to unprecedented stress from warming temperatures, extreme droughts, deforestation and fires, even in central and remote parts of the system1. Long existing feedbacks between the forest and environmental conditions are being replaced by novel feedbacks that modify ecosystem resilience, increasing the risk of critical transition. Here we analyse existing evidence for five major drivers of water stress on Amazonian forests, as well as potential critical thresholds of those drivers that, if crossed, could trigger local, regional or even biome-wide forest collapse. By combining spatial information on various disturbances, we estimate that by 2050, 10% to 47% of Amazonian forests will be exposed to compounding disturbances that may trigger unexpected ecosystem transitions and potentially exacerbate regional climate change. Using examples of disturbed forests across the Amazon, we identify the three most plausible ecosystem trajectories, involving different feedbacks and environmental conditions. We discuss how the inherent complexity of the Amazon adds uncertainty about future dynamics, but also reveals opportunities for action. Keeping the Amazon forest resilient in the Anthropocene will depend on a combination of local efforts to end deforestation and degradation and to expand restoration, with global efforts to stop greenhouse gas emissions.
Asunto(s)
Bosques , Calentamiento Global , Árboles , Sequías/estadística & datos numéricos , Retroalimentación , Calentamiento Global/prevención & control , Calentamiento Global/estadística & datos numéricos , Árboles/crecimiento & desarrollo , Incendios Forestales/estadística & datos numéricos , Incertidumbre , Restauración y Remediación Ambiental/tendenciasRESUMEN
More than a quarter of the world's tropical forests are exploited for timber1. Logging impacts biodiversity in these ecosystems, primarily through the creation of forest roads that facilitate hunting for wildlife over extensive areas. Forest management certification schemes such as the Forest Stewardship Council (FSC) are expected to mitigate impacts on biodiversity, but so far very little is known about the effectiveness of FSC certification because of research design challenges, predominantly limited sample sizes2,3. Here we provide this evidence by using 1.3 million camera-trap photos of 55 mammal species in 14 logging concessions in western equatorial Africa. We observed higher mammal encounter rates in FSC-certified than in non-FSC logging concessions. The effect was most pronounced for species weighing more than 10 kg and for species of high conservation priority such as the critically endangered forest elephant and western lowland gorilla. Across the whole mammal community, non-FSC concessions contained proportionally more rodents and other small species than did FSC-certified concessions. The first priority for species protection should be to maintain unlogged forests with effective law enforcement, but for logged forests our findings provide convincing data that FSC-certified forest management is less damaging to the mammal community than is non-FSC forest management. This study provides strong evidence that FSC-certified forest management or equivalently stringent requirements and controlling mechanisms should become the norm for timber extraction to avoid half-empty forests dominated by rodents and other small species.
Asunto(s)
Certificación , Agricultura Forestal , Bosques , Mamíferos , Animales , África Occidental , Biodiversidad , Peso Corporal , Conservación de los Recursos Naturales/legislación & jurisprudencia , Conservación de los Recursos Naturales/métodos , Elefantes , Agricultura Forestal/legislación & jurisprudencia , Agricultura Forestal/métodos , Agricultura Forestal/normas , Gorilla gorilla , Mamíferos/anatomía & histología , Mamíferos/clasificación , Mamíferos/fisiología , Fotograbar , Roedores , Masculino , FemeninoRESUMEN
Anthropogenic change is contributing to the rise in emerging infectious diseases, which are significantly correlated with socioeconomic, environmental and ecological factors1. Studies have shown that infectious disease risk is modified by changes to biodiversity2-6, climate change7-11, chemical pollution12-14, landscape transformations15-20 and species introductions21. However, it remains unclear which global change drivers most increase disease and under what contexts. Here we amassed a dataset from the literature that contains 2,938 observations of infectious disease responses to global change drivers across 1,497 host-parasite combinations, including plant, animal and human hosts. We found that biodiversity loss, chemical pollution, climate change and introduced species are associated with increases in disease-related end points or harm, whereas urbanization is associated with decreases in disease end points. Natural biodiversity gradients, deforestation and forest fragmentation are comparatively unimportant or idiosyncratic as drivers of disease. Overall, these results are consistent across human and non-human diseases. Nevertheless, context-dependent effects of the global change drivers on disease were found to be common. The findings uncovered by this meta-analysis should help target disease management and surveillance efforts towards global change drivers that increase disease. Specifically, reducing greenhouse gas emissions, managing ecosystem health, and preventing biological invasions and biodiversity loss could help to reduce the burden of plant, animal and human diseases, especially when coupled with improvements to social and economic determinants of health.
Asunto(s)
Biodiversidad , Cambio Climático , Enfermedades Transmisibles , Contaminación Ambiental , Especies Introducidas , Animales , Humanos , Efectos Antropogénicos , Cambio Climático/estadística & datos numéricos , Enfermedades Transmisibles/epidemiología , Enfermedades Transmisibles/etiología , Conservación de los Recursos Naturales/tendencias , Conjuntos de Datos como Asunto , Contaminación Ambiental/efectos adversos , Agricultura Forestal , Bosques , Especies Introducidas/estadística & datos numéricos , Enfermedades de las Plantas/etiología , Medición de Riesgo , UrbanizaciónRESUMEN
Methane is an important greenhouse gas1, but the role of trees in the methane budget remains uncertain2. Although it has been shown that wetland and some upland trees can emit soil-derived methane at the stem base3,4, it has also been suggested that upland trees can serve as a net sink for atmospheric methane5,6. Here we examine in situ woody surface methane exchange of upland tropical, temperate and boreal forest trees. We find that methane uptake on woody surfaces, in particular at and above about 2 m above the forest floor, can dominate the net ecosystem contribution of trees, resulting in a net tree methane sink. Stable carbon isotope measurement of methane in woody surface chamber air and process-level investigations on extracted wood cores are consistent with methanotrophy, suggesting a microbially mediated drawdown of methane on and in tree woody surfaces and tissues. By applying terrestrial laser scanning-derived allometry to quantify global forest tree woody surface area, a preliminary first estimate suggests that trees may contribute 24.6-49.9 Tg of atmospheric methane uptake globally. Our findings indicate that the climate benefits of tropical and temperate forest protection and reforestation may be greater than previously assumed.
Asunto(s)
Atmósfera , Bosques , Metano , Árboles , Madera , Atmósfera/química , Metano/metabolismo , Metano/análisis , Taiga , Árboles/química , Árboles/metabolismo , Árboles/microbiología , Clima Tropical , Madera/química , Madera/metabolismo , Madera/microbiología , Gases de Efecto Invernadero/análisis , Gases de Efecto Invernadero/metabolismo , Isótopos de Carbono , Agricultura Forestal , Calentamiento Global/prevención & control , Calentamiento Global/estadística & datos numéricos , Efecto Invernadero/prevención & control , Efecto Invernadero/estadística & datos numéricosRESUMEN
Tropical forest degradation from selective logging, fire and edge effects is a major driver of carbon and biodiversity loss1-3, with annual rates comparable to those of deforestation4. However, its actual extent and long-term impacts remain uncertain at global tropical scale5. Here we quantify the magnitude and persistence of multiple types of degradation on forest structure by combining satellite remote sensing data on pantropical moist forest cover changes4 with estimates of canopy height and biomass from spaceborne6 light detection and ranging (LiDAR). We estimate that forest height decreases owing to selective logging and fire by 15% and 50%, respectively, with low rates of recovery even after 20 years. Agriculture and road expansion trigger a 20% to 30% reduction in canopy height and biomass at the forest edge, with persistent effects being measurable up to 1.5 km inside the forest. Edge effects encroach on 18% (approximately 206 Mha) of the remaining tropical moist forests, an area more than 200% larger than previously estimated7. Finally, degraded forests with more than 50% canopy loss are significantly more vulnerable to subsequent deforestation. Collectively, our findings call for greater efforts to prevent degradation and protect already degraded forests to meet the conservation pledges made at recent United Nations Climate Change and Biodiversity conferences.
Asunto(s)
Biomasa , Agricultura Forestal , Bosques , Actividades Humanas , Humedad , Árboles , Clima Tropical , Agricultura/estadística & datos numéricos , Biodiversidad , Conservación de los Recursos Naturales/legislación & jurisprudencia , Conservación de los Recursos Naturales/estadística & datos numéricos , Conservación de los Recursos Naturales/tendencias , Incendios , Agricultura Forestal/estadística & datos numéricos , Tecnología de Sensores Remotos , Factores de Tiempo , Árboles/crecimiento & desarrollo , Naciones Unidas/legislación & jurisprudenciaRESUMEN
Amazonia contains the most extensive tropical forests on Earth, but Amazon carbon sinks of atmospheric CO2 are declining, as deforestation and climate-change-associated droughts1-4 threaten to push these forests past a tipping point towards collapse5-8. Forests exhibit complex drought responses, indicating both resilience (photosynthetic greening) and vulnerability (browning and tree mortality), that are difficult to explain by climate variation alone9-17. Here we combine remotely sensed photosynthetic indices with ground-measured tree demography to identify mechanisms underlying drought resilience/vulnerability in different intact forest ecotopes18,19 (defined by water-table depth, soil fertility and texture, and vegetation characteristics). In higher-fertility southern Amazonia, drought response was structured by water-table depth, with resilient greening in shallow-water-table forests (where greater water availability heightened response to excess sunlight), contrasting with vulnerability (browning and excess tree mortality) over deeper water tables. Notably, the resilience of shallow-water-table forest weakened as drought lengthened. By contrast, lower-fertility northern Amazonia, with slower-growing but hardier trees (or, alternatively, tall forests, with deep-rooted water access), supported more-drought-resilient forests independent of water-table depth. This functional biogeography of drought response provides a framework for conservation decisions and improved predictions of heterogeneous forest responses to future climate changes, warning that Amazonia's most productive forests are also at greatest risk, and that longer/more frequent droughts are undermining multiple ecohydrological strategies and capacities for Amazon forest resilience.
Asunto(s)
Resistencia a la Sequía , Sequías , Bosques , Agua Subterránea , Fotosíntesis , Suelo , Luz Solar , Árboles , Brasil , Secuestro de Carbono , Sequías/estadística & datos numéricos , Agua Subterránea/análisis , Suelo/química , Árboles/clasificación , Árboles/metabolismo , Árboles/fisiología , Clima Tropical , Resistencia a la Sequía/fisiología , Filogeografía , Conservación de los Recursos NaturalesRESUMEN
The uptake of carbon dioxide (CO2) by terrestrial ecosystems is critical for moderating climate change1. To provide a ground-based long-term assessment of the contribution of forests to terrestrial CO2 uptake, we synthesized in situ forest data from boreal, temperate and tropical biomes spanning three decades. We found that the carbon sink in global forests was steady, at 3.6 ± 0.4 Pg C yr-1 in the 1990s and 2000s, and 3.5 ± 0.4 Pg C yr-1 in the 2010s. Despite this global stability, our analysis revealed some major biome-level changes. Carbon sinks have increased in temperate (+30 ± 5%) and tropical regrowth (+29 ± 8%) forests owing to increases in forest area, but they decreased in boreal (-36 ± 6%) and tropical intact (-31 ± 7%) forests, as a result of intensified disturbances and losses in intact forest area, respectively. Mass-balance studies indicate that the global land carbon sink has increased2, implying an increase in the non-forest-land carbon sink. The global forest sink is equivalent to almost half of fossil-fuel emissions (7.8 ± 0.4 Pg C yr-1 in 1990-2019). However, two-thirds of the benefit from the sink has been negated by tropical deforestation (2.2 ± 0.5 Pg C yr-1 in 1990-2019). Although the global forest sink has endured undiminished for three decades, despite regional variations, it could be weakened by ageing forests, continuing deforestation and further intensification of disturbance regimes1. To protect the carbon sink, land management policies are needed to limit deforestation, promote forest restoration and improve timber-harvesting practices1,3.
Asunto(s)
Dióxido de Carbono , Secuestro de Carbono , Bosques , Internacionalidad , Árboles , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análisis , Cambio Climático , Conservación de los Recursos Naturales , Ecosistema , Agricultura Forestal/legislación & jurisprudencia , Agricultura Forestal/estadística & datos numéricos , Agricultura Forestal/tendencias , Combustibles Fósiles/efectos adversos , Combustibles Fósiles/provisión & distribución , Taiga , Árboles/metabolismo , Árboles/crecimiento & desarrollo , Clima TropicalRESUMEN
The pulp and paper industry is an important contributor to global greenhouse gas emissions1,2. Country-specific strategies are essential for the industry to achieve net-zero emissions by 2050, given its vast heterogeneities across countries3,4. Here we develop a comprehensive bottom-up assessment of net greenhouse gas emissions of the domestic paper-related sectors for 30 major countries from 1961 to 2019-about 3.2% of global anthropogenic greenhouse gas emissions from the same period5-and explore mitigation strategies through 2,160 scenarios covering key factors. Our results show substantial differences across countries in terms of historical emissions evolution trends and structure. All countries can achieve net-zero emissions for their pulp and paper industry by 2050, with a single measure for most developed countries and several measures for most developing countries. Except for energy-efficiency improvement and energy-system decarbonization, tropical developing countries with abundant forest resources should give priority to sustainable forest management, whereas other developing countries should pay more attention to enhancing methane capture rate and reducing recycling. These insights are crucial for developing net-zero strategies tailored to each country and achieving net-zero emissions by 2050 for the pulp and paper industry.
Asunto(s)
Agricultura Forestal , Efecto Invernadero , Gases de Efecto Invernadero , Industrias , Internacionalidad , Papel , Desarrollo Sostenible , Madera , Efecto Invernadero/prevención & control , Efecto Invernadero/estadística & datos numéricos , Gases de Efecto Invernadero/análisis , Gases de Efecto Invernadero/aislamiento & purificación , Industrias/legislación & jurisprudencia , Industrias/estadística & datos numéricos , Metano/análisis , Metano/aislamiento & purificación , Reciclaje/estadística & datos numéricos , Reciclaje/tendencias , Países Desarrollados , Países en Desarrollo , Bosques , Agricultura Forestal/métodos , Agricultura Forestal/tendencias , Desarrollo Sostenible/tendencias , Clima TropicalRESUMEN
Tropical tree diversity increases with rainfall1,2. Direct physiological effects of moisture availability and indirect effects mediated by biotic interactions are hypothesized to contribute to this pantropical increase in diversity with rainfall2-6. Previous studies have demonstrated direct physiological effects of variation in moisture availability on tree survival and diversity5,7-10, but the indirect effects of variation in moisture availability on diversity mediated by biotic interactions have not been shown11. Here we evaluate the relationships between interannual variation in moisture availability, the strength of density-dependent interactions, and seedling diversity in central Panama. Diversity increased with soil moisture over the first year of life across 20 annual cohorts. These first-year changes in diversity persisted for at least 15 years. Differential survival of moisture-sensitive species did not contribute to the observed changes in diversity. Rather, negative density-dependent interactions among conspecifics were stronger and increased diversity in wetter years. This suggests that moisture availability enhances diversity indirectly through moisture-sensitive, density-dependent conspecific interactions. Pathogens and phytophagous insects mediate interactions among seedlings in tropical forests12-18, and many of these plant enemies are themselves moisture-sensitive19-27. Changes in moisture availability caused by climate change and habitat degradation may alter these interactions and tropical tree diversity.
Asunto(s)
Biodiversidad , Humedad , Lluvia , Árboles , Clima Tropical , Bosques , Insectos , Panamá , Plantones/fisiología , Árboles/clasificación , Árboles/fisiología , AnimalesRESUMEN
Tropical forests play a critical role in the hydrological cycle and can influence local and regional precipitation1. Previous work has assessed the impacts of tropical deforestation on precipitation, but these efforts have been largely limited to case studies2. A wider analysis of interactions between deforestation and precipitation-and especially how any such interactions might vary across spatial scales-is lacking. Here we show reduced precipitation over deforested regions across the tropics. Our results arise from a pan-tropical assessment of the impacts of 2003-2017 forest loss on precipitation using satellite, station-based and reanalysis datasets. The effect of deforestation on precipitation increased at larger scales, with satellite datasets showing that forest loss caused robust reductions in precipitation at scales greater than 50 km. The greatest declines in precipitation occurred at 200 km, the largest scale we explored, for which 1 percentage point of forest loss reduced precipitation by 0.25 ± 0.1 mm per month. Reanalysis and station-based products disagree on the direction of precipitation responses to forest loss, which we attribute to sparse in situ tropical measurements. We estimate that future deforestation in the Congo will reduce local precipitation by 8-10% in 2100. Our findings provide a compelling argument for tropical forest conservation to support regional climate resilience.
Asunto(s)
Conservación de los Recursos Naturales , Agricultura Forestal , Bosques , Lluvia , Árboles , Clima Tropical , Congo , Conservación de los Recursos Naturales/tendencias , Ciclo HidrológicoRESUMEN
Understanding the effects of cash crop expansion on natural forest is of fundamental importance. However, for most crops there are no remotely sensed global maps1, and global deforestation impacts are estimated using models and extrapolations. Natural rubber is an example of a principal commodity for which deforestation impacts have been highly uncertain, with estimates differing more than fivefold1-4. Here we harnessed Earth observation satellite data and cloud computing5 to produce high-resolution maps of rubber (10 m pixel size) and associated deforestation (30 m pixel size) for Southeast Asia. Our maps indicate that rubber-related forest loss has been substantially underestimated in policy, by the public and in recent reports6-8. Our direct remotely sensed observations show that deforestation for rubber is at least twofold to threefold higher than suggested by figures now widely used for setting policy4. With more than 4 million hectares of forest loss for rubber since 1993 (at least 2 million hectares since 2000) and more than 1 million hectares of rubber plantations established in Key Biodiversity Areas, the effects of rubber on biodiversity and ecosystem services in Southeast Asia could be extensive. Thus, rubber deserves more attention in domestic policy, within trade agreements and in incoming due-diligence legislation.