Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.824
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 52(4): 668-682.e7, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32294407

RESUMEN

The primary mechanisms supporting immunoregulatory polarization of myeloid cells upon infiltration into tumors remain largely unexplored. Elucidation of these signals could enable better strategies to restore protective anti-tumor immunity. Here, we investigated the role of the intrinsic activation of the PKR-like endoplasmic reticulum (ER) kinase (PERK) in the immunoinhibitory actions of tumor-associated myeloid-derived suppressor cells (tumor-MDSCs). PERK signaling increased in tumor-MDSCs, and its deletion transformed MDSCs into myeloid cells that activated CD8+ T cell-mediated immunity against cancer. Tumor-MDSCs lacking PERK exhibited disrupted NRF2-driven antioxidant capacity and impaired mitochondrial respiratory homeostasis. Moreover, reduced NRF2 signaling in PERK-deficient MDSCs elicited cytosolic mitochondrial DNA elevation and, consequently, STING-dependent expression of anti-tumor type I interferon. Reactivation of NRF2 signaling, conditional deletion of STING, or blockade of type I interferon receptor I restored the immunoinhibitory potential of PERK-ablated MDSCs. Our findings demonstrate the pivotal role of PERK in tumor-MDSC functionality and unveil strategies to reprogram immunosuppressive myelopoiesis in tumors to boost cancer immunotherapy.


Asunto(s)
Carcinoma Pulmonar de Lewis/inmunología , Carcinoma Epitelial de Ovario/inmunología , Regulación Neoplásica de la Expresión Génica , Melanoma Experimental/inmunología , Proteínas de la Membrana/inmunología , Neoplasias Cutáneas/inmunología , eIF-2 Quinasa/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patología , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/metabolismo , Carcinoma Epitelial de Ovario/patología , Femenino , Humanos , Terapia de Inmunosupresión , Interferón-alfa/genética , Interferón-alfa/inmunología , Interferón beta/genética , Interferón beta/inmunología , Masculino , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/inmunología , Mitocondrias/metabolismo , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/patología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/inmunología , Receptores de Interferón/genética , Receptores de Interferón/inmunología , Transducción de Señal , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Respuesta de Proteína Desplegada/inmunología , eIF-2 Quinasa/deficiencia , eIF-2 Quinasa/genética
2.
Am J Hum Genet ; 111(6): 1061-1083, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38723632

RESUMEN

To identify credible causal risk variants (CCVs) associated with different histotypes of epithelial ovarian cancer (EOC), we performed genome-wide association analysis for 470,825 genotyped and 10,163,797 imputed SNPs in 25,981 EOC cases and 105,724 controls of European origin. We identified five histotype-specific EOC risk regions (p value <5 × 10-8) and confirmed previously reported associations for 27 risk regions. Conditional analyses identified an additional 11 signals independent of the primary signal at six risk regions (p value <10-5). Fine mapping identified 4,008 CCVs in these regions, of which 1,452 CCVs were located in ovarian cancer-related chromatin marks with significant enrichment in active enhancers, active promoters, and active regions for CCVs from each EOC histotype. Transcriptome-wide association and colocalization analyses across histotypes using tissue-specific and cross-tissue datasets identified 86 candidate susceptibility genes in known EOC risk regions and 32 genes in 23 additional genomic regions that may represent novel EOC risk loci (false discovery rate <0.05). Finally, by integrating genome-wide HiChIP interactome analysis with transcriptome-wide association study (TWAS), variant effect predictor, transcription factor ChIP-seq, and motifbreakR data, we identified candidate gene-CCV interactions at each locus. This included risk loci where TWAS identified one or more candidate susceptibility genes (e.g., HOXD-AS2, HOXD8, and HOXD3 at 2q31) and other loci where no candidate gene was identified (e.g., MYC and PVT1 at 8q24) by TWAS. In summary, this study describes a functional framework and provides a greater understanding of the biological significance of risk alleles and candidate gene targets at EOC susceptibility loci identified by a genome-wide association study.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Neoplasias Ováricas , Polimorfismo de Nucleótido Simple , Humanos , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Carcinoma Epitelial de Ovario/genética , Transcriptoma , Factores de Riesgo , Genómica/métodos , Estudios de Casos y Controles , Multiómica
3.
N Engl J Med ; 389(23): 2162-2174, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38055253

RESUMEN

BACKGROUND: Mirvetuximab soravtansine-gynx (MIRV), a first-in-class antibody-drug conjugate targeting folate receptor α (FRα), is approved for the treatment of platinum-resistant ovarian cancer in the United States. METHODS: We conducted a phase 3, global, confirmatory, open-label, randomized, controlled trial to compare the efficacy and safety of MIRV with the investigator's choice of chemotherapy in the treatment of platinum-resistant, high-grade serous ovarian cancer. Participants who had previously received one to three lines of therapy and had high FRα tumor expression (≥75% of cells with ≥2+ staining intensity) were randomly assigned in a 1:1 ratio to receive MIRV (6 mg per kilogram of adjusted ideal body weight every 3 weeks) or chemotherapy (paclitaxel, pegylated liposomal doxorubicin, or topotecan). The primary end point was investigator-assessed progression-free survival; key secondary analytic end points included objective response, overall survival, and participant-reported outcomes. RESULTS: A total of 453 participants underwent randomization; 227 were assigned to the MIRV group and 226 to the chemotherapy group. The median progression-free survival was 5.62 months (95% confidence interval [CI], 4.34 to 5.95) with MIRV and 3.98 months (95% CI, 2.86 to 4.47) with chemotherapy (P<0.001). An objective response occurred in 42.3% of the participants in the MIRV group and in 15.9% of those in the chemotherapy group (odds ratio, 3.81; 95% CI, 2.44 to 5.94; P<0.001). Overall survival was significantly longer with MIRV than with chemotherapy (median, 16.46 months vs. 12.75 months; hazard ratio for death, 0.67; 95% CI, 0.50 to 0.89; P = 0.005). During the treatment period, fewer adverse events of grade 3 or higher occurred with MIRV than with chemotherapy (41.7% vs. 54.1%), as did serious adverse events of any grade (23.9% vs. 32.9%) and events leading to discontinuation (9.2% vs. 15.9%). CONCLUSIONS: Among participants with platinum-resistant, FRα-positive ovarian cancer, treatment with MIRV showed a significant benefit over chemotherapy with respect to progression-free and overall survival and objective response. (Funded by ImmunoGen; MIRASOL ClinicalTrials.gov number, NCT04209855.).


Asunto(s)
Carcinoma Epitelial de Ovario , Maitansina , Neoplasias Ováricas , Femenino , Humanos , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/genética , Inmunoconjugados/administración & dosificación , Inmunoconjugados/efectos adversos , Inmunoconjugados/uso terapéutico , Maitansina/administración & dosificación , Maitansina/efectos adversos , Maitansina/análogos & derivados , Maitansina/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Receptor 1 de Folato/antagonistas & inhibidores , Receptor 1 de Folato/genética , Resistencia a Antineoplásicos/genética , Compuestos de Platino/farmacología
4.
CA Cancer J Clin ; 69(4): 280-304, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31099893

RESUMEN

Ovarian cancer is the second most common cause of gynecologic cancer death in women around the world. The outcomes are complicated, because the disease is often diagnosed late and composed of several subtypes with distinct biological and molecular properties (even within the same histological subtype), and there is inconsistency in availability of and access to treatment. Upfront treatment largely relies on debulking surgery to no residual disease and platinum-based chemotherapy, with the addition of antiangiogenic agents in patients who have suboptimally debulked and stage IV disease. Major improvement in maintenance therapy has been seen by incorporating inhibitors against poly (ADP-ribose) polymerase (PARP) molecules involved in the DNA damage-repair process, which have been approved in a recurrent setting and recently in a first-line setting among women with BRCA1/BRCA2 mutations. In recognizing the challenges facing the treatment of ovarian cancer, current investigations are enlaced with deep molecular and cellular profiling. To improve survival in this aggressive disease, access to appropriate evidence-based care is requisite. In concert, realizing individualized precision medicine will require prioritizing clinical trials of innovative treatments and refining predictive biomarkers that will enable selection of patients who would benefit from chemotherapy, targeted agents, or immunotherapy. Together, a coordinated and structured approach will accelerate significant clinical and academic advancements in ovarian cancer and meaningfully change the paradigm of care.


Asunto(s)
Carcinoma Epitelial de Ovario/terapia , Neoplasias Ováricas/terapia , Medicina de Precisión , Antineoplásicos/uso terapéutico , Carcinoma Epitelial de Ovario/epidemiología , Carcinoma Epitelial de Ovario/patología , Carcinoma Epitelial de Ovario/prevención & control , Procedimientos Quirúrgicos de Citorreducción , Femenino , Humanos , Terapia Molecular Dirigida , Recurrencia Local de Neoplasia/terapia , Estadificación de Neoplasias , Neoplasias Ováricas/epidemiología , Neoplasias Ováricas/patología , Neoplasias Ováricas/prevención & control , Segunda Cirugía
5.
Cancer Metastasis Rev ; 43(3): 1037-1053, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38546906

RESUMEN

Epithelial ovarian cancer (EOC) is often diagnosed in advanced stage with peritoneal dissemination. Recent studies indicate that aberrant accumulation of collagen fibers in tumor stroma has a variety of effects on tumor progression. We refer to remodeled fibrous stroma with altered expression of collagen molecules, increased stiffness, and highly oriented collagen fibers as tumor-associated fibrosis (TAF). TAF contributes to EOC cell invasion and metastasis in the intraperitoneal cavity. However, an understanding of molecular events involved is only just beginning to emerge. Further development in this field will lead to new strategies to treat EOC. In this review, we focus on the recent findings on how the TAF contributes to EOC malignancy. Furthermore, we will review the recent initiatives and future therapeutic strategies for targeting TAF in EOC.


Asunto(s)
Fibrosis , Neoplasias Ováricas , Neoplasias Peritoneales , Humanos , Femenino , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Neoplasias Peritoneales/secundario , Neoplasias Peritoneales/metabolismo , Animales , Carcinoma Epitelial de Ovario/patología , Carcinoma Epitelial de Ovario/metabolismo , Neoplasias Glandulares y Epiteliales/patología , Neoplasias Glandulares y Epiteliales/metabolismo , Neoplasias Glandulares y Epiteliales/etiología , Metástasis de la Neoplasia
7.
J Pathol ; 262(2): 137-146, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37850614

RESUMEN

The identification of causal BRCA1/2 pathogenic variants (PVs) in epithelial ovarian carcinoma (EOC) aids the selection of patients for genetic counselling and treatment decision-making. Current recommendations therefore stress sequencing of all EOCs, regardless of histotype. Although it is recognised that BRCA1/2 PVs cluster in high-grade serous ovarian carcinomas (HGSOC), this view is largely unsubstantiated by detailed analysis. Here, we aimed to analyse the results of BRCA1/2 tumour sequencing in a centrally revised, consecutive, prospective series including all EOC histotypes. Sequencing of n = 946 EOCs revealed BRCA1/2 PVs in 125 samples (13%), only eight of which were found in non-HGSOC histotypes. Specifically, BRCA1/2 PVs were identified in high-grade endometrioid (3/20; 15%), low-grade endometrioid (1/40; 2.5%), low-grade serous (3/67; 4.5%), and clear cell (1/64; 1.6%) EOCs. No PVs were identified in any mucinous ovarian carcinomas tested. By re-evaluation and using loss of heterozygosity and homologous recombination deficiency analyses, we then assessed: (1) whether the eight 'anomalous' cases were potentially histologically misclassified and (2) whether the identified variants were likely causal in carcinogenesis. The first 'anomalous' non-HGSOC with a BRCA1/2 PV proved to be a misdiagnosed HGSOC. Next, germline BRCA2 variants, found in two p53-abnormal high-grade endometrioid tumours, showed substantial evidence supporting causality. One additional, likely causal variant, found in a p53-wildtype low-grade serous ovarian carcinoma, was of somatic origin. The remaining cases showed retention of the BRCA1/2 wildtype allele, suggestive of non-causal secondary passenger variants. We conclude that likely causal BRCA1/2 variants are present in high-grade endometrioid tumours but are absent from the other EOC histotypes tested. Although the findings require validation, these results seem to justify a transition from universal to histotype-directed sequencing. Furthermore, in-depth functional analysis of tumours harbouring BRCA1/2 variants combined with detailed revision of cancer histotypes can serve as a model in other BRCA1/2-related cancers. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Proteína BRCA1 , Neoplasias Ováricas , Femenino , Humanos , Proteína BRCA1/genética , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Proteína p53 Supresora de Tumor , Carcinoma Epitelial de Ovario/genética
8.
J Pathol ; 262(2): 198-211, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37941520

RESUMEN

Carboplatin (CPT) and paclitaxel (PCT) are the optimal non-surgical treatment of epithelial ovarian cancer (EOC). Although their growth-restricting influence on EOC cells is well known, their impact on normal peritoneal cells, including mesothelium (PMCs) and fibroblasts (PFBs), is poorly understood. Here, we investigated whether, and if so, by what mechanism, CPT and PCT induce senescence of omental PMCs and PFBs. In addition, we tested whether PMC and PFB exposure to the drugs promotes the development of a pro-cancerogenic phenotype. The results showed that CPT and PCT induce G2/M growth arrest-associated senescence of normal peritoneal cells and that the strongest induction occurs when the drugs act together. PMCs senesce telomere-independently with an elevated p16 level and via activation of AKT and STAT3. In PFBs, telomeres shorten along with an induction of p21 and p53, and their senescence proceeds via the activation of ERK1/2. Oxidative stress in CPT + PCT-treated PMCs and PFBs is extensive and contributes causatively to their premature senescence. Both PMCs and PFBs exposed to CPT + PCT fuel the proliferation, migration, and invasion of established (A2780, OVCAR-3, SKOV-3) and primary EOCs, and this activity is linked with an overproduction of multiple cytokines altering the cancer cell transcriptome and controlled by p38 MAPK, NF-κB, STAT3, Notch1, and JAK1. Collectively, our findings indicate that CPT and PCT lead to iatrogenic senescence of normal peritoneal cells, which paradoxically and opposing therapeutic needs alters their phenotype towards pro-cancerogenic. It cannot be excluded that these adverse outcomes of chemotherapy may contribute to EOC relapse in the case of incomplete tumor eradication and residual disease initiation. © 2023 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias Ováricas , Paclitaxel , Humanos , Femenino , Carboplatino/farmacología , Paclitaxel/farmacología , Línea Celular Tumoral , Apoptosis , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Senescencia Celular , Recurrencia Local de Neoplasia/patología , Epitelio/patología , Carcinoma Epitelial de Ovario/patología , Fibroblastos/patología
9.
J Pathol ; 262(1): 4-9, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37850576

RESUMEN

Mesonephric-like adenocarcinoma (MLA) of the female genital tract is an uncommon histotype that can arise in both the endometrium and the ovary. The exact cell of origin and histogenesis currently remain unknown. Here, we investigated whole genome DNA methylation patterns and copy number variations (CNVs) in a series of MLAs in the context of a large cohort of various gynaecological carcinoma types. CNV analysis of 19 MLAs uncovered gains of chromosomes 1q (18/19, 95%), 10 (15/19, 79%), 12 (14/19, 74%), and 2 (10/19, 53%), as well as loss of chromosome 1p (7/19, 37%). Gains of chromosomes 1q, 10, and 12 were also identified in the majority of mesonephric adenocarcinomas of the uterine cervix (MAs) as well as subsets of endometrioid carcinomas (ECs) and low-grade serous carcinomas of the ovary (LGSCs) but only in a minority of serous carcinomas of the uterine corpus (USCs), clear cell carcinomas (CCCs), and tubo-ovarian high-grade serous carcinomas (HGSCs). While losses of chromosome 1p together with gains of chromosome 1q were also identified in both MA and LGSC, gains of chromosome 2 were almost exclusively identified in MLA and MA. Unsupervised hierarchical clustering and t-SNE analysis of DNA methylation data (Illumina EPIC array) identified a co-clustering for MLAs and MAs, which was distinct from clusters of ECs, USCs, CCCs, LGSCs, and HGSCs. Group-wise comparisons confirmed a close epigenetic relationship between MLA and MA. These findings, in conjunction with the established histological and immunophenotypical overlap, suggest bona fide mesonephric differentiation, and support a more precise terminology of mesonephric-type adenocarcinoma instead of MLA in these tumours. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Carcinoma Endometrioide , Cistadenocarcinoma Seroso , Neoplasias Ováricas , Femenino , Humanos , Cuello del Útero/patología , Variaciones en el Número de Copia de ADN , Metilación de ADN , Carcinoma Endometrioide/genética , Carcinoma Endometrioide/patología , Cistadenocarcinoma Seroso/genética , Carcinoma Epitelial de Ovario/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología
10.
Exp Cell Res ; 441(1): 114155, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39002689

RESUMEN

At least one-third of patients with epithelial ovarian cancer (OC) present ascites at diagnosis and almost all have ascites at recurrence especially because of the propensity of the OC cells to spread in the abdominal cavity leading to peritoneal metastasis. The influence of ascites on the development of pre-metastatic niches, and on the biological mechanisms leading to cancer cell colonization of the mesothelium, remains poorly understood. Here, we show that ascites weakens the mesothelium by affecting the morphology of mesothelial cells and by destabilizing their distribution in the cell cycle. Ascites also causes destabilization of the integrity of mesothelium by modifying the organization of cell junctions, but it does not affect the synthesis of N-cadherin and ZO-1 by mesothelial cells. Moreover, ascites induces disorganization of focal contacts and causes actin cytoskeletal reorganization potentially dependent on the activity of Rac1. Ascites allows the densification and reorganization of ECM proteins of the mesothelium, especially fibrinogen/fibrin, and indicates that it is a source of the fibrinogen and fibrin surrounding OC spheroids. The fibrin in ascites leads to the adhesion of OC spheroids to the mesothelium, and ascites promotes their disaggregation followed by the clearance of mesothelial cells. Both αV and α5ß1 integrins are involved. In conclusion ascites and its fibrinogen/fibrin composition affects the integrity of the mesothelium and promotes the integrin-dependent implantation of OC spheroids in the mesothelium.


Asunto(s)
Ascitis , Fibrina , Fibrinógeno , Integrina alfa5beta1 , Neoplasias Ováricas , Esferoides Celulares , Microambiente Tumoral , Humanos , Femenino , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Ascitis/patología , Ascitis/metabolismo , Integrina alfa5beta1/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Fibrinógeno/metabolismo , Fibrina/metabolismo , Neoplasias Peritoneales/secundario , Neoplasias Peritoneales/metabolismo , Neoplasias Peritoneales/patología , Carcinoma Epitelial de Ovario/metabolismo , Carcinoma Epitelial de Ovario/patología , Línea Celular Tumoral , Receptores de Vitronectina/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Adhesión Celular , Peritoneo/patología , Peritoneo/metabolismo , Epitelio/metabolismo , Epitelio/patología , Cadherinas/metabolismo , Células Tumorales Cultivadas
11.
J Med Genet ; 61(2): 155-157, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-37657917

RESUMEN

We identified six patients from five families with a recurrent mutation: NM_000059.3 (BRCA2) exon 3 deletion. All families self-identified as Assyrian. Assyrians are an ethnoreligious population of ancient Mesopotamia, now mostly living in modern day Iraq, Syria, Turkey and Iran. They are historically a socially isolated population with intermarriage within their community, living as a religious and language minority in mostly Muslim countries. The probands of each family presented with a classic BRCA2-associated cancer including early-onset breast cancer, epithelial serous ovarian cancer, male breast cancer and/or high-grade prostate cancer, and family history that was also significant for BRCA2-associated cancer. BRCA2 exon 3 deletion is classified as pathogenic and has been previously described in the literature, but it has not been described as a founder mutation in a particular population. We characterise this recurrent BRCA2 pathogenic variant in five Assyrian families in a single centre cohort.


Asunto(s)
Neoplasias de la Mama , Pueblos de Medio Oriente , Neoplasias Ováricas , Femenino , Humanos , Masculino , Neoplasias Ováricas/genética , Proteína BRCA2/genética , Mutación , Carcinoma Epitelial de Ovario/genética , Exones/genética , Neoplasias de la Mama/genética , Predisposición Genética a la Enfermedad
12.
Mol Cell Proteomics ; 22(4): 100520, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36842607

RESUMEN

Ovarian cancer is a gynecological tumor with extremely high mortality and poor prognosis. Exosomes derived from tumor cells contain abundant proteins that may influence tumor metastasis. The purpose of our study was to explore the proteomic profile of serum exosomes from epithelial ovarian cancer (EOC) patients and to find potential diagnostic markers for EOC. We obtained purified exosomes from serum using ultracentrifugation. Migration assay was used to evaluate the effects of exosomes on the migration of EOC cells. Proteomic profile of serum exosomes was analyzed by liquid chromatogram-tandem mass spectrometry. The levels of low-density lipoprotein receptor-related protein 1 (LRP1) in serum and serum exosomes were determined by enzyme-linked immunosorbent assay. Western blot and Immunohistochemistry were used to determine the level of LRP1 in tissues. Moreover, we performed small-interfering RNA-mediated knockdown of LRP1 in EOC cells to obtain SI-LRP1-Exos and SI-NC-Exos. The detailed mechanisms by which exosomal LRP1 affected the migration of EOC cells in vitro and in vivo were also explored. We found that serum exosomes from EOC patients contributed to the migration of EOC cells. The level of serum exosomal LRP1 of EOC patients was significantly upregulated compared with that of healthy volunteers, which was consistent with the result of enzyme-linked immunosorbent assay. We found that exosomal LRP1 regulated the expression of MMP2 and MMP9 through ERK signaling pathway and affected the migration of EOC cells in vitro and in vivo. Therefore, we propose that exosomal LRP1 contributes to the migration of EOC and may act as an important diagnostic and prognostic biomarker of EOC.


Asunto(s)
Exosomas , Neoplasias Ováricas , Humanos , Femenino , Carcinoma Epitelial de Ovario , Exosomas/metabolismo , Proteómica , Neoplasias Ováricas/patología , Transducción de Señal , Línea Celular Tumoral , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo
13.
Mol Cell Proteomics ; 22(11): 100660, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37820923

RESUMEN

Epithelial ovarian cancer (EOC) is a high-risk cancer presenting with heterogeneous tumors. The high incidence of EOC metastasis from primary tumors to nearby tissues and organs is a major driver of EOC lethality. We used cellular models of spheroid formation and readherence to investigate cellular signaling dynamics in each step toward EOC metastasis. In our system, adherent cells model primary tumors, spheroid formation represents the initiation of metastatic spread, and readherent spheroid cells represent secondary tumors. Proteomic and phosphoproteomic analyses show that spheroid cells are hypoxic and show markers for cell cycle arrest. Aurora kinase B abundance and downstream substrate phosphorylation are significantly reduced in spheroids and readherent cells, explaining their cell cycle arrest phenotype. The proteome of readherent cells is most similar to spheroids, yet greater changes in the phosphoproteome show that spheroid cells stimulate Rho-associated kinase 1 (ROCK1)-mediated signaling, which controls cytoskeletal organization. In spheroids, we found significant phosphorylation of ROCK1 substrates that were reduced in both adherent and readherent cells. Application of the ROCK1-specific inhibitor Y-27632 to spheroids increased the rate of readherence and altered spheroid density. The data suggest ROCK1 inhibition increases EOC metastatic potential. We identified novel pathways controlled by Aurora kinase B and ROCK1 as major drivers of metastatic behavior in EOC cells. Our data show that phosphoproteomic reprogramming precedes proteomic changes that characterize spheroid readherence in EOC metastasis.


Asunto(s)
Neoplasias Ováricas , Humanos , Femenino , Carcinoma Epitelial de Ovario , Neoplasias Ováricas/metabolismo , Aurora Quinasa B , Proteómica , Esferoides Celulares/metabolismo , Línea Celular Tumoral , Metástasis de la Neoplasia , Quinasas Asociadas a rho
14.
Mol Cell Proteomics ; 22(7): 100578, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37209814

RESUMEN

Increasing proteomic studies focused on epithelial ovarian cancer (EOC) have attempted to identify early disease biomarkers, establish molecular stratification, and discover novel druggable targets. Here we review these recent studies from a clinical perspective. Multiple blood proteins have been used clinically as diagnostic markers. The ROMA test integrates CA125 and HE4, while the OVA1 and OVA2 tests analyze multiple proteins identified by proteomics. Targeted proteomics has been widely used to identify and validate potential diagnostic biomarkers in EOCs, but none has yet been approved for clinical adoption. Discovery of proteomic characterization of bulk EOC tissue specimens has uncovered a large number of dysregulated proteins, proposed new stratification schemes, and revealed novel targets of therapeutic potential. A major hurdle facing clinical translation of these stratification schemes based on bulk proteomic profiling is intra-tumor heterogeneity, namely that single tumor specimens may harbor molecular features of multiple subtypes. We reviewed over 2500 interventional clinical trials of ovarian cancers since 1990 and cataloged 22 types of interventions adopted in these trials. Among 1418 clinical trials which have been completed or are not recruiting new patients, about 50% investigated chemotherapies. Thirty-seven clinical trials are at phase 3 or 4, of which 12 focus on PARP, 10 on VEGFR, 9 on conventional anti-cancer agents, and the remaining on sex hormones, MEK1/2, PD-L1, ERBB, and FRα. Although none of the foregoing therapeutic targets were discovered by proteomics, newer targets discovered by proteomics, including HSP90 and cancer/testis antigens, are being tested also in clinical trials. To accelerate the translation of proteomic findings to clinical practice, future studies need to be designed and executed to the stringent standards of practice-changing clinical trials. We anticipate that the rapidly evolving technology of spatial and single-cell proteomics will deconvolute the intra-tumor heterogeneity of EOCs, further facilitating their precise stratification and superior treatment outcomes.


Asunto(s)
Neoplasias Glandulares y Epiteliales , Neoplasias Ováricas , Humanos , Femenino , Carcinoma Epitelial de Ovario , Proteómica , Proteína 2 de Dominio del Núcleo de Cuatro Disulfuros WAP , Biomarcadores de Tumor , Algoritmos , Neoplasias Ováricas/patología , Proteínas/metabolismo
15.
Proc Natl Acad Sci U S A ; 119(17): e2117065119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35467979

RESUMEN

High-grade serous ovarian cancer (HGSOC) is a lethal malignancy characterized by an immunosuppressive tumor microenvironment containing few tumor infiltrating lymphocytes (TILs) and an insensitivity to checkpoint inhibitor immunotherapies. Gains in the PTK2 gene encoding focal adhesion kinase (FAK) at Chr8 q24.3 occur in ∼70% of HGSOC tumors, and elevated FAK messenger RNA (mRNA) levels are associated with poor patient survival. Herein, we show that active FAK, phosphorylated at tyrosine-576 within catalytic domain, is significantly increased in late-stage HGSOC tumors. Active FAK costained with CD155, a checkpoint receptor ligand for TIGIT (T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains), in HGSOC tumors and a selective association between FAK and TIGIT checkpoint ligands were supported by patient transcriptomic database analysis. HGSOC tumors with high FAK expression were associated with low CD3 mRNA levels. Accordingly, late-stage tumors showed elevated active FAK staining and significantly lower levels of CD3+ TILs. Using the KMF (Kras, Myc, FAK) syngeneic ovarian tumor model containing spontaneous PTK2 (FAK) gene gains, the effects of tumor intrinsic genetic or oral small molecule FAK inhibitior (FAKi; VS-4718) were evaluated in vivo. Blocking FAK activity decreased tumor burden, suppressed ascites KMF-associated CD155 levels, and increased peritoneal TILs. The combination of FAKi with blocking TIGIT antibody (1B4) maintained elevated TIL levels and reduced TIGIT+ T regulatory cell levels, prolonged host survival, increased CXCL13 levels, and led to the formation of omental tertiary lymphoid structures. Collectively, our studies support FAK and TIGIT targeting as a rationale immunotherapy combination for HGSOC.


Asunto(s)
Neoplasias Ováricas , Animales , Carcinoma Epitelial de Ovario , Femenino , Quinasa 1 de Adhesión Focal , Proteína-Tirosina Quinasas de Adhesión Focal , Humanos , Terapia de Inmunosupresión , Ligandos , Ratones , Neoplasias Ováricas/patología , Receptores Inmunológicos/metabolismo
16.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35082152

RESUMEN

High-grade serous ovarian carcinoma (HGSOC) is a cancer with dismal prognosis due to the limited effectiveness of existing chemo- and immunotherapies. To elucidate mechanisms mediating sensitivity or resistance to these therapies, we developed a fast and flexible autochthonous mouse model based on somatic introduction of HGSOC-associated genetic alterations into the ovary of immunocompetent mice using tissue electroporation. Tumors arising in these mice recapitulate the metastatic patterns and histological, molecular, and treatment response features of the human disease. By leveraging these models, we show that the ability to undergo senescence underlies the clinically observed increase in sensitivity of homologous recombination (HR)-deficient HGSOC tumors to platinum-based chemotherapy. Further, cGas/STING-mediated activation of a restricted senescence-associated secretory phenotype (SASP) was sufficient to induce immune infiltration and sensitize HR-deficient tumors to immune checkpoint blockade. In sum, our study identifies senescence propensity as a predictor of therapy response and defines a limited SASP profile that appears sufficient to confer added vulnerability to concurrent immunotherapy and, more broadly, provides a blueprint for the implementation of electroporation-based mouse models to reveal mechanisms of oncogenesis and therapy response in HGSOC.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Animales , Carcinoma Epitelial de Ovario/dietoterapia , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunoterapia/métodos , Ratones , Ratones Endogámicos C57BL
17.
Semin Cancer Biol ; 96: 64-81, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37820858

RESUMEN

Ovarian Cancer (OC) is the most common gynecological malignancy and the eighth most diagnosed cancer in females worldwide. Presently, it ranks as the fifth leading cause of cancer-related mortality among patients globally. Major factors contributing to the lethality of OC worldwide include delayed diagnosis, chemotherapy resistance, high metastatic rates, and the heterogeneity of subtypes. Despite continuous efforts to develop novel targeted therapies and chemotherapeutic agents, challenges persist in the form of OC resistance and recurrence. In the last decade, CRISPR-Cas-based genome editing has emerged as a powerful tool for modifying genetic and epigenetic mechanisms, holding potential for treating numerous diseases. However, a significant challenge for therapeutic applications of CRISPR-Cas technology is the absence of an optimal vehicle for delivering CRISPR molecular machinery into targeted cells or tissues. Recently, extracellular vesicles (EVs) have gained traction as potential delivery vehicles for various therapeutic agents. These heterogeneous, membrane-derived vesicles are released by nearly all cells into extracellular spaces. They carry a molecular cargo of proteins and nucleic acids within their intraluminal space, encased by a cholesterol-rich phospholipid bilayer membrane. EVs actively engage in cell-to-cell communication by delivering cargo to both neighboring and distant cells. Their inherent ability to shield molecular cargo from degradation and cross biological barriers positions them ideally for delivering CRISPR-Cas ribonucleoproteins (RNP) to target cells. Furthermore, they exhibit higher biocompatibility, lower immunogenicity, and reduced toxicity compared to classical delivery platforms such as adeno-associated virus, lentiviruses, and synthetic nanoparticles. This review explores the potential of employing different CRISPR-Cas systems to target specific genes in OC, while also discussing various methods for engineering EVs to load CRISPR components and enhance their targeting capabilities.


Asunto(s)
Vesículas Extracelulares , Neoplasias Ováricas , Humanos , Femenino , Sistemas CRISPR-Cas/genética , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/terapia , Carcinoma Epitelial de Ovario/metabolismo , Edición Génica , Neoplasias Ováricas/genética , Neoplasias Ováricas/terapia , Neoplasias Ováricas/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo
18.
Int J Cancer ; 155(1): 19-26, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38532545

RESUMEN

Use of menopausal hormone therapy (MHT) prior to an epithelial ovarian cancer (EOC) diagnosis has been suggested to be associated with improved survival. In a recent nationwide cohort study, we found that prediagnostic long-term MHT use, especially estrogen therapy (ET), was associated with improved long-term survival in women with nonlocalized EOC. Our aim was to investigate the influence of prediagnostic MHT use on long-term survival among women with localized EOC in the same nationwide study. Our study cohort comprised all women aged 50 years or older with an EOC diagnosis in Denmark 2000-2014 (n = 2097) identified from the Extreme study. We collected information on usage of systemic ET and estrogen plus progestin therapy (EPT) from the Danish National Prescription Registry. By using pseudo-values, 5- and 10-year absolute and relative survival probabilities were estimated with 95% confidence intervals (CIs) while adjusting for histology, comorbidity, and income. Relative survival probabilities >1 indicate better survival. The 5-year absolute survival probabilities were 61% and 56%, respectively, among women who were nonusers and users of prediagnostic MHT, whereas these numbers were 46% and 41%, respectively, regarding 10-year survival. Use of MHT was not significantly associated with an improved 5- or 10-year survival in women with localized EOC (5-year relative survival probability = 0.95, 95% CI: 0.89-1.02; 10-year relative survival probability = 0.92, 95% CI: 0.84-1.02). Similar findings were seen for systemic ET or EPT use. Our findings do not suggest a positive benefit from prediagnostic MHT use on long-term survival of localized EOC.


Asunto(s)
Carcinoma Epitelial de Ovario , Neoplasias Ováricas , Humanos , Femenino , Persona de Mediana Edad , Carcinoma Epitelial de Ovario/mortalidad , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/patología , Dinamarca/epidemiología , Neoplasias Ováricas/mortalidad , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Anciano , Terapia de Reemplazo de Estrógeno/efectos adversos , Terapia de Reemplazo de Estrógeno/métodos , Sistema de Registros , Estudios de Cohortes , Menopausia , Estrógenos/administración & dosificación , Progestinas/uso terapéutico , Progestinas/administración & dosificación
19.
Int J Cancer ; 155(5): 934-945, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38709956

RESUMEN

We analyzed variations in the epidermal growth factor receptor (EGFR) gene and 5'-upstream region to identify potential molecular predictors of treatment response in primary epithelial ovarian cancer. Tumor tissues collected during debulking surgery from the prospective multicenter OVCAD study were investigated. Copy number variations in the human endogenous retrovirus sequence human endogenous retrovirus K9 (HERVK9) and EGFR Exons 7 and 9, as well as repeat length and loss of heterozygosity of polymorphic CA-SSR I and relative EGFR mRNA expression were determined quantitatively. At least one EGFR variation was observed in 94% of the patients. Among the 30 combinations of variations discovered, enhanced platinum sensitivity (n = 151) was found dominantly with HERVK9 haploidy and Exon 7 tetraploidy, overrepresented among patients with survival ≥120 months (24/29, p = .0212). EGFR overexpression (≥80 percentile) was significantly less likely in the responders (17% vs. 32%, p = .044). Multivariate Cox regression analysis, including age, FIGO stage, and grade, indicated that the patients' subgroup was prognostically significant for CA-SSR I repeat length <18 CA for both alleles (HR 0.276, 95% confidence interval 0.109-0.655, p = .001). Although EGFR variations occur in ovarian cancer, the mRNA levels remain low compared to other EGFR-mutated cancers. Notably, the inherited length of the CA-SSR I repeat, HERVK9 haploidy, and Exon 7 tetraploidy conferred three times higher odds ratio to survive for more than 10 years under therapy. This may add value in guiding therapies if determined during follow-up in circulating tumor cells or circulating tumor DNA and offers HERVK9 as a potential therapeutic target.


Asunto(s)
Cromosomas Humanos Par 7 , Variaciones en el Número de Copia de ADN , Receptores ErbB , Neoplasias Ováricas , Humanos , Femenino , Receptores ErbB/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/mortalidad , Neoplasias Ováricas/patología , Neoplasias Ováricas/tratamiento farmacológico , Persona de Mediana Edad , Cromosomas Humanos Par 7/genética , Estudios Prospectivos , Anciano , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/mortalidad , Carcinoma Epitelial de Ovario/patología , Adulto , Retroelementos/genética , Fenotipo , Resistencia a Antineoplásicos/genética , Retrovirus Endógenos/genética , Pérdida de Heterocigocidad
20.
Cancer Sci ; 115(4): 1170-1183, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38287874

RESUMEN

Platinum-based therapies have revolutionized the treatment of high-grade serous ovarian cancer (HGSOC). However, high rates of disease recurrence and progression remain a major clinical concern. Impaired mitochondrial function and dysregulated reactive oxygen species (ROS), hallmarks of cancer, hold potential as therapeutic targets for selectively sensitizing cisplatin treatment. Here, we uncover an oncogenic role of the palmitoyltransferase ZDHHC12 in regulating mitochondrial function and ROS homeostasis in HGSOC cells. Analysis of The Cancer Genome Atlas (TCGA) ovarian cancer data revealed significantly elevated ZDHHC12 expression, demonstrating the strongest positive association with ROS pathways among all ZDHHC enzymes. Transcriptomic analysis of independent ovarian cancer datasets and the SNU119 cell model corroborated this association, highlighting a strong link between ZDHHC12 expression and signature pathways involving mitochondrial oxidative metabolism and ROS regulation. Knockdown of ZDHHC12 disrupted this association, leading to increased cellular complexity, ATP levels, mitochondrial activity, and both mitochondrial and cellular ROS. This dysregulation, achieved by the siRNA knockdown of ZDHHC12 or treatment with the general palmitoylation inhibitor 2BP or the fatty acid synthase inhibitor C75, significantly enhanced cisplatin cytotoxicity in 2D and 3D spheroid models of HGSOC through ROS-mediated mechanisms. Markedly, ZDHHC12 inhibition significantly augmented the anti-tumor activity of cisplatin in an ovarian cancer xenograft tumor model, as well as in an ascites-derived organoid line of platinum-resistant ovarian cancer. Our data suggest the potential of ZDHHC12 as a promising target to improve the outcome of HGSOCs in response to platinum-based chemotherapy.


Asunto(s)
Cisplatino , Neoplasias Ováricas , Humanos , Femenino , Cisplatino/farmacología , Cisplatino/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Resistencia a Antineoplásicos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA