Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Mol Evol ; 92(3): 300-316, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735005

RESUMEN

Cetaceans and pinnipeds are lineages of mammals that have independently returned to the aquatic environment, acquiring varying degrees of dependence on it while sharing adaptations for underwater living. Here, we focused on one critical adaptation from both groups, their ability to withstand the ischemia and reperfusion experienced during apnea diving, which can lead to the production of reactive oxygen species (ROS) and subsequent oxidative damage. Previous studies have shown that cetaceans and pinnipeds possess efficient antioxidant enzymes that protect against ROS. In this study, we investigated the molecular evolution of key antioxidant enzyme genes (CAT, GPX3, GSR, PRDX1, PRDX3, and SOD1) and the ROS-producing gene XDH, in cetaceans and pinnipeds lineages. We used the ratio of non-synonymous (dN) to synonymous (dS) substitutions as a measure to identify signatures of adaptive molecular evolution in these genes within and between the two lineages. Additionally, we performed protein modeling and variant impact analyzes to assess the functional consequences of observed mutations. Our findings revealed distinct selective regimes between aquatic and terrestrial mammals in five of the examined genes, including divergences within cetacean and pinniped lineages, between ancestral and recent lineages and between crowns groups. We identified specific sites under positive selection unique to Cetacea and Pinnipedia, with one site showing evidence of convergent evolution in species known for their long and deep-diving capacities. Notably, many sites under adaptive selection exhibited radical changes in amino acid properties, with some being damaging mutations in human variations, but with no apparent detrimental impacts on aquatic mammals. In conclusion, our study provides insights into the adaptive changes that have occurred in the antioxidant systems of aquatic mammals throughout their evolutionary history. We observed both distinctive features within each group of Cetacea and Pinnipedia and instances of convergence. These findings highlight the dynamic nature of the antioxidant system in response to challenges of the aquatic environment and provide a foundation for further investigations into the molecular mechanisms underlying these adaptations.


Asunto(s)
Antioxidantes , Caniformia , Cetáceos , Evolución Molecular , Animales , Cetáceos/genética , Cetáceos/metabolismo , Caniformia/genética , Antioxidantes/metabolismo , Filogenia , Adaptación Fisiológica/genética , Especies Reactivas de Oxígeno/metabolismo , Selección Genética
2.
Proc Biol Sci ; 291(2020): 20232752, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38593849

RESUMEN

The repeated returns of vertebrates to the marine ecosystems since the Triassic serve as an evolutionary model to understand macroevolutionary change. Here we investigate the effects of the land-to-sea transition on disparity and constraint of the vertebral column in aquatic carnivorans (Carnivora; Pinnipedia) to assess how their functional diversity and evolutionary innovations influenced major radiations of crown pinnipeds. We use three-dimensional geometric morphometrics and multivariate analysis for high-dimensional data under a phylogenetic framework to quantify vertebral size and shape in living and extinct pinnipeds. Our analysis demonstrates an important shift in vertebral column evolution by 10-12 million years ago, from an unconstrained to a constrained evolutionary scenario, a point of time that coincides with the major radiation of crown pinnipeds. Moreover, we also demonstrate that the axial skeleton of phocids and otariids followed a different path of morphological evolution that was probably driven by their specialized locomotor strategies. Despite this, we found a significant effect of habitat preference (coastal versus pelagic) on vertebral morphology of crown taxa regardless of the family they belong. In summary, our analysis provides insights into how the land-to-sea transition influenced the complex evolutionary history of pinniped vertebral morphology.


Asunto(s)
Caniformia , Carnívoros , Animales , Filogenia , Ecosistema , Columna Vertebral/anatomía & histología , Evolución Biológica
3.
Appl Environ Microbiol ; 90(6): e0203023, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38771055

RESUMEN

Studying how phylogeny influences the composition and functions of microbiotas within animal hosts is essential for gaining insights into the connection between genetics, ecology, and health in the animal kingdom. However, due to limited comprehensive studies, this influence remains unclear for many wild mammals, including Mexican pinnipeds. We employed 16S rRNA gene deep-sequencing to investigate the impact of phylogeny on the gut microbiota of four pinniped species inhabiting Mexican shores: the Pacific harbor seal (Phoca vitulina richardii), the northern elephant seal (Mirounga angustirostris), the California sea lion (Zalophus californianus), and the Guadalupe fur seal (Arctocephalus philippii townsendi). Our results indicated that factors such as diets and shared life histories exerted more influence on microbiota composition than phylogeny alone. Notably, otariid species sharing similar life histories displayed greater microbiota similarity than phocids, which have distinct life histories and fewer microbiota similarities. Furthermore, harbor seals have more microbial similarities with the two otariid species than with elephant seals. Of particular concern, we observed a higher abundance of potentially pathogenic bacteria (e.g., Photobacterium damselae and Clostridium perfringens) in harbor seals and Guadalupe fur seals compared to other pinnipeds. This finding could pose health threats to these species and nearby human populations.IMPORTANCEPinnipeds in Mexico host microbial communities that remain understudied. While several factors can influence microbiota composition, the role of phylogenetic relationships among these pinnipeds remains unclear due to limited knowledge of the microbiota in certain species. This study aimed to fill this gap by characterizing the composition and function of the gut microbiota in the four pinniped species that occur in Mexico. Our analysis reveals that shared diets and life histories contribute to similarities in the composition of gut microbial communities. This study also highlights the potential differences in the metabolic capabilities and adaptations within the gut microbiota of pinnipeds. Understanding how phylogeny impacts microbial communities enhances our insights into the evolutionary dynamics of marine mammals.


Asunto(s)
Caniformia , Microbioma Gastrointestinal , Filogenia , ARN Ribosómico 16S , Animales , México , ARN Ribosómico 16S/genética , Caniformia/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Phoca/microbiología , Lobos Marinos/microbiología , Leones Marinos/microbiología , Phocidae/microbiología
4.
Mol Ecol ; 33(5): e17263, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38318732

RESUMEN

The absence of robust interspecific isolation barriers among pantherines, including the iconic South American jaguar (Panthera onca), led us to study molecular evolution of typically rapidly evolving reproductive proteins within this subfamily and related groups. In this study, we delved into the evolutionary forces acting on the zona pellucida (ZP) gamete interaction protein family and the sperm-oocyte fusion protein pair IZUMO1-JUNO across the Carnivora order, distinguishing between Caniformia and Feliformia suborders and anticipating few significant diversifying changes in the Pantherinae subfamily. A chromosome-resolved jaguar genome assembly facilitated coding sequences, enabling the reconstruction of protein evolutionary histories. Examining sequence variability across more than 30 Carnivora species revealed that Feliformia exhibited significantly lower diversity compared to its sister taxa, Caniformia. Molecular evolution analyses of ZP2 and ZP3, subunits directly involved in sperm-recognition, unveiled diversifying positive selection in Feliformia, Caniformia and Pantherinae, although no significant changes were linked to sperm binding. Structural cross-linking ZP subunits, ZP4 and ZP1 exhibited lower levels or complete absence of positive selection. Notably, the fusion protein IZUMO1 displayed prominent positive selection signatures and sites in basal lineages of both Caniformia and Feliformia, extending along the Caniformia subtree but absent in Pantherinae. Conversely, JUNO did not exhibit any positive selection signatures across tested lineages and clades. Eight Caniformia-specific positive selected sites in IZUMO1 were detected within two JUNO-interaction clusters. Our findings provide for the first time insights into the evolutionary trajectories of ZP proteins and the IZUMO1-JUNO gamete interaction pair within the Carnivora order.


Asunto(s)
Caniformia , Carnívoros , Panthera , Animales , Masculino , Receptores de Superficie Celular/genética , Proteínas del Huevo/genética , Proteínas del Huevo/química , Proteínas del Huevo/metabolismo , Semen/metabolismo , Interacciones Espermatozoide-Óvulo/genética , Carnívoros/genética , Caniformia/metabolismo , Feliformes/metabolismo , Panthera/metabolismo , Zona Pelúcida/metabolismo
5.
Glob Chang Biol ; 30(3): e17186, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38450925

RESUMEN

The Arctic is a global warming 'hot-spot' that is experiencing rapid increases in air and ocean temperatures and concomitant decreases in sea ice cover. These environmental changes are having major consequences on Arctic ecosystems. All Arctic endemic marine mammals are highly dependent on ice-associated ecosystems for at least part of their life cycle and thus are sensitive to the changes occurring in their habitats. Understanding the biological consequences of changes in these environments is essential for ecosystem management and conservation. However, our ability to study climate change impacts on Arctic marine mammals is generally limited by the lack of sufficiently long data time series. In this study, we took advantage of a unique dataset on hooded seal (Cystophora cristata) movements (and serum samples) that spans more than 30 years in the Northwest Atlantic to (i) investigate foraging (distribution and habitat use) and dietary (trophic level of prey and location) habits over the last three decades and (ii) predict future locations of suitable habitat given a projected global warming scenario. We found that, despite a change in isotopic signatures that might suggest prey changes over the 30-year period, hooded seals from the Northwest Atlantic appeared to target similar oceanographic characteristics throughout the study period. However, over decades, they have moved northward to find food. Somewhat surprisingly, foraging habits differed between seals breeding in the Gulf of St Lawrence vs those breeding at the "Front" (off Newfoundland). Seals from the Gulf favoured colder waters while Front seals favoured warmer waters. We predict that foraging habitats for hooded seals will continue to shift northwards and that Front seals are likely to have the greatest resilience. This study shows how hooded seals are responding to rapid environmental change and provides an indication of future trends for the species-information essential for effective ecosystem management and conservation.


Asunto(s)
Caniformia , Phocidae , Animales , Ecosistema , Calentamiento Global , Hábitos
6.
J Exp Biol ; 227(5)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38483264

RESUMEN

The balance between energetic costs and acquisition in free-ranging species is essential for survival, and provides important insights regarding the physiological impact of anthropogenic disturbances on wild animals. For marine mammals such as beluga whales (Delphinapterus leucas), the first step in modeling this bioenergetic balance requires an examination of resting and active metabolic demands. Here, we used open-flow respirometry to measure oxygen consumption during surface rest and submerged swimming by trained beluga whales, and compared these measurements with those of a commonly studied odontocete, the Atlantic bottlenose dolphin (Tursiops truncatus). Both resting metabolic rate (3012±126.0 kJ h-1) and total cost of transport (1.4±0.1 J kg-1 m-1) of beluga whales were consistent with predicted values for moderately sized marine mammals in temperate to cold-water environments, including dolphins measured in the present study. By coupling the rate of oxygen consumption during submerged swimming with locomotor metrics from animal-borne accelerometer tags, we developed predictive relationships for assessing energetic costs from swim speed, stroke rate and partial dynamic acceleration. Combining these energetic data with calculated aerobic dive limits for beluga whales (8.8 min), we found that high-speed responses to disturbance markedly reduce the whale's capacity for prolonged submergence, pushing the cetaceans to costly anaerobic performances that require prolonged recovery periods. Together, these species-specific energetic measurements for beluga whales provide two important metrics, gait-related locomotor costs and aerobic capacity limits, for identifying relative levels of physiological vulnerability to anthropogenic disturbances that have become increasingly pervasive in their Arctic habitats.


Asunto(s)
Ballena Beluga , Delfín Mular , Caniformia , Buceo , Animales , Natación , Consumo de Oxígeno , Cetáceos
7.
J Exp Biol ; 227(5)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38442390

RESUMEN

Air-breathing vertebrates exhibit cardiovascular responses to diving including heart rate reduction (diving bradycardia). Field studies on aquatic mammals and birds have shown that the intensity of bradycardia can vary depending on diving behaviour, such as the depth of dives and dive duration. However, in aquatic reptiles, the variation in heart rate during deep dives under natural conditions has not been fully investigated. In this study, we released five loggerhead sea turtles (Caretta caretta) outfitted with recorders into the sea and recorded their electrocardiogram, depth, water temperature and longitudinal acceleration. After 3 days, the recorders automatically detached from the turtles. The heart rate signals were detected from the electrodes placed on the surface of the plastron. The mean (±s.d.) heart rate of 12.8±4.1 beats min-1 during dives was significantly lower than that of 20.9±4.1 beats min-1 during surface periods. Heart rate during dives varied with dive depth, although it remained lower than that at the surface. When the turtle dived deeper than 140 m, despite the relatively high flipper stroke rate (approximately 19 strokes min-1), the heart rate dropped rapidly to approximately 2 beats min-1 temporarily. The minimum instantaneous heart rate during dives was lower at deeper dive depths. Our results indicate that loggerhead sea turtles show variations in the intensity of diving bradycardia depending on their diving behaviour, similar to that shown by marine mammals and birds.


Asunto(s)
Caniformia , Tortugas , Animales , Bradicardia , Frecuencia Cardíaca , Aceleración , Cetáceos
8.
J Exp Biol ; 227(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38495024

RESUMEN

Regulation of mitochondrial oxidative phosphorylation is essential to match energy supply to changing cellular energy demands, and to cope with periods of hypoxia. Recent work implicates the circadian molecular clock in control of mitochondrial function and hypoxia sensing. Because diving mammals experience intermittent episodes of severe hypoxia, with diel patterning in dive depth and duration, it is interesting to consider circadian-mitochondrial interaction in this group. Here, we demonstrate that the hooded seal (Cystophora cristata), a deep-diving Arctic pinniped, shows strong daily patterning of diving behaviour in the wild. Cultures of hooded seal skin fibroblasts exhibit robust circadian oscillation of the core clock genes per2 and arntl. In liver tissue collected from captive hooded seals, expression of arntl was some 4-fold higher in the middle of the night than in the middle of the day. To explore the clock-mitochondria relationship, we measured the mitochondrial oxygen consumption in synchronized hooded seal skin fibroblasts and found a circadian variation in mitochondrial activity, with higher coupling efficiency of complex I coinciding with the trough of arntl expression. These results open the way for further studies of circadian-hypoxia interactions in pinnipeds during diving.


Asunto(s)
Caniformia , Phocidae , Animales , Encéfalo/metabolismo , Factores de Transcripción ARNTL/metabolismo , Mamíferos/metabolismo , Hipoxia/metabolismo , Phocidae/fisiología , Mitocondrias/metabolismo
9.
Environ Res ; 252(Pt 3): 119035, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38685302

RESUMEN

Lake Baikal, the largest freshwater lake by volume, provides drinking water and aquatic food supplies to over 2.5 million people. However, the lake has been contaminated with recalcitrant pollutants released from surrounding industrial complexes, agriculture, and natural lands, thereby increasing the risk of their bioaccumulation in fish and seals. Yet, a collective analysis of historical concentration data and their bioaccumulation potential as well as what factors drive their accumulation in fish or seals remains largely unknown. We analyzed concentration data from 42 studies collected between 1985 and 2019 in water, sediment, fish, and seals of Lake Baikal. Heavy metals had the highest concentrations in water and biota followed closely by polycyclic aromatic hydrocarbons (PAHs) and organochlorines. Among organochlorines, polychlorinated biphenyls (PCBs) showed the highest levels in water, surpassing hexachlorocyclohexane (HCH) concentrations, particularly after normalizing to solubility. While naphthalene and phenanthrene exhibited the highest average concentrations among polycyclic aromatic hydrocarbons (PAHs), their relative concentrations significantly decreased upon solubility normalization. The analysis confirmed that bioconcentration and biomagnification of organochlorine pesticides, PCBs, PAHs, and heavy metals depend primarily on source strength to drive their concentration in water and secondarily on their chemical characteristics as evidenced by the higher concentrations of low-solubility PCBs and high molecular weight PAHs in water and sediment. The differential biomagnification patterns of Cu, Hg, and Zn compared to Pb are attributed to their distinct sources and bioavailability, with Cu, Hg, and Zn showing more pronounced biomagnification due to prolonged industrial release, in contrast to the declining Pb levels. Dibenzo-p-dioxins were detected in sediment and seals, but not in water or fish compartments. These data highlight the importance of addressing even low concentrations of organic and inorganic pollutants and the need for more consistent and frequent monitoring to ensure the future usability of this and other similar essential natural resources.


Asunto(s)
Monitoreo del Ambiente , Lagos , Metales Pesados , Contaminantes Orgánicos Persistentes , Contaminantes Químicos del Agua , Lagos/química , Contaminantes Químicos del Agua/análisis , Metales Pesados/análisis , Contaminantes Orgánicos Persistentes/metabolismo , Animales , Peces/metabolismo , Sedimentos Geológicos/química , Sedimentos Geológicos/análisis , Bioacumulación , Siberia , Caniformia , Bifenilos Policlorados/análisis , Hidrocarburos Policíclicos Aromáticos/análisis
10.
J Hered ; 115(2): 212-220, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38245832

RESUMEN

The dugong (Dugong dugon) is a marine mammal widely distributed throughout the Indo-Pacific and the Red Sea, with a Vulnerable conservation status, and little is known about many of the more peripheral populations, some of which are thought to be close to extinction. We present a de novo high-quality genome assembly for the dugong from an individual belonging to the well-monitored Moreton Bay population in Queensland, Australia. Our assembly uses long-read PacBio HiFi sequencing and Omni-C data following the Vertebrate Genome Project pipeline to reach chromosome-level contiguity (24 chromosome-level scaffolds; 3.16 Gbp) and high completeness (97.9% complete BUSCOs). We observed relatively high genome-wide heterozygosity, which likely reflects historical population abundance before the last interglacial period, approximately 125,000 yr ago. Demographic inference suggests that dugong populations began declining as sea levels fell after the last interglacial period, likely a result of population fragmentation and habitat loss due to the exposure of seagrass meadows. We find no evidence for ongoing recent inbreeding in this individual. However, runs of homozygosity indicate some past inbreeding. Our draft genome assembly will enable range-wide assessments of genetic diversity and adaptation, facilitate effective management of dugong populations, and allow comparative genomics analyses including with other sirenians, the oldest marine mammal lineage.


Asunto(s)
Caniformia , Dugong , Animales , Australia , Ecosistema , Océano Índico , Cetáceos , Cromosomas
11.
JASA Express Lett ; 4(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38299985

RESUMEN

Confidence intervals of location (CIL) of calling marine mammals, derived from time-differences-of-arrival (TDOA) between receivers, depend on errors of TDOAs, receiver location, clocks, and sound speeds. Simulations demonstrate a time-differences-of-arrival-beamforming-locator (TDOA-BL) yields CIL in error by O(10-100) km for experimental scenarios because it is not designed to account for relevant errors. The errors are large and sometimes exceed the distances of detection. Another locator designed for all errors, sequential bound estimation, yields CIL always containing the true location. TDOA-BL have and are being used to understand potential effects of environmental stress on marine mammals; a use worth reconsidering.


Asunto(s)
Caniformia , Animales , Intervalos de Confianza , Cetáceos , Sonido
12.
Anat Rec (Hoboken) ; 307(9): 3021-3040, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38332639

RESUMEN

Pinnipeds are unique semiaquatic taxa possessing adaptations to hear efficiently both in water and on land. Research over the past century is extremely limited on the auditory apparatus morphology of pinnipeds, which include the Families Phocidae (true seals), Otariidae (sea lions/fur seals), and Odobenidae (walruses). Our extensive literature review revealed inaccurate terminology of this region, with details corresponding only to terrestrial taxa, and a severe lack of information due to very few current studies. This demonstrates the need for evaluation and comparison of the auditory morphologies of modern terrestrial and semiaquatic carnivorans in relation to hearing. This initial study compares tympanic bullar morphologies of Phocidae to other pinnipeds and representatives of terrestrial carnivoran families. Morphological correlations of the basicranial auditory region were also compared within phocid subfamilies. Eleven skull measurements and about eleven calculated ratios were included in multiple principal component analyses to determine what areas of the auditory apparatus had the most significant morphological variation. This is the first study using this methodology, especially in reference to the hearing adaptations of pinnipeds, specifically in phocids. Results demonstrate distinct trends in phocid bullar morphology relative to other pinnipeds. Analyses reveal that: (1) phocids generally have different bullar morphology than otariids and odobenids; (2) Neomonachus schauinslandi (Hawaiian monk seal) and Neomonachus tropicalis (Caribbean monk seal) have unique morphology compared to phocids and other pinnipeds. Future work with increased number of specimens will further substantiate these findings and both ontogenetic and sexual variations will be examined.


Asunto(s)
Caniformia , Análisis de Componente Principal , Cráneo , Animales , Proyectos Piloto , Caniformia/anatomía & histología , Caniformia/fisiología , Cráneo/anatomía & histología , Masculino , Femenino , Oído Medio/anatomía & histología , Audición/fisiología
13.
Evolution ; 78(7): 1212-1226, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38644688

RESUMEN

Pinnipeds (seals, sea lions, walruses, and their fossil relatives) are one of the most successful mammalian clades to live in the oceans. Despite a well-resolved molecular phylogeny and a global fossil record, a complete understanding of their macroevolutionary dynamics remains hampered by a lack of formal analyses that combine these 2 rich sources of information. We used a meta-analytic approach to infer the most densely sampled pinniped phylogeny to date (36 recent and 93 fossil taxa) and used phylogenetic paleobiological methods to study their diversification dynamics and biogeographic history. Pinnipeds mostly diversified at constant rates. Walruses, however, experienced rapid turnover in which extinction rates ultimately exceeded speciation rates from 12 to 6 Ma, possibly due to changing sea levels and/or competition with otariids (eared seals). Historical biogeographic analyses, including fossil data, allowed us to confidently identify the North Pacific and the North Atlantic (plus or minus Paratethys) as the ancestral ranges of Otarioidea (eared seals + walrus) and crown phocids (earless seals), respectively. Yet, despite the novel addition of stem pan-pinniped taxa, the region of origin for Pan-Pinnipedia remained ambiguous. These results suggest further avenues of study in pinnipeds and provide a framework for investigating other groups with substantial extinct and extant diversity.


Asunto(s)
Caniformia , Fósiles , Filogenia , Animales , Caniformia/genética , Caniformia/clasificación , Evolución Biológica , Especiación Genética , Filogeografía , Extinción Biológica , Evolución Molecular
14.
J Exp Zool A Ecol Integr Physiol ; 341(4): 458-469, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38409932

RESUMEN

The increased size and enhanced compliance of the aortic bulb-the enlargement of the ascending aorta-are believed to maintain blood flow in pinnipeds during extended periods of diastole induced by diving bradycardia. The aortic bulb has been described ex vivo in several species of pinnipeds, but in vivo measurements are needed to investigate the relationship between structure and function. We obtained ultrasound images using electrocardiogram-gated transesophageal echocardiography during anesthesia and after atropine administration to assess the relationship between aortic bulb anatomy and cardiac function (heart rate, stroke volume, cardiac output) in northern fur seals (Callorhinus ursinus) and Steller sea lions (Eumetopias jubatus). We observed that the aortic bulb in northern fur seals and Steller sea lions expands during systole and recoils over the entire diastolic period indicating that blood flow is maintained throughout the entire cardiac cycle as expected. The stroke volumes we measured in the fur seals and sea lions fit the values predicted based on body size in mammals and did not change with increased heart rates, suggesting that greater stroke volumes are not needed for aortic bulb function. Overall, our results suggest that peripheral vasoconstriction during diving is sufficient to modulate the volume of blood in the aortic bulb to ensure that flow lasts over the entire diastolic period. These results indicate that the shift of blood into the aortic bulb of pinnipeds is a fundamental mechanism caused by vasoconstriction while diving, highlighting the importance of this unique anatomical adaptation.


Asunto(s)
Caniformia , Lobos Marinos , Leones Marinos , Animales , Aorta Torácica , Tamaño Corporal
15.
Mar Pollut Bull ; 199: 115936, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154171

RESUMEN

Phthalates are used in plastics, found throughout the marine environment and have the potential to cause adverse health effects. In the present study, we quantified blubber concentrations of 11 phthalates in 16 samples from stranded and/or free-living marine mammals from the Norwegian coast: the killer whale (Orcinus orca), sperm whale (Physeter macrocephalus), long-finned pilot whale (Globicephala melas), white-beaked dolphin (Lagenorhynchus albirostris), harbour porpoise (Phocoena phocoena), and harbour seal (Phoca vitulina). Five compounds were detected across all samples: benzyl butyl phthalate (BBP; in 50 % of samples), bis(2-ethylhexyl) phthalate (DEHP; 33 %), diisononyl phthalate (DiNP; 33 %), diisobutyl phthalate (DiBP; 19 %), and dioctyl phthalate (DOP; 13 %). Overall, the most contaminated individual was the white-beaked dolphin, whilst the lowest concentrations were measured in the killer whale, sperm whale and long-finned pilot whale. We found no phthalates in the neonate killer whale. The present study is important for future monitoring and management of these toxic compounds.


Asunto(s)
Caniformia , Phoca , Phocoena , Ácidos Ftálicos , Orca , Calderón , Animales , Cachalote
16.
PLoS One ; 19(3): e0298588, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38457427

RESUMEN

Vessel electronic monitoring (EM) systems used in fisheries around the world apply a variety of cameras to record catch as it is brought on deck and during fish processing activities. In EM work conducted by the Center for Fisheries Electronic Monitoring at Mote (CFEMM) in the Gulf of Mexico commercial reef fish fishery, there was a need to improve upon current technologies to enhance camera views for accurate species identification of large sharks, particularly those that were released while underwater at the vessel side or underneath the hull. This paper describes how this problem was addressed with the development of the first known EM system integrated underwater camera (UCAM) with a specialized vessel-specific deployment device on a bottom longline reef fish vessel. Data are presented based on blind video reviews from CFEMM trained reviewers of the resulting UCAM video footage compared with video from only the overhead EM cameras from 68 gear retrievals collected from eight fishing trips. Results revealed that the UCAM was a successful tool for capturing clear underwater video footage of released large (>2m) sharks to enable reviewers to improve individual species identification, determination, and fate by 34.4%. This was particularly important for obtaining data on incidental catches of large protected shark species. It also provided clear underwater imagery of the presence of potential predators such as marine mammals close to the vessel, more specifically bottlenose dolphin (Tursiops truncatus) during gear retrieval, which often damaged or removed catch. This information is intended to assist researchers in need of gathering critical data on bycatch in close proximity to a vessel in which conventional overhead EM cameras are limited.


Asunto(s)
Caniformia , Tiburones , Animales , Conservación de los Recursos Naturales/métodos , Explotaciones Pesqueras , Golfo de México , Electrónica
17.
Sci Rep ; 14(1): 8257, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589385

RESUMEN

Pacific Walruses (Odobenus rosmarus divergens [Illiger 1815]) are gregarious marine mammals considered to be sentinels of the Arctic because of their dependence on sea ice for feeding, molting, and parturition. Like many other marine mammal species, their population sizes were decimated by historical overhunting in the nineteenth and twentieth centuries. Although they have since been protected from nearly all commercial hunting pressure, they now face rapidly accelerating habitat loss as global warming reduces the extent of summer sea ice in the Arctic. To investigate how genetic variation was impacted by overhunting, we obtained mitochondrial DNA sequences from historic Pacific Walrus samples in Alaska that predate the period of overhunting, as well as from extant populations. We found that genetic variation was unchanged over this period, suggesting Pacific Walruses are resilient to genetic attrition in response to reduced population size, and that this may be related to their high vagility and lack of population structure. Although Pacific Walruses will almost certainly continue to decline in number as the planet warms and summer sea ice is further reduced, they may be less susceptible to the ratcheting effects of inbreeding that typically accompany shrinking populations.


Asunto(s)
Caniformia , Morsas , Animales , Morsas/genética , ADN Antiguo , Ecosistema , Variación Genética
18.
Sci Total Environ ; 922: 171273, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38408675

RESUMEN

Litter pollution is a growing concern, including for Antarctica and the species that inhabit this ecosystem. In this study, we investigated the microplastic contamination in three seal species that inhabit the Western Antarctic Peninsula: crabeater (Lobodon carcinophaga), leopard (Hydrurga leptonyx) and Weddell (Leptonychotes weddellii) seals. Given the worldwide ubiquity of this type of contaminant, including the Southern Ocean, we hypothesized that the three seal species would present anthropogenic debris in their feces. We examined 29 scat samples of crabeater (n = 5), leopard (n = 13) and Weddell (n = 11) seals. The chemical composition of the items found were identified using micro-Raman and micro-FTIR spectroscopies. All the samples of the three species presented anthropic particles (frequency of occurrence - %FO - 100 %). Fibers were the predominant debris, but fragments and filaments were also present. Particles smaller than 5 mm (micro debris) were predominant in all the samples. Leopard seals ingested significantly larger micro-debris in comparison with the other seal species. The dominant color was black followed by blue and white. Micro-Raman and micro-FTIR Spectroscopies revealed the presence of different anthropogenic pigments such as reactive blue 238, Indigo 3600 and copper phthalocyanine (blue and green). Carbon black was also detected in the samples, as well as plastic polymers such as polystyrene, polyester and polyethylene terephthalate (PET), polyamide, polypropylene and polyurethane These results confirm the presence of anthropogenic contamination in Antarctic seals and highlight the need for actions to mitigate the effects and reduce the contribution of debris in the Antarctic ecosystem.


Asunto(s)
Caniformia , Phocidae , Animales , Regiones Antárticas , Plásticos , Ecosistema
19.
PLoS One ; 19(3): e0296358, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38483870

RESUMEN

Along the northeast Pacific coast, the salmon-eating southern resident killer whale population (SRKW, Orcinus orca) have been at very low levels since the 1970s. Previous research have suggested that reduction in food availability, especially of Chinook salmon (Oncorhynchus tshawytscha), could be the main limiting factor for the SRKW population. Using the ecosystem modelling platform Ecopath with Ecosim (EwE), this study evaluated if the decline of the Pacific salmon populations between 1979 and 2020 may have been impacted by a combination of factors, including marine mammal predation, fishing activities, and climatic patterns. We found that the total mortality of most Chinook salmon populations has been relatively stable for all mature returning fish despite strong reduction in fishing mortality since the 1990s. This mortality pattern was mainly driven by pinnipeds, with increases in predation between 1979 and 2020 mortality ranging by factors of 1.8 to 8.5 across the different Chinook salmon population groups. The predation mortality on fall-run Chinook salmon smolts originating from the Salish Sea increased 4.6 times from 1979 to 2020, whereas the predation mortality on coho salmon (Oncorhynchus kisutch) smolts increased by a factor of 7.3. The model also revealed that the north Pacific gyre oscillation (NPGO) was the most important large-scale climatic index affecting the stock productivity of Chinook salmon populations from California to northern British Columbia. Overall, the model provided evidence that multiple factors may have affected Chinook salmon populations between 1979 and 2020, and suggested that predation mortality by marine mammals could be an important driver of salmon population declines during that time.


Asunto(s)
Caniformia , Oncorhynchus kisutch , Orca , Animales , Salmón , Ecosistema , Conducta Predatoria , Caza , Océanos y Mares , Océano Pacífico
20.
Sci Rep ; 14(1): 4693, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409311

RESUMEN

Deep ocean foraging northern elephant seals (Mirounga angustirostris) consume fish and squid in remote depths of the North Pacific Ocean. Contaminants bioaccumulated from prey are subsequently transferred by adult females to pups during gestation and lactation, linking pups to mercury contamination in mesopelagic food webs (200-1000 m depths). Maternal transfer of mercury to developing seal pups was related to maternal mercury contamination and was strongly correlated with maternal foraging behavior (biotelemetry and isotopes). Mercury concentrations in lanugo (hair grown in utero) were among the highest observed worldwide for young pinnipeds (geometric mean 23.01 µg/g dw, range 8.03-63.09 µg/g dw; n = 373); thus, some pups may be at an elevated risk of sub-lethal adverse health effects. Fetal mercury exposure was affected by maternal foraging geographic location and depth; mercury concentrations were highest in pups of the deepest diving, pelagic females. Moreover, pup lanugo mercury concentrations were strongly repeatable among successive pups of individual females, demonstrating relative consistency in pup mercury exposure based on maternal foraging strategies. Northern elephant seals are biosentinels of a remote deep-sea ecosystem. Our results suggest that mercury within North Pacific mesopelagic food webs may also pose an elevated risk to other mesopelagic-foraging predators and their offspring.


Asunto(s)
Caniformia , Mercurio , Phocidae , Animales , Femenino , Mercurio/toxicidad , Ecosistema , Océano Pacífico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA