Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 583(7814): 145-149, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32461693

RESUMEN

Voltage-gated potassium (Kv) channels coordinate electrical signalling and control cell volume by gating in response to membrane depolarization or hyperpolarization. However, although voltage-sensing domains transduce transmembrane electric field changes by a common mechanism involving the outward or inward translocation of gating charges1-3, the general determinants of channel gating polarity remain poorly understood4. Here we suggest a molecular mechanism for electromechanical coupling and gating polarity in non-domain-swapped Kv channels on the basis of the cryo-electron microscopy structure of KAT1, the hyperpolarization-activated Kv channel from Arabidopsis thaliana. KAT1 displays a depolarized voltage sensor, which interacts with a closed pore domain directly via two interfaces and indirectly via an intercalated phospholipid. Functional evaluation of KAT1 structure-guided mutants at the sensor-pore interfaces suggests a mechanism in which direct interaction between the sensor and the C-linker hairpin in the adjacent pore subunit is the primary determinant of gating polarity. We suggest that an inward motion of the S4 sensor helix of approximately 5-7 Å can underlie a direct-coupling mechanism, driving a conformational reorientation of the C-linker and ultimately opening the activation gate formed by the S6 intracellular bundle. This direct-coupling mechanism contrasts with allosteric mechanisms proposed for hyperpolarization-activated cyclic nucleotide-gated channels5, and may represent an unexpected link between depolarization- and hyperpolarization-activated channels.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis , Microscopía por Crioelectrón , Activación del Canal Iónico , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/metabolismo , Regulación Alostérica , Arabidopsis/química , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/ultraestructura , Sitios de Unión , Lípidos , Modelos Moleculares , Canales de Potasio de Rectificación Interna/ultraestructura , Conformación Proteica
2.
Proteins ; 82(9): 1694-707, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24464835

RESUMEN

Ion channel-coupled receptors (ICCR) are artificial proteins built from a G protein-coupled receptor and an ion channel. Their use as molecular biosensors is promising in diagnosis and high-throughput drug screening. The concept of ICCR was initially validated with the combination of the muscarinic receptor M2 with the inwardly rectifying potassium channel Kir6.2. A long protein engineering phase has led to the biochemical characterization of the M2-Kir6.2 construct. However, its molecular mechanism remains to be elucidated. In particular, it is important to determine how the activation of M2 by its agonist acetylcholine triggers the modulation of the Kir6.2 channel via the M2-Kir6.2 linkage. In the present study, we have developed and validated a computational approach to rebuild models of the M2-Kir6.2 chimera from the molecular structure of M2 and Kir6.2. The protocol was first validated on the known protein complexes of the µ-opioid Receptor, the CXCR4 receptor and the Kv1.2 potassium channel. When applied to M2-Kir6.2, our protocol produced two possible models corresponding to two different orientations of M2. Both models highlights the role of the M2 helices I and VIII in the interaction with Kir6.2, as well as the role of the Kir6.2 N-terminus in the channel opening. Those two hypotheses will be explored in a future experimental study of the M2-Kir6.2 construct.


Asunto(s)
Complejos Multiproteicos/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Receptor Muscarínico M2/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Técnicas Biosensibles , Activación del Canal Iónico , Simulación del Acoplamiento Molecular , Complejos Multiproteicos/ultraestructura , Técnicas de Placa-Clamp , Canales de Potasio de Rectificación Interna/ultraestructura , Ingeniería de Proteínas , Receptor Muscarínico M2/ultraestructura , Receptores CXCR4/metabolismo , Receptores Opioides mu/metabolismo , Proteínas Recombinantes de Fusión/ultraestructura
3.
J Comp Neurol ; 506(5): 877-93, 2008 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-18076085

RESUMEN

Potassium channels of the Kir2 family are widely expressed in neurons and glia, where they form strong inwardly rectifying channels. Existing functional hypotheses for these channels in neurons are based on the weak outward conductance, whereas the leading hypothesis for glia, that they promote potassium spatial buffering, is based on inward conductance. Although the spatial buffering hypothesis has been confirmed for Müller glia in retina, many aspects of Kir2 channels that will be required for understanding their functional roles in neurons and other forms of glia have received little or no study. Particularly striking is the paucity of data regarding their cellular and subcellular localization. We address this gap for Kir2.1-containing channels by using light and electron microscopic immunocytochemistry. The analysis was of piriform cortex, a highly epileptogenic area of cerebral cortex, where pyramidal cells have K(+)-selective strong inward rectification like that observed in Müller cells, where Kir2.1 is the dominant Kir2 subunit. Pyramidal cells in adult piriform cortex also lack I(h), the mixed Na(+)-K(+) current that mediates a slower form of strong inward rectification in large pyramidal cells in neocortex and hippocampus. The experiments demonstrated surface expression of Kir2.1-containing channels in astrocytes and in multiple populations of pyramidal and nonpyramidal cells. Findings for astrocytes were not consistent with predictions for K(+) spatial buffering over substantial distance. However, findings for pyramidal cells suggest that they could be a conduit for spatially buffering K(+) when it is highly elevated during seizure.


Asunto(s)
Astrocitos/metabolismo , Conducción Nerviosa/fisiología , Giro Parahipocampal/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Potasio/metabolismo , Células Piramidales/metabolismo , Animales , Astrocitos/ultraestructura , Tampones (Química) , Inmunohistoquímica , Masculino , Potenciales de la Membrana/fisiología , Giro Parahipocampal/citología , Giro Parahipocampal/ultraestructura , Canales de Potasio de Rectificación Interna/ultraestructura , Células Piramidales/citología , Células Piramidales/ultraestructura , Ratas , Ratas Sprague-Dawley , Distribución Tisular
4.
Expert Rev Mol Med ; 9(21): 1-17, 2007 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-17666135

RESUMEN

ATP-sensitive potassium (KATP) channels play a key role in the regulation of insulin secretion by coupling glucose metabolism to the electrical activity of pancreatic beta-cells. To generate an electric signal of suitable magnitude, the plasma membrane of the beta-cell must contain an appropriate number of channels. An inadequate number of channels can lead to congenital hyperinsulinism, whereas an excess of channels can result in the opposite condition, neonatal diabetes. KATP channels are made up of four subunits each of Kir6.2 and the sulphonylurea receptor (SUR1), encoded by the genes KCNJ11 and ABCC8, respectively. Following synthesis, the subunits must assemble into an octameric complex to be able to exit the endoplasmic reticulum and reach the plasma membrane. While this biosynthetic pathway ensures supply of channels to the cell surface, an opposite pathway, involving clathrin-mediated endocytosis, removes channels back into the cell. The balance between these two processes, perhaps in conjunction with endocytic recycling, would dictate the channel density at the cell membrane. In this review, we discuss the molecular signals that contribute to this balance, and how an imbalance could lead to a disease state such as neonatal diabetes.


Asunto(s)
Diabetes Mellitus/metabolismo , Insulina/metabolismo , Errores Innatos del Metabolismo/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Diabetes Mellitus/genética , Endocitosis , Humanos , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Recién Nacido , Errores Innatos del Metabolismo/genética , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/ultraestructura , Transporte de Proteínas/genética
5.
Structure ; 13(10): 1398-400, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16216569

RESUMEN

Structural information about the prokaryotic KirBac3.1 inward rectifier family K(+) channel from Magnetospirillum magnetotacticum is reported. These results from two-dimensional electron cryomicroscopy (EM) shed light on the gating mechanism of members of the Kir channel family.


Asunto(s)
Microscopía por Crioelectrón , Cristalografía por Rayos X , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/ultraestructura , Activación del Canal Iónico , Magnesio/química , Magnetospirillum/genética , Conformación Proteica , Electricidad Estática , Termodinámica
6.
Structure ; 13(10): 1463-72, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16216578

RESUMEN

Potassium channels allow the selective flow of K(+) ions across membranes. In response to external gating signals, the potassium channel can move reversibly through a series of structural conformations from a closed to an open state. 2D crystals of the inwardly rectifying K(+) channel KirBac3.1 from Magnetospirillum magnetotacticum have been captured in two distinct conformations, providing "snap shots" of the gating process. Analysis by electron cryomicroscopy of these KirBac3.1 crystals has resulted in reconstructed images in projection at 9 A resolution. Kir channels are tetramers of four subunits arranged as dimers of dimers. Each subunit has two transmembrane helices (inner and outer). In one crystal form, the pore is blocked; in the other crystal form, the pore appears open. Modeling based on the KirBac1.1 (closed) crystal structure shows that opening of the ion conduction pathway could be achieved by bending of the inner helices and significant movements of the outer helices.


Asunto(s)
Microscopía por Crioelectrón , Cristalografía por Rayos X , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/ultraestructura , Secuencia de Aminoácidos , Aminoácidos Aromáticos , Clonación Molecular , ADN Bacteriano , Dimerización , Membrana Dobles de Lípidos/química , Magnetospirillum/genética , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido
7.
Elife ; 62017 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-28092267

RESUMEN

KATP channels are metabolic sensors that couple cell energetics to membrane excitability. In pancreatic ß-cells, channels formed by SUR1 and Kir6.2 regulate insulin secretion and are the targets of antidiabetic sulfonylureas. Here, we used cryo-EM to elucidate structural basis of channel assembly and gating. The structure, determined in the presence of ATP and the sulfonylurea glibenclamide, at ~6 Å resolution reveals a closed Kir6.2 tetrameric core with four peripheral SUR1s each anchored to a Kir6.2 by its N-terminal transmembrane domain (TMD0). Intricate interactions between TMD0, the loop following TMD0, and Kir6.2 near the proposed PIP2 binding site, and where ATP density is observed, suggest SUR1 may contribute to ATP and PIP2 binding to enhance Kir6.2 sensitivity to both. The SUR1-ABC core is found in an unusual inward-facing conformation whereby the two nucleotide binding domains are misaligned along a two-fold symmetry axis, revealing a possible mechanism by which glibenclamide inhibits channel activity.


Asunto(s)
Microscopía por Crioelectrón , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio de Rectificación Interna/ultraestructura , Receptores de Sulfonilureas/metabolismo , Receptores de Sulfonilureas/ultraestructura , Adenosina Trifosfato/metabolismo , Gliburida/metabolismo , Humanos , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína
8.
Trends Cardiovasc Med ; 12(6): 253-8, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12242048

RESUMEN

The last 10 years have seen rapid advances in the understanding of potassium channel function. Since the first inward rectifying (Kir) channels were cloned in 1994, the structural basis of channel function has been significantly elucidated, and determination of the crystal structure of a bacterial K channel (KcsA) in 1998 provided an atomic resolution of the permeation pathway. This review considers recent experimental studies aimed at uncovering the structural basis of Kir channel activity, and the applicability of comparative models based on KcsA to illuminate Kir channel pore structure and opening and closing processes.


Asunto(s)
Activación del Canal Iónico/fisiología , Canales de Potasio de Rectificación Interna/fisiología , Canales de Potasio de Rectificación Interna/ultraestructura , Humanos
10.
J Biomed Opt ; 9(4): 753-9, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15250762

RESUMEN

Resonance energy transfer (RET) has been extensively used to estimate the distance between two different fluorophores. This study demonstrates how protein-protein interactions can be visualized and quantified in living cells by time-correlated single-photon counting (TCSPC) imaging techniques that exploit the RET between appropriate fluorescent labels. We used this method to investigate the association of the potassium inward rectifier channel Kir2.1 and the neuronal PDZ protein PSD-95, which has been implicated in subcellular targeting and clustering of ion channels. Our data show that the two proteins not only colocalize within clusters but also interact with each other. Moreover, the data allow a spatially resolved quantification of this protein-protein interaction with respect to the relative number and the proximity between interacting molecules. Depending on the subcellular localization, a fraction of 20 to 60% of PSD-95 molecules interacted with Kir2.1 channels, approximating their fluorescent labels by less than 5 nm.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Aumento de la Imagen/métodos , Microscopía Confocal/métodos , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Mapeo de Interacción de Proteínas/métodos , Animales , Línea Celular , Humanos , Riñón/citología , Riñón/embriología , Riñón/metabolismo , Proteínas del Tejido Nervioso/ultraestructura , Zarigüeyas , Canales de Potasio de Rectificación Interna/ultraestructura
11.
FEBS J ; 280(4): 1051-63, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23253866

RESUMEN

The ATP-sensitive potassium (K(ATP)) channel is a hetero-octameric complex that links cell metabolism to membrane electrical activity in many cells, thereby controlling physiological functions such as insulin release, muscle contraction and neuronal activity. It consists of four pore-forming Kir6.2 and four regulatory sulfonylurea receptor (SUR) subunits. SUR2B serves as the regulatory subunit in smooth muscle and some neurones. An integrative approach, combining electron microscopy and homology modelling, has been used to obtain information on the structure of this large (megadalton) membrane protein complex. Single-particle electron microscopy of purified SUR2B tethered to a lipid monolayer revealed that it assembles as a tetramer of four SUR2B subunits surrounding a central hole. In the absence of an X-ray structure, a homology model for SUR2B based on the X-ray structure of the related ABC transporter Sav1866 was used to fit the experimental images. The model indicates that the central hole can readily accommodate the transmembrane domains of the Kir tetramer, suggests a location for the first transmembrane domains of SUR2B (which are absent in Sav1866) and suggests the relative orientation of the SUR and Kir6.2 subunits.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/ultraestructura , Canales de Potasio de Rectificación Interna/ultraestructura , Receptores de Droga/ultraestructura , Transportadoras de Casetes de Unión a ATP/química , Animales , Modelos Moleculares , Canales de Potasio de Rectificación Interna/química , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Ratas , Receptores de Droga/química , Células Sf9 , Homología Estructural de Proteína , Receptores de Sulfonilureas
12.
EMBO J ; 24(23): 4166-75, 2005 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-16308567

RESUMEN

ATP-sensitive potassium (K(ATP)) channels conduct potassium ions across cell membranes and thereby couple cellular energy metabolism to membrane electrical activity. Here, we report the heterologous expression and purification of a functionally active K(ATP) channel complex composed of pore-forming Kir6.2 and regulatory SUR1 subunits, and determination of its structure at 18 A resolution by single-particle electron microscopy. The purified channel shows ATP-ase activity similar to that of ATP-binding cassette proteins related to SUR1, and supports Rb(+) fluxes when reconstituted into liposomes. It has a compact structure, with four SUR1 subunits embracing a central Kir6.2 tetramer in both transmembrane and cytosolic domains. A cleft between adjacent SUR1s provides a route by which ATP may access its binding site on Kir6.2. The nucleotide-binding domains of adjacent SUR1 appear to interact, and form a large docking platform for cytosolic proteins. The structure, in combination with molecular modelling, suggests how SUR1 interacts with Kir6.2.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/fisiología , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/fisiología , Canales de Potasio/química , Canales de Potasio/fisiología , Receptores de Droga/química , Receptores de Droga/fisiología , Transportadoras de Casetes de Unión a ATP/ultraestructura , Secuencia de Aminoácidos , Animales , Microscopía por Crioelectrón , Ratones , Datos de Secuencia Molecular , Canales de Potasio/ultraestructura , Canales de Potasio de Rectificación Interna/aislamiento & purificación , Canales de Potasio de Rectificación Interna/ultraestructura , Estructura Terciaria de Proteína , Ratas , Receptores de Droga/ultraestructura , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/fisiología , Proteínas Recombinantes de Fusión/ultraestructura , Receptores de Sulfonilureas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA