Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 658
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 175(3): 652-664.e12, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30270038

RESUMEN

Non-image-forming vision in mammals is mediated primarily by melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs). In mouse M1-ipRGCs, by far the best-studied subtype, melanopsin activates PLCß4 (phospholipase C-ß4) to open TRPC6,7 channels, mechanistically similar to phototransduction in fly rhabdomeric (microvillous) photoreceptors. We report here that, surprisingly, mouse M4-ipRGCs rely on a different and hitherto undescribed melanopsin-driven, ciliary phototransduction mechanism involving cyclic nucleotide as the second messenger and HCN channels rather than CNG channels as the ion channel for phototransduction. Even more surprisingly, within an individual mouse M2-ipRGC, this HCN-channel-dependent, ciliary phototransduction pathway operates in parallel with the TRPC6,7-dependent rhabdomeric pathway. These findings reveal a complex heterogeneity in phototransduction among ipRGCs and, more importantly, break a general dogma about segregation of the two phototransduction motifs, likely with strong evolutionary implications.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Células Ganglionares de la Retina/metabolismo , Visión Ocular , Animales , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Nucleótidos Cíclicos/metabolismo , Células Ganglionares de la Retina/fisiología , Canales Catiónicos TRPC/metabolismo
2.
Plant Cell ; 36(10): 4356-4371, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-38875155

RESUMEN

Plants respond to cold stress at multiple levels, including increasing cytosolic calcium (Ca2+) influx and triggering the expression of cold-responsive genes. In this study, we show that the Ca2+-permeable channel CYCLIC NUCLEOTIDE-GATED CHANNEL20 (CNGC20) positively regulates freezing tolerance in Arabidopsis (Arabidopsis thaliana) by mediating cold-induced Ca2+ influx. Moreover, we demonstrate that the leucine-rich repeat receptor-like kinase PLANT PEPTIDE CONTAINING SULFATED TYROSINE1 RECEPTOR (PSY1R) is activated by cold, phosphorylating and enhancing the activity of CNGC20. The psy1r mutant exhibits decreased cold-evoked Ca2+ influx and freezing tolerance. Conversely, COLD-RESPONSIVE PROTEIN KINASE1 (CRPK1), a protein kinase that negatively regulates cold signaling, phosphorylates and facilitates the degradation of CNGC20 under prolonged periods of cold treatment, thereby attenuating freezing tolerance. This study thus identifies PSY1R and CRPK1 kinases that regulate CNGC20 activity and stability, respectively, thereby antagonistically modulating freezing tolerance in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Calcio , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Congelación , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fosforilación , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Calcio/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Plant Cell ; 36(6): 2328-2358, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38442317

RESUMEN

Multiple cyclic nucleotide-gated channels (CNGCs) are abscisic acid (ABA)-activated Ca2+ channels in Arabidopsis (Arabidopsis thaliana) guard cells. In particular, CNGC5, CNGC6, CNGC9, and CNGC12 are essential for ABA-specific cytosolic Ca2+ signaling and stomatal movements. However, the mechanisms underlying ABA-mediated regulation of CNGCs and Ca2+ signaling are still unknown. In this study, we identified the Ca2+-independent protein kinase OPEN STOMATA 1 (OST1) as a CNGC activator in Arabidopsis. OST1-targeted phosphorylation sites were identified in CNGC5, CNGC6, CNGC9, and CNGC12. These CNGCs were strongly inhibited by Ser-to-Ala mutations and fully activated by Ser-to-Asp mutations at the OST1-targeted sites. The overexpression of individual inactive CNGCs (iCNGCs) under the UBIQUITIN10 promoter in wild-type Arabidopsis conferred a strong dominant-negative-like ABA-insensitive stomatal closure phenotype. In contrast, expressing active CNGCs (aCNGCs) under their respective native promoters in the cngc5-1 cngc6-2 cngc9-1 cngc12-1 quadruple mutant fully restored ABA-activated cytosolic Ca2+ oscillations and Ca2+ currents in guard cells, and rescued the ABA-insensitive stomatal movement mutant phenotypes. Thus, we uncovered that ABA elicits cytosolic Ca2+ signaling via an OST1-CNGC module, in which OST1 functions as a convergence point of the Ca2+-dependent and -independent pathways in Arabidopsis guard cells.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Señalización del Calcio , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Estomas de Plantas , Proteínas Quinasas , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Calcio/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Mutación , Fosforilación , Estomas de Plantas/genética , Estomas de Plantas/fisiología , Estomas de Plantas/metabolismo , Estomas de Plantas/efectos de los fármacos , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética
4.
Cell ; 151(5): 1029-41, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23178122

RESUMEN

Defects in primary cilia lead to devastating disease because of their roles in sensation and developmental signaling but much is unknown about ciliary structure and mechanisms of their formation and maintenance. We used cryo-electron tomography to obtain 3D maps of the connecting cilium and adjacent cellular structures of a modified primary cilium, the rod outer segment, from wild-type and genetically defective mice. The results reveal the molecular architecture of the cilium and provide insights into protein functions. They suggest that the ciliary rootlet is involved in cellular transport and stabilizes the axoneme. A defect in the BBSome membrane coat caused defects in vesicle targeting near the base of the cilium. Loss of the proteins encoded by the Cngb1 gene disrupted links between the disk and plasma membranes. The structures of the outer segment membranes support a model for disk morphogenesis in which basal disks are enveloped by the plasma membrane.


Asunto(s)
Cilios/ultraestructura , Enfermedades de la Retina/patología , Segmento Externo de la Célula en Bastón/ultraestructura , Animales , Membrana Celular/metabolismo , Cilios/química , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Proteínas del Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Proteínas del Ojo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Retina/química , Retina/metabolismo , Segmento Externo de la Célula en Bastón/química , Segmento Externo de la Célula en Bastón/metabolismo , Vesículas Transportadoras/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(9): e2315132121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38377199

RESUMEN

The cooperative action of the subunits in oligomeric receptors enables fine-tuning of receptor activation, as demonstrated for the regulation of voltage-activated HCN pacemaker ion channels by relating cAMP binding to channel activation in ensemble signals. HCN channels generate electric rhythmicity in specialized brain neurons and cardiomyocytes. There is conflicting evidence on whether binding cooperativity does exist independent of channel activation or not, as recently reported for detergent-solubilized receptors positioned in zero-mode waveguides. Here, we show positive cooperativity in ligand binding to closed HCN2 channels in native cell membranes by following the binding of individual fluorescence-labeled cAMP molecules. Kinetic modeling reveals that the affinity of the still empty binding sites rises with increased degree of occupation and that the transition of the channel to a flip state is promoted accordingly. We conclude that ligand binding to the subunits in closed HCN2 channels not pre-activated by voltage is already cooperative. Hence, cooperativity is not causally linked to channel activation by voltage. Our analysis also shows that single-molecule binding measurements at equilibrium can quantify cooperativity in ligand binding to receptors in native membranes.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Activación del Canal Iónico , Ligandos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Activación del Canal Iónico/fisiología , AMP Cíclico/metabolismo , Fenómenos Biofísicos , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo
6.
Proc Natl Acad Sci U S A ; 121(25): e2321228121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38857399

RESUMEN

Ciliary defects are linked to ciliopathies, but impairments in the sensory cilia of Caenorhabditis elegans neurons extend lifespan, a phenomenon with previously unclear mechanisms. Our study reveals that neuronal cilia defects trigger the unfolded protein response of the endoplasmic reticulum (UPRER) within intestinal cells, a process dependent on the insulin/insulin-like growth factor 1 (IGF-1) signaling transcription factor and the release of neuronal signaling molecules. While inhibiting UPRER doesn't alter the lifespan of wild-type worms, it normalizes the extended lifespan of ciliary mutants. Notably, deactivating the cyclic nucleotide-gated (CNG) channel TAX-4 on the ciliary membrane promotes lifespan extension through a UPRER-dependent mechanism. Conversely, constitutive activation of TAX-4 attenuates intestinal UPRER in ciliary mutants. Administering a CNG channel blocker to worm larvae activates intestinal UPRER and increases adult longevity. These findings suggest that ciliary dysfunction in sensory neurons triggers intestinal UPRER, contributing to lifespan extension and implying that transiently inhibiting ciliary channel activity may effectively prolong lifespan.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cilios , Longevidad , Respuesta de Proteína Desplegada , Animales , Caenorhabditis elegans/metabolismo , Cilios/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Intestinos/citología , Transducción de Señal , Neuronas/metabolismo , Retículo Endoplásmico/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Mucosa Intestinal/metabolismo
7.
Plant Cell ; 35(1): 239-259, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36069643

RESUMEN

Abscisic acid (ABA)-activated inward Ca2+-permeable channels in the plasma membrane (PM) of guard cells are required for the initiation and regulation of ABA-specific cytosolic Ca2+ signaling and stomatal closure in plants. But the identities of the PM Ca2+ channels are still unknown. We hypothesized that the ABA-activated Ca2+ channels consist of multiple CYCLIC NUCLEOTIDE-GATED CHANNEL (CNGC) proteins from the CNGC family, which is known as a Ca2+-permeable channel family in Arabidopsis (Arabidopsis thaliana). In this research, we observed high expression of multiple CNGC genes in Arabidopsis guard cells, namely CNGC5, CNGC6, CNGC9, and CNGC12. The T-DNA insertional loss-of-function quadruple mutant cngc5-1 cngc6-2 cngc9-1 cngc12-1 (hereafter c5/6/9/12) showed a strong ABA-insensitive phenotype of stomatal closure. Further analysis revealed that ABA-activated Ca2+ channel currents were impaired, and ABA-specific cytosolic Ca2+ oscillation patterns were disrupted in c5/6/9/12 guard cells compared with in wild-type guard cells. All ABA-related phenotypes of the c5/6/9/12 mutant were successfully rescued by the expression of a single gene out of the four CNGCs under the respective native promoter. Thus, our findings reveal a type of ABA-activated PM Ca2+ channel comprising multiple CNGCs, which is essential for ABA-specific Ca2+ signaling of guard cells and ABA-induced stomatal closure in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Mutación/genética , Nucleótidos Cíclicos/metabolismo , Estomas de Plantas/metabolismo , Transducción de Señal
8.
Cell ; 147(5): 1159-70, 2011 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-22100643

RESUMEN

Entorhinal grid cells have periodic, hexagonally patterned firing locations that scale up progressively along the dorsal-ventral axis of medial entorhinal cortex. This topographic expansion corresponds with parallel changes in cellular properties dependent on the hyperpolarization-activated cation current (Ih), which is conducted by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. To test the hypothesis that grid scale is determined by Ih, we recorded grid cells in mice with forebrain-specific knockout of HCN1. We find that, although the dorsal-ventral gradient of the grid pattern was preserved in HCN1 knockout mice, the size and spacing of the grid fields, as well as the period of the accompanying theta modulation, was expanded at all dorsal-ventral levels. There was no change in theta modulation of simultaneously recorded entorhinal interneurons. These observations raise the possibility that, during self-motion-based navigation, Ih contributes to the gain of the transformation from movement signals to spatial firing fields.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Corteza Entorrinal/citología , Corteza Entorrinal/fisiología , Canales de Potasio/metabolismo , Animales , Mapeo Encefálico , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Interneuronas , Masculino , Ratones , Ratones Noqueados , Canales de Potasio/genética
9.
Proc Natl Acad Sci U S A ; 120(15): e2300309120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37011209

RESUMEN

Calmodulin (CaM) regulates many ion channels to control calcium entry into cells, and mutations that alter this interaction are linked to fatal diseases. The structural basis of CaM regulation remains largely unexplored. In retinal photoreceptors, CaM binds to the CNGB subunit of cyclic nucleotide-gated (CNG) channels and, thereby, adjusts the channel's Cyclic guanosine monophosphate (cGMP) sensitivity in response to changes in ambient light conditions. Here, we provide the structural characterization for CaM regulation of a CNG channel by using a combination of single-particle cryo-electron microscopy and structural proteomics. CaM connects the CNGA and CNGB subunits, resulting in structural changes both in the cytosolic and transmembrane regions of the channel. Cross-linking and limited proteolysis-coupled mass spectrometry mapped the conformational changes induced by CaM in vitro and in the native membrane. We propose that CaM is a constitutive subunit of the rod channel to ensure high sensitivity in dim light. Our mass spectrometry-based approach is generally relevant for studying the effect of CaM on ion channels in tissues of medical interest, where only minute quantities are available.


Asunto(s)
Calmodulina , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Calmodulina/metabolismo , Activación del Canal Iónico/fisiología , Microscopía por Crioelectrón , Calcio/metabolismo , Nucleótidos Cíclicos/farmacología , GMP Cíclico/metabolismo
10.
Proc Natl Acad Sci U S A ; 120(49): e2305135120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38032931

RESUMEN

In a family with inappropriate sinus tachycardia (IST), we identified a mutation (p.V240M) of the hyperpolarization-activated cyclic nucleotide-gated type 4 (HCN4) channel, which contributes to the pacemaker current (If) in human sinoatrial node cells. Here, we clinically study fifteen family members and functionally analyze the p.V240M variant. Macroscopic (IHCN4) and single-channel currents were recorded using patch-clamp in cells expressing human native (WT) and/or p.V240M HCN4 channels. All p.V240M mutation carriers exhibited IST that was accompanied by cardiomyopathy in adults. IHCN4 generated by p.V240M channels either alone or in combination with WT was significantly greater than that generated by WT channels alone. The variant, which lies in the N-terminal HCN domain, increased the single-channel conductance and opening frequency and probability of HCN4 channels. Conversely, it did not modify the channel sensitivity for cAMP and ivabradine or the level of expression at the membrane. Treatment with ivabradine based on functional data reversed the IST and the cardiomyopathy of the carriers. In computer simulations, the p.V240M gain-of-function variant increases If and beating rate and thus explains the IST of the carriers. The results demonstrate the importance of the unique HCN domain in HCN4, which stabilizes the channels in the closed state.


Asunto(s)
Cardiomiopatías , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Adulto , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Taquicardia Sinusal , Canales de Potasio/genética , Ivabradina/farmacología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Mutación con Ganancia de Función , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Nodo Sinoatrial , Cardiomiopatías/genética
11.
FASEB J ; 38(17): e70021, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39215566

RESUMEN

Cone photoreceptor cyclic nucleotide-gated (CNG) channels play an essential role in phototransduction and cellular Ca2+ homeostasis. Mutations in genes encoding the channel subunits CNGA3 and CNGB3 are associated with achromatopsia, progressive cone dystrophy, and early-onset macular degeneration. Cone loss in patients with achromatopsia and cone dystrophy associated with CNG channel mutations has been documented by optical coherence tomography and in mouse models of CNG channel deficiency. Cone death in CNG channel-deficient retinas involves endoplasmic reticulum (ER) stress-associated apoptosis, dysregulation of cellular/ER Ca2+ homeostasis, impaired protein folding/processing, and impaired ER-associated degradation (ERAD). The E3 ubiquitin-protein ligase synoviolin 1 (SYVN1) is the primary component of the SYVN1/SEL1L ER retrotranslocon responsible for ERAD. Previous studies have shown that manipulations that protect cones and reduce ER stress/cone death in CNG channel deficiency, such as increasing ER Ca2+ preservation or treatment with an ER chaperone, increase the expression of SYVN1 and other components of the ER retrotranslocon. The present work investigated the effects of SYVN1 overexpression. Intraocular injection of AAV5-IRBP/GNAT2-Syvn1 resulted in overexpression of SYVN1 in cones of CNG channel-deficient mice. Following treatment, cone density in Cnga3-/- mice was significantly increased, compared with untreated controls, outer segment localization of cone opsin was improved, and ER stress/apoptotic cell death was reduced. Overexpression of SYVN1 also led to increased expression levels of the retrotranslocon components, degradation in ER protein 1 (DERL1), ERAD E3 ligase adaptor subunit (SEL1L), and homocysteine inducible ER protein with ubiquitin-like domain 1 (HERPUD1). Moreover, overexpression of SYVN1 likely enhanced protein ubiquitination/proteasome degradation in CNG channel-deficient retinas. This study demonstrates the role of SYVN1/ERAD in cone preservation in CNG channel deficiency and supports the strategy of promoting ERAD for cone protection.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos , Estrés del Retículo Endoplásmico , Retículo Endoplásmico , Células Fotorreceptoras Retinianas Conos , Ubiquitina-Proteína Ligasas , Animales , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Ratones , Retículo Endoplásmico/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Ratones Noqueados , Ratones Endogámicos C57BL
12.
Cell ; 142(4): 580-9, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-20691466

RESUMEN

Voltage-gated ion channels sense transmembrane voltage changes via a paddle-shaped motif that includes the C-terminal part of the third transmembrane segment (S3b) and the N-terminal part of the fourth segment ((NT)S4) that harbors voltage-sensing arginines. Here, we find that residue triplets in S3b and (NT)S4 can be deleted individually, or even in some combinations, without compromising the channels' basic voltage-gating capability. Thus, a high degree of complementarity between these S3b and (NT)S4 regions is not required for basic voltage gating per se. Remarkably, the voltage-gated Shaker K(+) channel remains voltage gated after a 43 residue paddle sequence is replaced by a glycine triplet. Therefore, the paddle motif comprises a minimal core that suffices to confer voltage gating in the physiological voltage range, and a larger, modulatory part. Our study also shows that the hydrophobic residues between the voltage-sensing arginines help set the sensor's characteristic chemical equilibrium between activated and deactivated states.


Asunto(s)
Canales de Potasio de la Superfamilia Shaker/química , Canales de Potasio de la Superfamilia Shaker/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Canales Catiónicos Regulados por Nucleótidos Cíclicos/química , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Fenómenos Electrofisiológicos , Interacciones Hidrofóbicas e Hidrofílicas , Datos de Secuencia Molecular , Ingeniería de Proteínas , Ratas
13.
Nature ; 572(7767): 131-135, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31316205

RESUMEN

Pathogen-associated molecular patterns (PAMPs) activate innate immunity in both animals and plants. Although calcium has long been recognized as an essential signal for PAMP-triggered immunity in plants, the mechanism of PAMP-induced calcium signalling remains unknown1,2. Here we report that calcium nutrient status is critical for calcium-dependent PAMP-triggered immunity in plants. When calcium supply is sufficient, two genes that encode cyclic nucleotide-gated channel (CNGC) proteins, CNGC2 and CNGC4, are essential for PAMP-induced calcium signalling in Arabidopsis3-7. In a reconstitution system, we find that the CNGC2 and CNGC4 proteins together-but neither alone-assemble into a functional calcium channel that is blocked by calmodulin in the resting state. Upon pathogen attack, the channel is phosphorylated and activated by the effector kinase BOTRYTIS-INDUCED KINASE1 (BIK1) of the pattern-recognition receptor complex, and this triggers an increase in the concentration of cytosolic calcium8-10. The CNGC-mediated calcium entry thus provides a critical link between the pattern-recognition receptor complex and calcium-dependent immunity programs in the PAMP-triggered immunity signalling pathway in plants.


Asunto(s)
Arabidopsis/inmunología , Arabidopsis/metabolismo , Calmodulina/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Inmunidad de la Planta/inmunología , Animales , Proteínas de Arabidopsis/agonistas , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio , Calmodulina/farmacología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/agonistas , Canales Catiónicos Regulados por Nucleótidos Cíclicos/antagonistas & inhibidores , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Femenino , Inmunidad Innata , Oocitos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Xenopus
14.
Biophys J ; 123(14): 2176-2184, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38678368

RESUMEN

Ion channels of the cyclic nucleotide-binding domain (CNBD) family play a crucial role in the regulation of key biological processes, such as photoreception and pacemaking activity in the heart. These channels exhibit high sequence and structural similarity but differ greatly in their functional responses to membrane potential. The CNBD family includes hyperpolarization-activated ion channels and depolarization-activated ether-à-go-go channels. Structural and functional studies show that the differences in the coupling interface between these two subfamilies' voltage-sensing domain and pore domain may underlie their differential response to membrane polarity. However, other structural components may also contribute to defining the polarity differences in activation. Here, we focus on the role of the C-terminal domain, which interacts with elements in both the pore and voltage-sensing domains. By generating a series of chimeras involving the C-terminal domain derived from distant members of the CNBD family, we find that the nature of the C-termini profoundly influences the gating polarity of these ion channels. Scanning mutagenesis of the C-linker region, a helix-turn-helix motif connecting the pore helix to the CNBD, reveals that residues at the intersubunit interface between the C-linkers are crucial for hyperpolarization-dependent activation. These findings highlight the unique and unexpected role of the intersubunit interface of the C-linker region in regulating the gating polarity of voltage-gated ion channels.


Asunto(s)
Activación del Canal Iónico , Dominios Proteicos , Animales , Secuencia de Aminoácidos , Humanos , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/química , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética
15.
J Neurosci ; 43(12): 2199-2209, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36813574

RESUMEN

Pathogenic variants in HCN1 are associated with a range of epilepsy syndromes including a developmental and epileptic encephalopathy. The recurrent de novo HCN1 pathogenic variant (M305L) results in a cation leak, allowing the flux of excitatory ions at potentials where the wild-type channels are closed. The Hcn1M294L mouse recapitulates patient seizure and behavioral phenotypes. As HCN1 channels are highly expressed in rod and cone photoreceptor inner segments, where they shape the light response, mutated channels are likely to impact visual function. Electroretinogram (ERG) recordings from male and female mice Hcn1M294L mice revealed a significant decrease in the photoreceptor sensitivity to light, as well as attenuated bipolar cell (P2) and retinal ganglion cell responses. Hcn1M294L mice also showed attenuated ERG responses to flickering lights. ERG abnormalities are consistent with the response recorded from a single female human subject. There was no impact of the variant on the structure or expression of the Hcn1 protein in the retina. In silico modeling of photoreceptors revealed that the mutated HCN1 channel dramatically reduced light-induced hyperpolarization, resulting in more Ca2+ flux during the response when compared with the wild-type situation. We propose that the light-induced change in glutamate release from photoreceptors during a stimulus will be diminished, significantly blunting the dynamic range of this response. Our data highlight the importance of HCN1 channels to retinal function and suggest that patients with HCN1 pathogenic variants are likely to have a dramatically reduced sensitivity to light and a limited ability to process temporal information.SIGNIFICANCE STATEMENT Pathogenic variants in HCN1 are emerging as an important cause of catastrophic epilepsy. HCN1 channels are ubiquitously expressed throughout the body, including the retina. Electroretinogram recordings from a mouse model of HCN1 genetic epilepsy showed a marked decrease in the photoreceptor sensitivity to light and a reduced ability to respond to high rates of light flicker. No morphologic deficits were noted. Simulation data suggest that the mutated HCN1 channel blunts light-induced hyperpolarization and consequently limits the dynamic range of this response. Our results provide insights into the role HCN1 channels play in retinal function as well as highlighting the need to consider retinal dysfunction in disease caused by HCN1 variants. The characteristic changes in the electroretinogram open the possibility of using this tool as a biomarker for this HCN1 epilepsy variant and to facilitate development of treatments.


Asunto(s)
Epilepsia , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Humanos , Masculino , Femenino , Ratones , Animales , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Retina/metabolismo , Electrorretinografía , Epilepsia/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Canales de Potasio/fisiología
16.
J Neurosci ; 43(6): 902-917, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36604171

RESUMEN

Efferent modulation of vestibular afferent excitability is linked to muscarinic signaling cascades that close low-voltage-gated potassium channels (i.e., KCNQ). Here, we show that muscarinic signaling cascades also depolarize the activation range of hyperpolarization-activated cyclic-nucleotide gated (HCN) channels. We compared the voltage activation range and kinetics of HCN channels and induced firing patterns before and after administering the muscarinic acetylcholine receptor (mAChR) agonist oxotremorine-M (Oxo-M) in dissociated vestibular ganglion neurons (VGNs) from rats of either sex using perforated whole-cell patch-clamp methods. Oxo-M depolarized HCN channels' half-activation voltage (V 1/2) and sped up the rate of activation near resting potential twofold. HCN channels in large-diameter and/or transient firing VGN (putative cell bodies of irregular firing neuron from central epithelial zones) had relatively depolarized V 1/2 in control solution and were less sensitive to mAChR activation than those found in small-diameter VGN with sustained firing patterns (putatively belonging to regular firing afferents). The impact of mAChR on HCN channels is not a direct consequence of closing KCNQ channels since pretreating the cells with Linopirdine, a KCNQ channel blocker, did not prevent HCN channel depolarization by Oxo-M. Efferent signaling promoted ion channel configurations that were favorable to highly regular spiking in some VGN, but not others. This is consistent with previous observations that low-voltage gated potassium currents in VGN are conducted by mAChR agonist-sensitive and -insensitive channels. Connecting efferent signaling to HCN channels is significant because of the channel's impact on spike-timing regularity and nonchemical transmission between Type I hair cells and vestibular afferents.SIGNIFICANCE STATEMENT Vestibular afferents express a diverse complement of ion channels. In vitro studies identified low-voltage activated potassium channels and hyperpolarization-activated cyclic-nucleotide gated (HCN) channels as crucial for shaping the timing and sensitivity of afferent responses. Moreover, a network of acetylcholine-releasing efferent neurons controls afferent excitability by closing a subgroup of low-voltage activated potassium channels on the afferent neuron. This work shows that these efferent signaling cascades also enhance the activation of HCN channels by depolarizing their voltage activation range. The size of this effect varies depending on the endogenous properties of the HCN channel and on cell type (as determined by discharge patterns and cell size). Simultaneously controlling two ion-channel groups gives the vestibular efferent system exquisite control over afferent neuron activity.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Neuronas , Receptores Muscarínicos , Nervio Vestibular , Animales , Ratas , Colinérgicos , Canales Catiónicos Regulados por Nucleótidos Cíclicos/efectos de los fármacos , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/efectos de los fármacos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Agonistas Muscarínicos/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Nucleótidos/metabolismo , Canales de Potasio , Receptores Muscarínicos/metabolismo , Oxotremorina/farmacología , Nervio Vestibular/efectos de los fármacos , Nervio Vestibular/metabolismo , Nervio Vestibular/fisiología
17.
J Physiol ; 602(19): 4889-4905, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39167717

RESUMEN

Mammalian olfactory sensory neurons (OSNs) generate an odorant-induced response by sequentially activating two ion channels, which are in their ciliary membranes. First, a cationic, Ca2+-permeable cyclic nucleotide-gated channel is opened following odorant stimulation via a G protein-coupled transduction cascade and an ensuing rise in cAMP. Second, the increase in ciliary Ca2+ opens the excitatory Ca2+-activated Cl- channel TMEM16B, which carries most of the odorant-induced receptor current. While the role of TMEM16B in amplifying the response has been well established, it is less understood how this secondary ion channel contributes to response kinetics and action potential generation during single as well as repeated stimulation and, on the other hand, which response properties the cyclic nucleotide-gated (CNG) channel determines. We first demonstrate that basic membrane properties such as input resistance, resting potential and voltage-gated currents remained unchanged in OSNs that lack TMEM16B. The CNG channel predominantly determines the response delay and adaptation during odorant exposure, while the absence of the Cl- channels shortens both the time the response requires to reach its maximum and the time to terminate after odorant stimulation. This faster response termination in Tmem16b knockout OSNs allows them, somewhat counterintuitively despite the large reduction in receptor current, to fire action potentials more reliably when stimulated repeatedly in rapid succession, a phenomenon that occurs both in isolated OSNs and in OSNs within epithelial slices. Thus, while the two olfactory ion channels act in concert to generate the overall response, each one controls specific aspects of the odorant-induced response. KEY POINTS: Mammalian olfactory sensory neurons (OSNs) generate odorant-induced responses by activating two ion channels sequentially in their ciliary membranes: a Na+, Ca2⁺-permeable cyclic nucleotide-gated (CNG) channel and the Ca2⁺-activated Cl⁻ channel TMEM16B. The CNG channel controls response delay and adaptation during odorant exposure, while TMEM16B amplifies the response and influences the time required for the response to reach its peak and terminate. OSNs lacking TMEM16B display faster response termination, allowing them to fire action potentials more reliably during rapid repeated stimulation. The CNG and TMEM16B channels have distinct and complementary roles in shaping the kinetics and reliability of odorant-induced responses in OSNs.


Asunto(s)
Anoctaminas , Neuronas Receptoras Olfatorias , Animales , Anoctaminas/metabolismo , Neuronas Receptoras Olfatorias/fisiología , Ratones , Potenciales de Acción/fisiología , Calcio/metabolismo , Ratones Noqueados , Canales de Cloruro/metabolismo , Canales de Cloruro/fisiología , Ratones Endogámicos C57BL , Canales Catiónicos Regulados por Nucleótidos Cíclicos/fisiología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Odorantes
18.
Plant J ; 113(6): 1223-1236, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36633062

RESUMEN

Plant cyclic nucleotide gated channels (CNGCs) facilitate cytosolic Ca2+ influx as an early step in numerous signaling cascades. CNGC-mediated Ca2+ elevations are essential for plant immune defense and high temperature thermosensing. In the present study, we evaluated phenotypes of CNGC2, CNGC4, CNGC6, and CNGC12 null mutants in these two pathways. It is shown CNGC2, CNGC4, and CNGC6 physically interact in vivo, whereas CNGC12 does not. CNGC involvement in immune signaling was evaluated by monitoring mutant response to elicitor peptide Pep3. Pep3 response cascades involving CNGCs included mitogen-activated kinase activation mediated by Ca2+ -dependent protein kinase phosphorylation. Pep3-induced reactive oxygen species generation was impaired in cngc2, cngc4, and cngc6, but not in cngc12, suggesting that CNGC2, CNGC4, and CNGC6 (which physically interact) may be components of a multimeric CNGC channel complex for immune signaling. However, unlike cngc2 and cngc4, cngc6 is not sensitive to high Ca2+ and displays no pleiotropic dwarfism. All four cngc mutants showed thermotolerance compared to wild-type, although CNGC12 does not interact with the other three CNGCs. These results imply that physically interacting CNGCs may, in some cases, function in a signaling cascade as components of a heteromeric channel complex, although this may not be the case in other signaling pathways.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transducción de Señal/genética , Fenotipo , Calcio/metabolismo
19.
New Phytol ; 241(3): 1277-1291, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38013595

RESUMEN

Transient and rapid increase in cytosolic Ca2+ plays a crucial role in plant-pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). Cyclic nucleotide-gated channels (CNGCs) have been implicated in mediating this Ca2+ influx; however, their regulatory mechanisms remain poorly understood. Here, we have found that AVRblb2 requires the calmodulin (CaM) and calmodulin-like (CML) proteins as co-factors to interact with the NbCNGCs, resulting in the formation of AVRblb2-CaM/CML-NbCNGCs complex. Furthermore, CaM and CML are dissociated from NbCNGC18 during PTI response to increase Ca2+ influx; however, Avrblb2 inhibits calcium channel activation by disrupting the release of CaM and CML from NbCNGC18. Following recognition of PAMP, NbCNGC18 forms active heteromeric channels with other NbCNGCs, which may give selectivity of CNGC complex against diverse signals for fine-tuning of cytosolic Ca2+ level to mediate appropriate responses. Silencing of multiple NbCNGCs compromised the function of AVRblb2 on the pathogenicity of Phytophthora infestans, confirming that AVRblb2 contributes to pathogen virulence by targeting CNGCs. Our findings provide new insights into the regulation of CNGCs in PTI and the role of pathogen effectors in manipulating host cell physiology to promote infection.


Asunto(s)
Calmodulina , Phytophthora infestans , Calmodulina/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Calcio/metabolismo , Reconocimiento de Inmunidad Innata , Phytophthora infestans/metabolismo , Nucleótidos Cíclicos/metabolismo , Inmunidad de la Planta
20.
New Phytol ; 242(3): 1043-1054, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38184789

RESUMEN

The timing of vegetative phase change (VPC) in plants is regulated by a temporal decline in the expression of miR156. Both exogenous cues and endogenous factors, such as temperature, light, sugar, nutrients, and epigenetic regulators, have been shown to affect VPC by altering miR156 expression. However, the genetic basis of natural variation in VPC remains largely unexplored. Here, we conducted a genome-wide association study on the variation of the timing of VPC in Arabidopsis. We identified CYCLIC NUCLEOTIDE-GATED ION CHANNEL 4 (CNGC4) as a significant locus associated with the diversity of VPC. Mutations in CNGC4 delayed VPC, accompanied by an increased expression level of miR156 and a corresponding decrease in SQUAMOSA PROMOTER BINDING-LIKE (SPL) gene expression. Furthermore, mutations in CNGC2 and CATION EXCHANGER 1/3 (CAX1/3) also led to a delay in VPC. Polymorphisms in the CNGC4 promoter contribute to the natural variation in CNGC4 expression and the diversity of VPC. Specifically, the early CNGC4 variant promotes VPC and enhances plant adaptation to local environments. In summary, our findings offer genetic insights into the natural variation in VPC in Arabidopsis, and reveal a previously unidentified role of calcium signaling in the regulation of VPC.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Señalización del Calcio , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , MicroARNs/genética , MicroARNs/metabolismo , Nucleótidos Cíclicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA