Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Asunto de la revista
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 731: 150383, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39024977

RESUMEN

(R)-selective transaminases have the potential to act as efficient biocatalysts for the synthesis of important pharmaceutical intermediates. However, their low catalytic efficiency and unfavorable equilibrium limit their industrial application. Seven (R)-selective transaminases were identified using homologous sequence mining. Beginning with the optimal candidate from Mycolicibacterium hippocampi, virtual mutagenesis and substrate tunnel engineering were performed to improve catalytic efficiency. The obtained variant, T282S/Q137E, exhibited 3.68-fold greater catalytic efficiency (kcat/Km) than the wild-type enzyme. Using substrate fed-batch and air sweeping processes, effective conversion of 100 mM 4-hydroxy-2-butanone was achieved with a conversion rate of 93 % and an ee value > 99.9 %. This study provides a basis for mutation of (R)-selective transaminases and offers an efficient biocatalytic process for the asymmetric synthesis of (R)-3-aminobutanol.


Asunto(s)
Ingeniería de Proteínas , Transaminasas , Transaminasas/metabolismo , Transaminasas/genética , Transaminasas/química , Ingeniería de Proteínas/métodos , Especificidad por Sustrato , Sitios de Unión , Biocatálisis , Mutagénesis , Mutagénesis Sitio-Dirigida , Modelos Moleculares , Burkholderiaceae/enzimología , Burkholderiaceae/genética , Cinética
2.
Artículo en Inglés | MEDLINE | ID: mdl-38668631

RESUMEN

Two Gram-negative bacterial strains designated MMS20-SJTN17T and MMS20-SJTR3T were isolated from a grassland soil sample, and taxonomically characterized using a polyphasic approach. The 16S rRNA gene sequence analysis indicates that both strains belong to the genus Paraburkholderia of the class Betaproteobacteria, with strain MMS20-SJTN17T being mostly related to Paraburkholderia sprentiae WSM5005T (96.45 % sequence similarity) and strain MMS20-SJTR3T to Paraburkholderia tuberum STM678T (98.59 % sequence similarity). MMS20-SJTN17T could grow at 15-40 °C (optimum, 25-30 °C) and at pH 6.0-8.0 (optimum, pH 6.0-7.0), whereas MMS20-SJTR3T could grow at 10-40 °C (optimum, 30-37 °C) and at pH 6.0-8.0 (optimum, pH 6.0). Both strains tolerated up to 1 % (w/v) NaCl (optimum, 0 %). The major fatty acids of MMS20-SJTN17T were C16 : 0 and C19 : 0 cyclo ω8c, and those of MMS20-SJTR3T were C17 : 0 cyclo and a summed feature comprising C18 : 1 ω7c and/or C18 : 1 ω6c. The major isoprenoid quinone of both strains was ubiquinone-8 and the diagnostic polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Regarding plant growth promoting potential, both strains were capable of producing indole acetic acid, siderophore and 1-aminocyclopropane-1-carboxylic acid deaminase, and also showed phosphate-solubilizing activity. A genome-based comparison using orthologous average nucleotide identity and digital DNA-DNA hybridization values indicates that strain MMS20-SJTN17T shares highest relatedness with Paraburkholderia monticola JC2948T and MMS20-SJTR3T with Paraburkholderia antibiotica G-4-1-8T, with values clearly below the cutoffs for species distinction. Examination of biosynthetic gene clusters responsible for secondary metabolite production reveals unique characteristics distinguishing each strain from closely related Paraburkholderia species. On the basis of genotypic, phenotypic, chemotaxonomic and phylogenomic data, each strain should be classified as a novel species of the genus Paraburkholderia, for which the names Paraburkholderia translucens sp. nov. (=MMS20-SJTN17T=LMG 32366T=KCTC 82783T) and Paraburkholderia sejongensis sp. nov. (=MMS20-SJTR3T=LMG 32367T=KCTC 82784T) are proposed.


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Pradera , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Microbiología del Suelo , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Fosfolípidos , Burkholderiaceae/aislamiento & purificación , Burkholderiaceae/genética , Burkholderiaceae/clasificación , Ubiquinona , Reguladores del Crecimiento de las Plantas/metabolismo
3.
World J Microbiol Biotechnol ; 40(10): 288, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101971

RESUMEN

A novel Pseudochrobactrum saccharolyticum strain NBRI-CRB 13, isolated from tannery sludge, was studied to grow up to 500 mgL-1 of Cr(VI) and showed Cr(VI) detoxification by reducing > 90% of Cr(VI) at different concentrations 25, 50 and 100 mgL-1. Kinetic studies showed that first-order models were fitted (R2 = 0.998) to the time-dependent Cr(VI) reduction with degradation rate constant (k) (1.03-0.429 h-1). Cr(VI) detoxification was primarily related to the extracellular fraction of microbial cells, which showed a maximum extracellular reductase enzyme activity led to 94.6% reduction of Cr(VI). Moreover, the strain showed maximum extracellular polymeric substances (EPS) production at 100 mgL-1 Cr(VI), which is presumably the reason for Cr(VI) removal as EPS serves as the metal binding site for Cr(VI) ions. Further, an optimization study using Box-Behnken design was conducted considering parameters viz., pH, temperature, and initial concentration of Cr(VI). The maximum percent reduction of Cr(VI) was obtained at pH 6.5, temperature 30 °C with 62.5 mgL-1Cr(VI) concentration. Further, the Cr(VI) reduction and adsorption ability of strain P. saccharolyticum NBRI-CRB13 were confirmed by SEM-EDS, FTIR, and XRD analyses. FTIR analysis confirmed the presence of functional groups (-OH, -COOH, -PO4) on bacterial cell walls, which were more likely to interact with positively charged chromium ions. The study elucidated the reduction of Cr(VI) by the novel bacterium within 24 h using the response surface methodology approach and advocated its application in real-time situations.


Asunto(s)
Biodegradación Ambiental , Cromo , Aguas del Alcantarillado , Cromo/metabolismo , Cinética , Aguas del Alcantarillado/microbiología , Concentración de Iones de Hidrógeno , Temperatura , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Burkholderiaceae/metabolismo , Burkholderiaceae/aislamiento & purificación , Burkholderiaceae/genética , Oxidación-Reducción
4.
Sci Total Environ ; 946: 174207, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38914327

RESUMEN

Di-n-butyl phthalate (DBP) is one of the important phthalates detected commonly in soils and crops, posing serious threat to human health. Pseudochrobactrum sp. XF203 (XF203), a new strain related with DBP biodegradation, was first identified from a natural habitat lacking human disturbance. Genomic analysis coupled with gene expression comparison assay revealed this strain harbors the key aromatic ring-cleaving gene catE203 (encoding catechol 2,3-dioxygenase/C23O) involved DBP biodegradation. Following intermediates identification and enzymatic analysis also indicated a C23O dependent DBP lysis pathway in XF203. The gene directed ribosome engineering was operated and to generate a desirable mutant strain XF203R with highest catE203 gene expression level and strong DBP degrading ability. The X203R removed DBP in soil jointly by reassembling bacterial community. These results demonstrate a great value of XF203R for the practical DBP bioremediation application, highlighting the important role of the key gene-directed ribosome engineering in mining multi-pollutants degrading bacteria from natural habitats where various functional genes are well conserved.


Asunto(s)
Biodegradación Ambiental , Dibutil Ftalato , Ribosomas , Contaminantes del Suelo , Contaminantes del Suelo/metabolismo , Dibutil Ftalato/metabolismo , Ribosomas/metabolismo , Microbiología del Suelo , Expresión Génica , Burkholderiaceae/metabolismo , Burkholderiaceae/genética
5.
Braz. j. microbiol ; 49(2): 210-211, Apr.-June 2018.
Artículo en Inglés | LILACS | ID: biblio-889231

RESUMEN

Abstract Paraburkholderia tropica (syn Burkholderia tropica) are nitrogen-fixing bacteria commonly found in sugarcane. The Paraburkholderia tropica strain Ppe8 is part of the sugarcane inoculant consortium that has a beneficial effect on yield. Here, we report a draft genome sequence of this strain elucidating the mechanisms involved in its interaction mainly with Poaceae. A genome size of approximately 8.75 Mb containing 7844 protein coding genes distributed in 526 subsystems was de novo assembled with ABySS and annotated by RAST. Genes related to the nitrogen fixation process, the secretion systems (I, II, III, IV, and VI), and related to a variety of metabolic traits, such as metabolism of carbohydrates, amino acids, vitamins, and proteins, were detected, suggesting a broad metabolic capacity and possible adaptation to plant association.


Asunto(s)
Genoma Bacteriano , Burkholderiaceae/genética , Endófitos/genética , Proteínas Bacterianas/genética , Análisis de Secuencia de ADN , Biología Computacional , Saccharum/microbiología , Burkholderiaceae/aislamiento & purificación , Redes y Vías Metabólicas/genética , Anotación de Secuencia Molecular , Endófitos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA