Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Rapid Commun Mass Spectrom ; 38(7): e9711, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38342829

RESUMEN

CONTEXT: Hexahydrocannabinol (HHC), a compound derived from synthetic production using cannabidiol (CBD) or delta-9-tetrahydrocannabinol (Δ9 -THC), has gained recent attention due to its presence in seized materials across Europe. Sold legally in various forms, HHC poses potential health risks, particularly as a legal alternative to THC in some countries. Despite its historical description in the 1940s, limited toxicology data, pharmacological understanding, and analytical methods for HHC exist. METHOD: This study proposes analytical techniques using mass spectrometry to detect, identify, and quantify (9R)-HHC and (9S)-HHC, concurrently with THC and CBD in various matrices, including oral fluid, whole blood, and seized material. Three distinct methods were employed for different matrices: GC/MS for seized material, GC/MS/MS for whole blood, and UHPLC/MS/MS for oral fluid. Methods were validated qualitatively for oral fluid with a FLOQSwab® device and quantitatively in whole blood and seized material according to Peters et al's recommendations and ICH guidelines. RESULTS: Validated methods were considered reliable in detecting and quantifying HHC isomers in terms of repeatability, reproducibility, and linearity with r2 systematically >0.992. These methods were applied to authentic cases, including seized materials and biological samples from traffic control (whole blood and oral fluid). In seized materials, (9R)-HHC levels ranged from 2.09% to 8.85% and (9R)-HHC/(9S)-HHC ratios varied from 1.36 to 2.68. In whole blood sample, (9R)-HHC and (9S)-HHC concentrations were, respectively, 2.38 and 1.39 ng/mL. For all analyzed samples, cannabinoids such as THC and CBD were also detected. CONCLUSION: This research contributes analytical insights into differentiating and simultaneously analyzing (9R)-HHC and (9S)-HHC, using widely applicable mass spectrometric methods. The study emphasizes the need for vigilance among toxicologists, as new semisynthetic cannabinoids continue to emerge in Europe, with potential health implications. The findings underscore the importance of reliable analytical methods for monitoring these compounds in forensic and clinical settings.


Asunto(s)
Cannabidiol , Cannabinoides , Espectrometría de Masas en Tándem/métodos , Reproducibilidad de los Resultados , Cannabinoides/análisis , Cannabidiol/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Dronabinol
2.
Analyst ; 149(14): 3815-3827, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38847584

RESUMEN

Cannabigerol, cannabidiol, cannabinol and cannabichromene are non-psychoactive phytocannabinoids, highly present in Cannabis sativa, for which numerous therapeutical applications have been described. However, additional pre-clinical and clinical data, including toxicopharmacokinetic and pharmacodynamic studies, remain required to support their use in clinical practice and new therapeutic applications. To support these studies, a new high performance liquid chromatography technique (HPLC) with diode-array detection (DAD) was developed and validated to quantify these cannabinoids in human plasma and mouse matrices. Sample extraction was accomplished by protein precipitation and double liquid-liquid extraction. Simvastatin and perampanel were used as internal standards in human and mouse matrices, respectively. Chromatographic separation was achieved in 16 min on an InfinityLab Poroshell® 120 C18 column (4.6 mm × 100 mm, 2.7 µm) at 40 °C. A mobile phase composed of water/acetonitrile was pumped with a gradient elution program at 1.0 mL min-1. The technique revealed linearity in the defined concentration ranges with a determination coefficient of over 0.99. Intra and inter-day accuracy and precision values ranged from -14.83 to 13.97% and 1.08 to 13.74%, respectively. Sample stability was assessed to ensure that handling and storage conditions did not compromise analyte concentrations in different matrices. Carry-over was absent and recoveries were over 77.31%. This technique was successfully applied for the therapeutic monitoring of cannabidiol and preliminary pre-clinical studies with cannabigerol and cannabidiol. All samples were within calibration ranges, with the exception of cannabigerol after intraperitoneal administration. This is the first HPLC-DAD technique that simultaneously quantifies cannabinoids in these biological matrices, supporting future pre-clinical and clinical investigations.


Asunto(s)
Cannabinoides , Cromatografía Líquida de Alta Presión/métodos , Humanos , Animales , Cannabinoides/sangre , Cannabinoides/análisis , Ratones , Límite de Detección , Cannabidiol/sangre , Cannabidiol/análisis , Reproducibilidad de los Resultados , Extracción Líquido-Líquido/métodos , Cannabinol/sangre , Cannabinol/análisis , Masculino
3.
Anal Bioanal Chem ; 416(20): 4555-4569, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38940871

RESUMEN

Cannabidiol (CBD) is the main non-psychoactive phytocannabinoid derived from Cannabis sativa L. It is now an active pharmaceutical ingredient (API), given its usage in treating some types of pediatric epilepsy. For this reason, this compound requires a deep characterization in terms of purity and origin. Previous research work has shown two impurities in CBD samples from hemp inflorescences, namely, cannabidivarin (CBDV) and cannabidibutol (CBDB), while abnormal-cannabidiol (abn-CBD) has been described as the primary by-product that is generated from CBD synthesis. Both natural and synthetic CBD samples exhibit the presence of Δ9-tetrahydrocannabinol (Δ9-THC) and Δ8-THC. This study aimed to develop a new analytical method based on high-performance liquid chromatography (HPLC) with different detection systems to study the purity of CBD and to define its origin based on the impurity profile. In addition to the above-mentioned cannabinoids, other compounds, such as cannabigerovarin (CBGV), cannabigerol (CBG), cannabichromevarin (CBCV), and cannabichromene (CBC), were examined as potential discriminating impurities. Qualitative and quantitative analyses were carried out by UHPLC-HRMS and HPLC-UV/Vis, respectively. Principal component analysis was applied for statistical exploration. Natural CBD samples exhibited purities ranging between 97.5 and 99.7%, while synthetic samples were generally pure, except for three initially labeled as synthetic, revealing natural-derived impurities. To further confirm the origin of CBD samples, the presence of other two minor impurities, namely cannabidihexol (CBDH) and cannabidiphorol (CBDP), was assessed as unequivocal for a natural origin. Finally, an enantioselective HPLC analysis was carried out and the results confirmed the presence of the (-)-trans enantiomer in all CBD samples. In conclusion, the HPLC method developed represents a reliable tool for detecting CBD impurities, thus providing a clear discrimination of the compound origin.


Asunto(s)
Cannabidiol , Contaminación de Medicamentos , Cromatografía Líquida de Alta Presión/métodos , Cannabidiol/análisis , Cannabis/química , Cannabinoides/análisis , Límite de Detección
4.
Anal Bioanal Chem ; 416(1): 255-264, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37924377

RESUMEN

In this work, a low-cost and eco-friendly paper-based analytical device (PAD) method is described for the determination of phyto-cannabinoids in cannabis and oral fluids based on a simple colorimetric reaction. The PAD was able to distinguish tetrahydrocannabinol (THC)- and cannabidiol (CBD)-rich plant samples by using 4-aminophenol (4-AP) and later on to quantify total phyto-cannabinoid content (THC + CBD + CBN) in plant and oral fluids by using the Fast Corinth V reagent. The chemical and physical properties regarding paper type and reagent concentration in the PAD were optimized to achieve the best analytical performance. After that, analytical features were obtained, including a linear range of 0.01-0.1 mg mL-1, a limit of detection (LOD) of 0.003 mg mL-1, and a suitable precision, expressed as relative standard deviation (RSD) lower than 10%. Furthermore, no significant interferences were observed in colorimetric reactions when tea, herbs, and drug samples were analyzed. Additionally, the PAD proved color stability up to 1 month after the sampling at 25 °C. The developed PAD was suitable for determining total phyto-cannabinoid content in plants and oral fluids, obtaining good results compared to GC-MS. Overall, this method showed good reliability resulting in an operational on-site device for drug monitoring.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Cannabinoides/análisis , Dronabinol/análisis , Reproducibilidad de los Resultados , Cannabis/química , Cannabidiol/análisis
5.
Anal Bioanal Chem ; 416(18): 4091-4099, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38748248

RESUMEN

In the present study, twin-column recycling chromatography has been employed for the purification of a Cannabis extract by using a green solvent, ethanol, as the mobile phase. In particular, the complete removal of the psychoactive tetrahydrocannabinol (THC) from a Cannabis extract rich in cannabidiol (CBD) was achieved under continuous conditions. The performance of the method, in terms of compound purity, recovery, productivity and solvent consumption, was compared to that of traditional batch operations showing the potential of the twin-column recycling approach. The employment of a theoretical model to predict the band profiles of the two compounds during the recycling process has facilitated method development, thus further contributing to process sustainability by avoiding trial and error attempts or at least decreasing the number of steps significantly.


Asunto(s)
Cannabinoides , Cannabis , Tecnología Química Verde , Solventes , Solventes/química , Cannabinoides/aislamiento & purificación , Cannabinoides/análisis , Cannabinoides/química , Tecnología Química Verde/métodos , Cannabis/química , Reciclaje , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Cannabidiol/aislamiento & purificación , Cannabidiol/análisis , Dronabinol/aislamiento & purificación , Dronabinol/análisis , Cromatografía Líquida de Alta Presión/métodos
6.
J Sep Sci ; 47(1): e2300630, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37904320

RESUMEN

Hemp-based materials have gained interest as alternative feed ingredients for livestock. However, safety concerns arise regarding the transfer of cannabinoids from the plant to the animals. Addressing these concerns requires the use of methods capable of detecting and quantifying cannabinoids in livestock. In this study, a fast and sensitive method was developed for quantification of cannabinoids and cannabinoid metabolites in cattle plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The extraction of cannabinoids from the plasma matrix was achieved by combining the Captiva Enhanced Matrix Removal-Lipid clean-up and salting-out assisted liquid-liquid extraction procedure. The developed method underwent validation using various analytical parameters, and the results demonstrated good accuracy, precision, specificity, and high sensitivity. The method was applied to real plasma samples obtained from cattle fed hemp for 2 weeks, and successfully detected various cannabinoids, including delta-9-tetrahydrocannabinol. Furthermore, the study revealed that 7-carboxy cannabidiol, a metabolite of cannabidiol, was the predominant cannabinoid present in the cattle plasma throughout the feeding period, which could remain detectable for weeks after the hemp feeding had ended.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Bovinos , Animales , Cannabinoides/análisis , Cannabidiol/análisis , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida con Espectrometría de Masas , Dronabinol/análisis
7.
Behav Sleep Med ; 22(2): 150-167, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-37255232

RESUMEN

INTRODUCTION: Cannabis is increasingly used to self-treat anxiety and related sleep problems, without clear evidence of either supporting or refuting its anxiolytic or sleep aid effects. In addition, different forms of cannabis and primary cannabinoids ∆9-tetrahydrocannabinol (THC) and cannabidiol (CBD) have differing pharmacological effects. METHODS: Thirty days of daily data on sleep quality and cannabis use were collected in individuals who use cannabis for mild-to-moderate anxiety (n = 347; 36% male, 64% female; mean age = 33 years). Participants self-reported both the form (flower or edible) and the ratio of THC to CBD in the cannabis used during the observation period. RESULTS: Individuals who reported cannabis use on a particular day also reported better sleep quality the following night. Moderation analyses showed that better perceived sleep after cannabis use days was stronger for respondents with higher baseline affective symptoms. Further, respondents who used cannabis edibles with high CBD concentration reported the highest perceived quality of sleep. CONCLUSIONS: Among individuals with affective symptoms, naturalistic use of cannabis was associated with better sleep quality, particularly for those using edible and CBD dominant products.


Asunto(s)
Cannabidiol , Cannabis , Fumar Marihuana , Masculino , Humanos , Femenino , Adulto , Calidad del Sueño , Dronabinol/análisis , Dronabinol/farmacología , Fumar Marihuana/psicología , Cannabidiol/uso terapéutico , Cannabidiol/análisis , Cannabidiol/farmacología , Ansiedad/complicaciones
8.
Anal Chem ; 95(22): 8668-8678, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37224077

RESUMEN

As the legality of cannabis continues to evolve globally, there is a growing demand for methods that can accurately quantitate cannabinoids found in commercial products. However, the isobaric nature of many cannabinoids, along with variations in extraction methods and product formulations, makes cannabinoid quantitation by mass spectrometry (MS) challenging. Here, we demonstrate that differential mobility spectrometry (DMS) and tandem-MS can distinguish a set of seven cannabinoids, five of which are isobaric: Δ9-tetrahydrocannabinol (Δ9-THC), Δ8-THC, exo-THC, cannabidiol, cannabichromene, cannabinol, and cannabigerol. Analytes were detected as argentinated species ([M + Ag]+), which, when subjected to collision-induced dissociation, led to the unexpected discovery that argentination promotes distinct fragmentation patterns for each cannabinoid. The unique fragment ions formed were rationalized by discerning fragmentation mechanisms that follow each cannabinoid's MS3 behavior. The differing fragmentation behaviors between species suggest that argentination can distinguish cannabinoids by tandem-MS, although not quantitatively as some cannabinoids produce small amounts of a fragment ion that is isobaric with the major fragment generated by another cannabinoid. By adding DMS to the tandem-MS workflow, it becomes possible to resolve each cannabinoid in a pure N2 environment by deconvoluting the contribution of each cannabinoid to a specific fragmentation channel. To this end, we used DMS in conjunction with a multiple reaction monitoring workflow to assess cannabinoid levels in two cannabis extracts. Our methodology exhibited excellent accuracy, limits of detection (10-20 ppb depending on the cannabinoid), and linearity during quantitation by standard addition (R2 > 0.99).


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Alucinógenos , Cromatografía Liquida/métodos , Límite de Detección , Cannabinoides/análisis , Cannabidiol/análisis , Cannabis/química , Agonistas de Receptores de Cannabinoides , Análisis Espectral , Dronabinol/análisis
9.
Int J Legal Med ; 137(1): 79-87, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36190564

RESUMEN

Cannabidiol (CBD) products have ascribed an uprising trend for their health-promoting effects worldwide. In contrast to Δ9-tetrahydrocannabinol (THC), CBD exhibits no state of euphoria. Since conversion of CBD into THC in an acidic environment has been reported, it has not been proved whether this degradation will also occur in human gastric fluid. A total of 9 subjects ingested 400 mg CBD as a water-soluble liquid together with lecithin as an emulsifier and ethanol as a solubilizer. Blood samples were taken up to 4 h, and urine samples were submitted up to 48 h. THC, 11-hydroxy-Δ9-THC (THC-OH), 11-nor-9-carboxy-Δ9-THC (THC-COOH), CBD, 7-hydroxy cannabidiol (7-OH-CBD), and 7-carboxy cannabidiol (7-CBD-COOH) were determined in blood and THC-COOH and 7-CBD-COOH in urine by LC-MS/MS. Neither THC, THC-OH, nor THC-COOH were detectable in any serum specimen. Only two urine samples revealed THC-COOH values slightly above the threshold of 10 ng/ml, which could also be caused by trace amounts of THC being present in the CBD liquid. It can be concluded that negative consequences for participants of a drug testing program due to a conversion of CBD into THC in human gastric fluid appear unlikely, especially considering a single intake of dosages of less than 400 mg. Nevertheless, there is a reasonable risk for consumers of CBD products being tested positive for THC or THC metabolites. However, this is probably not caused by CBD cyclization into THC in human gastric fluid but is most likely due to THC being present as an impurity of CBD products.


Asunto(s)
Cannabidiol , Humanos , Cannabidiol/análisis , Dronabinol , Cromatografía Liquida , Espectrometría de Masas en Tándem , Extractos Vegetales
10.
Analyst ; 148(13): 2921-2931, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37306613

RESUMEN

Management of substances that possess high potential for abuse requires a comprehensive understanding of the temporal effects of a corresponding volume of intake. Cannabis is deemed as one of the most widely used drugs in the United States and studies related to the primary psychoactive compound present in it, Δ-9-tetrahydrocannabinol (THC), have revealed that it causes adverse health effects. In this study, we present a field-deployable electrochemical sensing system that can detect THC at the 5 ng mL-1 cut-off level with a dynamic range of 0.1-100 ng mL-1 in human saliva. Considering the complexity of the human saliva matrix, the specificity study demonstrated selectivity towards THC with minimum interactions with ethanol and cannabidiol (CBD). Surface Plasmon Resonance (SPR) has been implemented to visualize and validate the capture probe as a means for THC detection. A robust, compatible binary classifier model has been shown in this work to effectively group samples into THC+ (high) and THC- (low) groups from human saliva with an accuracy greater than 90% considering a limited dataset. Hence, we demonstrate the potential of an innovative end-to-end system to effectively regulate cannabis use and prevent substance abuse in our surroundings.


Asunto(s)
Cannabidiol , Cannabis , Humanos , Dronabinol/análisis , Saliva/química , Cannabis/química , Cannabidiol/análisis
11.
Anal Bioanal Chem ; 415(19): 4827-4837, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37382652

RESUMEN

Cannabidiol (CBD), together with its precursor cannabidiolic acid (CBDA), is the major phytocannabinoid occurring in most hemp cultivars. To ensure the safe use of these compounds, their effective isolation from hemp extract is required, with special emphasis on the elimination of ∆9-tetrahydrocannabinol (∆9-THC) and ∆9-tetrahydrocannabinolic acid (∆9-THCA-A). In this study, we demonstrate the applicability of fast centrifugal partition chromatography (FCPC) as a challenging format of counter-current preparative chromatography for the isolation of CBD and CBDA free of psychotropic compounds that may occur in Cannabis sativa L. plant extracts. Thirty-eight solvent mixtures were tested to identify a suitable two-phase system for this purpose. Based on the measured partition coefficients (KD) and separation factors (α), the two-phase system consisting of n-heptane:ethyl acetate:ethanol:water (1.5:0.5:1.5:0.5; v:v:v:v) was selected as an optimal solvent mixture. Employing UHPLC-HRMS/MS for target analysis of collected fractions, the elution profiles of 17 most common phytocannabinoids were determined. Under experimental conditions, the purity of isolated CBD and CBDA was 98.9 and 95.1% (w/w), respectively. Neither of ∆9-THC nor of ∆9-THCA-A were present; only trace amounts of other biologically active compounds contained in hemp extract were detected by screening against in-house spectral library using UHPLC-HRMS.


Asunto(s)
Cannabidiol , Cannabis , Cannabis/química , Cannabidiol/análisis , Cromatografía Líquida de Alta Presión/métodos , Psicotrópicos , Solventes , Extractos Vegetales/química , Dronabinol/análisis
12.
J Nat Prod ; 86(4): 822-829, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-36827690

RESUMEN

Qualitative analysis of several commercial products containing Δ8-tetrahydrocannabinol (Δ8-THC) as a major component using GC-MS resulted in the identification of several impurities along with Δ8-THC. In an attempt to isolate and identify these impurities, a commercial Δ8-THC distillate was selected for the isolation work. Eleven impurities were isolated using a variety of chromatographic techniques, and their chemical structures were determined. These include Δ4,8-iso-tetrahydrocannabinol (1), Δ4-iso-tetrahydrocannabinol (2), Δ8-cis-iso-tetrahydrocannabinol (3), 4,8-epoxy-iso-tetrahydrocannabinol (4), 8-hydroxy-iso-tetrahydrocannabinol (5), 9ß-hydroxyhexahydrocannabinol (6), 9α-hydroxyhexa-hydrocannabinol (7), iso-tetrahydrocannabifuran (8), cannabicitran (CBT, 9), olivetol (10), and Δ9-THC (11). The chemical structures of the purified compounds were determined using several spectroscopic methods, including 1D (1H, 13C, and DEPT-135) and 2D (COSY, HMQC, HMBC, and NOESY) NMR, LC-MS, and GC-MS. Other naturally occurring cannabinoids and impurities were also identified in GC-MS chromatograms but were not isolated. These were cannabidiol (CBD, 12), cannabinol (CBN, 13), hexahydrocannabinol (HHC, 14), and Δ8-tetrahydrocannabivarin (Δ8-THCV, 15). The chemical structure of Δ8-THCV (15), for which a standard was not available, was confirmed by partial synthesis and NMR analysis. This is the first report for many of the above compounds as well as Δ8-THCV as impurities in Δ8-THC products.


Asunto(s)
Cannabidiol , Cannabinoides , Dronabinol , Cannabinoides/análisis , Cannabinol , Cannabidiol/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos
13.
Biomed Chromatogr ; 37(10): e5697, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37394894

RESUMEN

Cannabidiol (CBD) oil products are available in Japan as cosmetics, fragrances, food and items. Herein, quality testing of cannabinoid profiling in CBD oil products and the evaluation of possible residual tetrahydrocannabinol (THC) in these products using liquid chromatography-tandem mass spectrometry (LC-MS/MS) was conducted. A simple, sensitive, and selective LC-MS/MS assay (electrospray positive ion mode) was employed for the simultaneous quantification of eight cannabinoids. This quantification with three different oil samples showed that accuracy rates ranged from 87.7 to 106.9% (RSD > 3.5%). Furthermore, the quantification limit of THC is 0.001 mg/g of CBD oil products for suitable levels lower than the regulatory value. Notably, this method was used to evaluate CBD oil products from the Japanese market. Additionally, we investigated the THC conversion in CBD oil products at a high temperature (70°C) which has a minor effect on CBD stability in oil products with additives. Herein, the developed LC-MS/MS assay is applied to monitor the quality of CBD, trace THC and other components in CBD oil products.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabidiol/análisis , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Temperatura , Cannabinoides/análisis , Dronabinol
14.
Sensors (Basel) ; 23(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36904818

RESUMEN

Cannabis is commercially cultivated for both therapeutic and recreational purposes in a growing number of jurisdictions. The main cannabinoids of interest are cannabidiol (CBD) and delta-9 tetrahydrocannabidiol (THC), which have applications in different therapeutic treatments. The rapid, nondestructive determination of cannabinoid levels has been achieved using near-infrared (NIR) spectroscopy coupled to high-quality compound reference data provided by liquid chromatography. However, most of the literature describes prediction models for the decarboxylated cannabinoids, e.g., THC and CBD, rather than naturally occurring analogues, tetrahydrocannabidiolic acid (THCA) and cannabidiolic acid (CBDA). The accurate prediction of these acidic cannabinoids has important implications for quality control for cultivators, manufacturers and regulatory bodies. Using high-quality liquid chromatography-mass spectroscopy (LCMS) data and NIR spectra data, we developed statistical models including principal component analysis (PCA) for data quality control, partial least squares regression (PLS-R) models to predict cannabinoid concentrations for 14 different cannabinoids and partial least squares discriminant analysis (PLS-DA) models to characterise cannabis samples into high-CBDA, high-THCA and even-ratio classes. This analysis employed two spectrometers, a scientific grade benchtop instrument (Bruker MPA II-Multi-Purpose FT-NIR Analyzer) and a handheld instrument (VIAVI MicroNIR Onsite-W). While the models from the benchtop instrument were generally more robust (99.4-100% accuracy prediction), the handheld device also performed well (83.1-100% accuracy prediction) with the added benefits of portability and speed. In addition, two cannabis inflorescence preparation methods were evaluated: finely ground and coarsely ground. The models generated from coarsely ground cannabis provided comparable predictions to that of the finely ground but represent significant timesaving in terms of sample preparation. This study demonstrates that a portable NIR handheld device paired with LCMS quantitative data can provide accurate cannabinoid predictions and potentially be of use for the rapid, high-throughput, nondestructive screening of cannabis material.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Cannabis/química , Espectroscopía Infrarroja Corta , Cannabinoides/análisis , Cannabinoides/química , Cannabidiol/análisis
15.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36835247

RESUMEN

Cannabis has been used for decades as a palliative therapy in the treatment of cancer. This is because of its beneficial effects on the pain and nausea that patients can experience as a result of chemo/radiotherapy. Tetrahydrocannabinol and cannabidiol are the main compounds present in Cannabis sativa, and both exert their actions through a receptor-mediated mechanism and through a non-receptor-mediated mechanism, which modulates the formation of reactive oxygen species. These oxidative stress conditions might trigger lipidic changes, which would compromise cell membrane stability and viability. In this sense, numerous pieces of evidence describe a potential antitumor effect of cannabinoid compounds in different types of cancer, although controversial results limit their implementation. In order to further investigate the possible mechanism involved in the antitumoral effects of cannabinoids, three extracts isolated from Cannabis sativa strains with high cannabidiol content were analyzed. Cell mortality, cytochrome c oxidase activity and the lipid composition of SH-SY5Y cells were determined in the absence and presence of specific cannabinoid ligands, with and without antioxidant pre-treatment. The cell mortality induced by the extracts in this study appeared to be related to the inhibition of the cytochrome c oxidase activity and to the THC concentration. This effect on cell viability was similar to that observed with the cannabinoid agonist WIN55,212-2. The effect was partially blocked by the selective CB1 antagonist AM281, and the antioxidant α-tocopherol. Moreover, certain membrane lipids were affected by the extracts, which demonstrated the importance of oxidative stress in the potential antitumoral effects of cannabinoids.


Asunto(s)
Cannabis , Neuroblastoma , Extractos Vegetales , Humanos , Cannabidiol/análisis , Cannabinoides/análisis , Cannabis/química , Dronabinol/farmacología , Complejo IV de Transporte de Electrones/metabolismo , Neuroblastoma/tratamiento farmacológico , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico
16.
Molecules ; 28(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36770970

RESUMEN

A colorimetric method for the estimation of the total content of cannabinoids in cannabis samples is proposed. The assay is based on the reaction of these compounds with the reagent Fast Blue B (FBB), which has been immobilized into polydimethylsiloxane (PDMS). The reaction and detection conditions have been established according to the results obtained for the individual cannabinoids Δ9-tetrahydrocannabidiol (THC), cannabidiol (CBD), and cannabinol (CBN), as well as for ethanolic extracts obtained from cannabis samples after ultrasonication. In contact with the extract and under basic conditions, the reagent diffuses from the PDMS device, producing a red-brown solution. The absorbances measured at 500 nm after only 1 min of exposure to the FBB/PDMS composites led to responses proportional to the amounts of the cannabinoids in the reaction media. Those absorbances have been then transformed in total cannabinoid content using CBD as a reference compound. The potential utility of the proposed conditions has been tested by analyzing different cannabis samples. The selectivity towards other plants and drugs has been also evaluated. The present method is proposed as a simple and rapid alternative to chromatographic methods for the estimation of the total content of cannabinoids.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Alucinógenos , Cannabinoides/análisis , Cannabis/química , Dronabinol/análisis , Colorimetría , Cannabinol/análisis , Cannabidiol/análisis , Agonistas de Receptores de Cannabinoides
17.
Molecules ; 28(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37446655

RESUMEN

Inflammation is the response of the innate immune system to any type of injury. Although acute inflammation is critical for survival, dysregulation of the innate immune response leads to chronic inflammation. Many synthetic anti-inflammatory drugs have side effects, and thus, natural anti-inflammatory compounds are still needed. Cannabis sativa L. may provide a good source of anti-inflammatory molecules. Here, we tested the anti-inflammatory properties of cannabis extracts and pure cannabinoids in lipopolysaccharide (LPS)-induced inflammation in human THP-1 macrophages. We found that pre-treatment with cannabidiol (CBD), delta-9-tetrahydrocannabinol (THC), or extracts containing high levels of CBD or THC reduced the level of induction of various cytokines. The CBD was more efficient than THC, and the extracts were more efficient than pure cannabinoids. Finally, IL-6, IL-10, and MCP-1 cytokines were most sensitive to pre-treatments with CBD and THC, while IL-1ß, IL-8, and TNF-α were less responsive. Thus, our work demonstrates the potential of the use of cannabinoids or/and cannabis extracts for the reduction of inflammation and establishes IL-6 and MCP-1 as the sensitive markers for the analysis of the effect of cannabinoids on inflammation in macrophages.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Alucinógenos , Humanos , Antiinflamatorios/farmacología , Cannabidiol/análisis , Agonistas de Receptores de Cannabinoides , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Citocinas , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Interleucina-6 , Lipopolisacáridos/toxicidad , Macrófagos , Extractos Vegetales/farmacología
18.
Molecules ; 28(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37175216

RESUMEN

Cannabis (Cannabis sativa L.) is an ancient cultivated plant that contains less than 0.3% tetrahydrocannabinol (THC). It is widely utilized at home and abroad and is an economic crop with great development and utilization value. There are 31 countries legalizing industrial cannabis cultivation. Cannabis fiber has been used for textile production in China for 6000 years. China is the largest producer and exporter of cannabis. China may still play a leading role in the production of cannabis fiber. China has a long history of cannabis cultivation and rich germplasm resources. Yunnan, Heilongjiang, and Jilin are three Chinese provinces where industrial cannabis can be grown legally. Cannabinoids are terpenoid phenolic compounds produced during the growth, and which development of cannabis and are found in the glandular hairs of female flowers at anthesis. They are the active chemical components in the cannabis plant and the main components of cannabis that exert pharmacological activity. At the same time, research in China on the use of cannabis in the food industry has shown that industrial cannabis oil contains 13-20% oleic acid, 40-60% omega-6 linoleic acid, and 15-30% omega-3 α-linolenic acid. At present, more than 100 cannabinoids have been identified and analyzed in China, among which phenolic compounds are the main research objects. For instance, phenolic substances represented by cannabidiol (CBD) have rich pharmacological effects. There are still relatively little research on cannabinoids, and a comprehensive introduction to research progress in this area is needed. This paper reviews domestic and foreign research progress on cannabinoids in cannabis sativa, which is expected to support cannabis-related research and development.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Alucinógenos , Cannabinoides/química , Cannabis/química , China , Dronabinol/análisis , Cannabidiol/análisis , Agonistas de Receptores de Cannabinoides
19.
Adicciones ; 35(3): 279-288, 2023 Sep 01.
Artículo en Inglés, Español | MEDLINE | ID: mdl-33768267

RESUMEN

The present study investigates the concentration of Delta (9)-tetrahidrocannabinol (THC), cannabidiol (CBD) and cannabinol (CBN) in 60 samples of cannabis resin acquired on the streets of Madrid region and its potential danger to consumers' health. Additionally, we study the possible correlation between the potency of samples and their organoleptic characteristics. The analysis of cannabinoids was carried out using a high performance liquid chromatography (RP-HPLC-UV). To classify samples, a strength scale based on THC content was established. THC content in 76.7% of the samples was higher than 15%. This potency allows these samples to be classified as Schedule I or drugs with "unacceptable risk" for human health. THC content in 36.7% of the samples was 28.8% on average, which means very high potency. The mean CBD content was 5%, while the correlation between the CBD/THC ratio and potency was negative. The mean content of CBN was 1.74% and the CBN/THC ratio also showed a negative correlation in respect to potency. When investigating the possible correlation between sample potency and organoleptic characteristics, those samples which simultaneously presented sticky texture, high elasticity and light brown colour had very high potency, with an average THC content of 28.7%. Our study shows that the THC content of most of the cannabis that can be purchased in Madrid region is over 15% and poses a health hazard. Additionally, we demonstrate for the first time that only those samples with very high potency can be directly associated with certain organoleptic characteristics.


El presente estudio investiga la concentración de Delta(9)-tetrahidrocannabinol (THC), cannabidiol (CBD) y cannabinol (CBN) en 60 muestras de resina de cannabis adquiridas en las calles de Madrid y su potencial riesgo para la salud del consumidor. Adicionalmente, estudiamos la posible asociación entre la potencia de las muestras y sus características organolépticas. El análisis de cannabinoides se llevó a cabo mediante cromatografía líquida de alta resolución (RP-HPLC-UV). Atendiendo al contenido en THC se estableció una escala de potencia para clasificar las muestras. El 76,7% de las muestras tenía un contenido en THC superior al 15%, esta potencia las cataloga como drogas de Grado I con "riesgo inaceptable" para la salud. El 36,7% de las muestras presentaron un contenido medio en THC del 28,8% (potencia muy alta). El contenido medio en CBD fue del 5% y el de CBN 1,74%; ambas ratios, CBD/THC y CBN/THC, mostraron una correlación negativa con la potencia. Al investigar la posible asociación entra potencia y características organolépticas, se observó que las muestras que presentaban a la vez una textura pegajosa, una elasticidad alta y un color marrón claro, tenían una potencia muy alta, con un contenido medio en THC del 28.7%. Nuestro estudio muestra que el contenido en THC de la mayoría de la resina de cannabis que puede adquirirse en Madrid es superior al 15% y supone un elevado riesgo para la salud. Adicionalmente, demostramos por primera vez que solo aquellas muestras con una potencia muy alta pueden asociarse directamente con ciertas características organolépticas.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Humanos , Cannabis/química , Dronabinol/análisis , Cannabinoides/análisis , Cannabinol/análisis , Cannabidiol/análisis
20.
Anal Chem ; 94(40): 13710-13718, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36178203

RESUMEN

With the ever-evolving cannabis industry, low-cost and high-throughput analytical methods for cannabinoids are urgently needed. Normally, (potentially) psychoactive cannabinoids, typically represented by Δ9-tetrahydrocannabinol (Δ9-THC), and nonpsychoactive cannabinoids with therapeutic benefits, typically represented by cannabidiol (CBD), are the target analytes. Structurally, the former (tetrahydrocannabinolic acid (THCA), cannabinol (CBN), and THC) have one olefinic double bond and the latter (cannabidiolic acid (CBDA), cannabigerol (CBG), and CBD) have two, which results in different affinities toward Ag(I) ions. Thus, a silica gel thin-layer chromatography (TLC) plate with the lower third impregnated with Ag(I) ions enabled within minutes a digital chromatographic separation of strongly retained CBD analogues and poorly retained THC analogues. The resolution (Rs) between the closest two spots from the two groups was 4.7, which is almost 8 times higher than the resolution on unmodified TLC. After applying Fast Blue BB as a chromogenic reagent, smartphone-based color analysis enabled semiquantification of the total percentage of THC analogues (with a limit of detection (LOD) of 11 ng for THC, 54 ng for CBN, and 50 ng for THCA when the loaded volume is 1.0 µL). The method was validated by analyzing mixed cannabis extracts and cannabis extracts. The results correlated with those of high-performance liquid chromatography with ultraviolet detection (HPLC-UV) (R2 = 0.97), but the TLC approach had the advantages of multi-minute analysis time, high throughput, low solvent consumption, portability, and ease of interpretation. In a desiccator, Ag(I)-TLC plates can be stored for at least 3 months. Therefore, this method would allow rapid distinction between high and low THC varieties of cannabis, with the potential for on-site applicability.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Alucinógenos , Cannabidiol/análisis , Cannabinoides/análisis , Cannabinol/análisis , Cannabis/química , Cromatografía en Capa Delgada , Dronabinol/análisis , Extractos Vegetales/química , Gel de Sílice , Teléfono Inteligente , Solventes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA