Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Más filtros

Intervalo de año de publicación
1.
Arch Virol ; 168(6): 172, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37261601

RESUMEN

Using high-throughput sequencing, we identified a novel carlavirus sequence in a 28-year-old 'Kotsifali' grapevine sample collected in Heraklion (Crete, Greece). Using RT-PCR and 5'/3' RACE together with Sanger sequencing, the complete genome sequence of 8299 nt was confirmed and found to contain five open reading frames (ORFs) but to lack an ORF6, which is present in some members of the genus Carlavirus. The novel sequence is most similar to those of two carlaviruses infecting caper, and taking into account the ICTV nomenclature, we propose the name "grapevine carlavirus 1" for this new virus.


Asunto(s)
Carlavirus , Vitis , Carlavirus/genética , Genoma Viral , Grecia , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Sistemas de Lectura Abierta , Enfermedades de las Plantas
2.
Phytopathology ; 113(1): 98-103, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35852469

RESUMEN

A new blueberry virus was discovered using high-throughput sequencing. Using sequence identity values, phylogenetics, and serological and biological properties, we propose the virus, putatively named blueberry virus S (BluVS), to be a distinct species within the genus Carlavirus (family Betaflexiviridae). The genome was analyzed in depth, and an infectious clone was developed to initiate studies on virus pathogenicity. Agroinfiltration of the binary vector construct produced severe systemic symptoms in Nicotiana occidentalis. Back-inoculation using sap from agroinfiltrated N. occidentalis produced identical symptoms to the recipient plants (N. occidentalis), and virus purification yielded flexuous carlavirus-like particles. However, unlike blueberry scorch virus (BlScV), BluVS caused symptomless infection in Chenopodium quinoa and reacted weakly to BlScV antibodies in an enzyme-linked immunosorbent assay. Collectively, the results provide evidence for the distinct speciation of BluVS. The availability of an infectious clone provides tools for future studies on the biology of the virus.


Asunto(s)
Arándanos Azules (Planta) , Carlavirus , Carlavirus/genética , Enfermedades de las Plantas , Genoma Viral/genética , Genómica
3.
Virol J ; 19(1): 182, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36357910

RESUMEN

BACKGROUND: Chrysanthemum virus B (CVB), a key member of the genus Carlavirus, family Betaflexiviridae, causes severe viral diseases in chrysanthemum (Chrysanthemum morifolium) plants worldwide. However, information on the mechanisms underlying the response of chrysanthemum plants to CVB is scant. METHODS: Here, an integrated next-generation sequencing and comparative transcriptomic analysis of chrysanthemum leaves was conducted to explore the molecular response mechanisms of plants to a Chinese isolate of CVB (CVB-CN) at the molecular level. RESULTS: In total, 4934 significant differentially expressed genes (SDEGs) were identified to respond to CVB-CN, of which 4097 were upregulated and 837 were downregulated. Gene ontology and functional classification showed that the majority of upregulated SDEGs were categorized into gene cohorts involved in plant hormone signal transduction, phenylpropanoid and flavonoid biosynthesis, and ribosome metabolism. Enrichment analysis demonstrated that ethylene pathway-related genes were significantly upregulated following CVB-CN infection, indicating a strong promotion of ethylene biosynthesis and signaling. Furthermore, disruption of the ethylene pathway in Nicotiana benthamiana, a model plant, using virus-induced gene silencing technology rendered them more susceptible to cysteine-rich protein of CVB-CN induced hypersensitive response, suggesting a crucial role of this pathway in response to CVB-CN infection. CONCLUSION: This study provides evidence that ethylene pathway has an essential role of plant in response to CVB and offers valuable insights into the defense mechanisms of chrysanthemum against Carlavirus.


Asunto(s)
Carlavirus , Chrysanthemum , Chrysanthemum/genética , Chrysanthemum/metabolismo , Carlavirus/genética , Transcriptoma , Etilenos/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Hojas de la Planta , China , Regulación de la Expresión Génica de las Plantas
4.
Arch Virol ; 167(12): 2555-2566, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36269413

RESUMEN

Cowpea mild mottle virus (CPMMV) is a flexuous filamentous virus that belongs to the genus Carlavirus (family Betaflexiviridae). The CPMMV genome contains six open reading frames (ORFs), among which the triple gene block (TGB), encoded by ORFs 2 to 4, has been reported to encode movement proteins for different viruses. The subcellular localization of the TGB proteins of CPMMV isolate CPMMV:BR:MG:09:2 was analysed by transient expression of each protein fused to a fluorophore. Overall, the accumulation pattern and interactions among CPMMV TGB proteins (TGBp) were similar to those of their counterparts from the potex-like group. Considering these similarities, we evaluated the potential interactions between the TGB proteins of CPMMV and of potato virus X, which could complement cell-to-cell movement. The TGBp2 and TGBp3 of PVX had an effect on CPMMV TGBp1, directing it to the plasmodesmata, but the reverse was not true.


Asunto(s)
Carlavirus , Flexiviridae , Potexvirus , Nicotiana , Proteínas Virales/genética , Proteínas Virales/metabolismo , Carlavirus/genética , Potexvirus/genética , Flexiviridae/genética
5.
Virus Genes ; 58(4): 367-371, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35426563

RESUMEN

The complete genome sequences of two carlaviruses were determined by high-throughput sequencing of RNA extracted from ringspot and mosaic, disease symptoms on leaves of spider lily plants (Crinum asiaticum, family Amaryllidaceae) growing as landscape plants in Hawaii. One, named Nerine latent virus (NeLV)-Hawaii with a genome of 8281 nucleotide exhibited the highest nucleotide identity and amino acid similarity of 95.5% and 96.0%, respectively, to the genome sequence of an isolate of NeLV from Narcissus sp. in Australia (JQ395044). The second, named Hippeastrum latent virus (HiLV)-Hawaii with a genome of 8497 nucleotides exhibited the highest nucleotide identity and amino acid similarity, 84.3% and 88.7%, respectively, to the sequence of a previously uncharacterized HiLV isolate from a potted flowering plant, Amaryllis (Hippeastrum hybridum Hort) in Taiwan (DQ098905). The amino acid sequence similarities of replicase (Rep) and coat protein (CP) between HiLV-Hawaii and NeLV-Hawaii were 44.8% and 38.4%, respectively. Results of viral protein Rep and CP amino acid sequence comparisons from various carlaviruses provide evidence that HiLV and NeLV, previously classified as synonymous viruses are in fact unique viruses. This is the first report for the complete sequence, organization, and phylogenetic characterization of HiLV and the first detection of HiLV both in C. asiaticum and in the USA.


Asunto(s)
Amaryllidaceae , Carlavirus , Amaryllidaceae/genética , Aminoácidos/genética , Carlavirus/genética , Genoma Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Nucleótidos , Filogenia , Enfermedades de las Plantas , ARN Viral/genética
6.
Virol J ; 18(1): 131, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34187522

RESUMEN

BACKGROUND: Certification of seed potato as free of viruses is essential for stable potato production. Among more than 30 virus species infecting potato, potato leafroll virus (PLRV), potato virus S (PVS), potato virus X (PVX), and potato virus Y (PVY) predominate worldwide and should be the targets of a high-throughput detection protocol for seed potato quarantine. RESULTS: We developed an assay based on one-step real-time multiplex reverse transcription-polymerase chain reaction (mRT-PCR) with melt curve analysis for the four viruses and one internal control, potato elongation factor 1 alpha gene (EF1α). Virus-specific primers were derived from conserved regions among randomly selected representatives considering viral genomic diversity. Our assay simultaneously detected representative Japanese isolates of PLRV, O lineage of PVS, PVX, and NTN strain of PVY. The variability of melting temperature (Tm) values for each virus was confirmed using Japanese isolates, and virus species could be identified by the values of 87.6 for PLRV, 85.9 for PVX, 82.2 (Ordinary lineage) to 83.1 (Andean lineage) for PVS, and 79.4 (NA-N strain) to 80.5 (O strain and NTN strain) for PVY on average. The reliability of calculation was validated by comparing the calculated Tm values and measured Tm values and the values had a strong linear correlation (correlation of determination: R2 = 0.9875). Based on the calculated Tm values, representative non-Japanese isolates could also be identified by our assay. For removing false positives, two criteria were set for the evaluation of result; successful amplification was considered as 30.0 ≥ threshold cycle value, and the virus-specific peak higher than the EF1α-specific peak was considered as positive. According to these criteria, our assay could detect PLRV and PVS from 100-fold dilution of potato leaf homogenate and PVX and PVY from 1000-fold in a model assay. CONCLUSION: This new high-throughput detection protocol using one-step real-time mRT-PCR was sensitive enough to detect viruses in a 100-fold dilution of singly-virus contaminated homogenate in a model assay. This protocol can detect the four viruses in one assay and yield faster results for a vast number of samples, and greatly save the labor for seed potato quarantine and field surveys.


Asunto(s)
Carlavirus , Luteoviridae , Enfermedades de las Plantas , Potexvirus , Potyvirus , Solanum tuberosum , Carlavirus/genética , Luteoviridae/genética , Reacción en Cadena de la Polimerasa Multiplex , Enfermedades de las Plantas/virología , Potexvirus/genética , Potyvirus/genética , Reproducibilidad de los Resultados , Transcripción Reversa , Solanum tuberosum/virología
7.
Arch Virol ; 166(12): 3499-3502, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34636953

RESUMEN

In the present study, the genome sequence of a potential novel virus, tentatively named "rose virus C" (RVC), was mined from publically available transcriptomic data from a Rosa chinensis plant. The complete genome sequence of RVC consists of 8,386 nt, excluding a 3' poly(A) tail, and contains five ORFs. Phylogenetic analysis showed that RVC clustered with members of the genus Carlavirus, family Betaflexiviridae. The replicase gene had 48.8-52.1% nt sequence identity to those of other carlaviruses, while the CP gene had 40.4-45.9% nt sequence identity, which is far below the species demarcation cutoff of 72%. The incidence of RVC in rose plants was low (5.4%). Overall, our data suggest that RVC is a novel atypical virus of the genus Carlavirus.


Asunto(s)
Carlavirus , Rosa , Carlavirus/genética , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas , ARN Viral/genética
8.
Arch Virol ; 166(1): 321-323, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33175220

RESUMEN

A new virus resembling members in the genus Carlavirus was identified in an Out of Yesteryear rose (Rosa sp.) by high-throughput sequencing. The virus was discovered during the screening of a rose virus collection belonging to Foundation Plant Services (UC-Davis). The full genome of the virus is 8825 nt long, excluding a poly(A) tail, and includes six predicted genes coding for replicase, triple gene block, coat protein (CP), and nucleic acid binding protein. The closest relative of the putative virus is rose virus A (RVA; genus Carlavirus), with 75% and 78% aa sequence identity in the replicase and CP, respectively. The relationship with RVA and other carlaviruses was supported by phylogenetic analyses using replicase and CP sequences. Based on genome organization, sequence identity, and phylogenetic analysis, the virus found in the Out of Yesteryear plant represents a new member of the genus Carlavirus and is provisionally named "rose virus B" (RVB). Further testing by reverse transcription PCR confirmed the presence of RVB in the original source and seven additional rose selections from the same collection.


Asunto(s)
Carlavirus/genética , Rosa/virología , Genoma Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Sistemas de Lectura Abierta/genética , Filogenia , Enfermedades de las Plantas/virología , ARN Viral/genética , Análisis de Secuencia de ADN/métodos
9.
Arch Virol ; 166(9): 2619-2621, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34213637

RESUMEN

The genome of a new carlavirus isolate from asymptomatic wild Capparis spinosa L. plants in Sicily was sequenced via high-throughput sequencing (HTS) and 5'/3' RACE experiments. The complete genomic sequence was found to be 8,280 nt in length, excluding the poly(A) tail, and contained five putative open reading frames (ORFs). Molecular characterization revealed a close relationship to caper latent virus (CapLV), with 87% and 90% nucleotide sequence identity to available partial sequences of the ORFs encoding the replicase and coat protein of that virus. According to the molecular criteria for species demarcation, which is based on the ORF-1- and ORF-5-encoded proteins, the virus characterized in this study could be considered a variant of CapLV, and we have thus designated it as CapLV-W.


Asunto(s)
Capparis/virología , Carlavirus/clasificación , Carlavirus/genética , Carlavirus/aislamiento & purificación , Enfermedades de las Plantas/virología , Secuenciación Completa del Genoma , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Sistemas de Lectura Abierta , Filogenia , ARN Viral/genética , Sicilia
10.
Arch Virol ; 166(5): 1513-1515, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33686515

RESUMEN

A novel virus was identified in aconite (Aconitum carmichaelii Debx.) in China by high-throughput sequencing (HTS) and tentatively named "aconite virus A" (AcVA). The genomic RNA of AcVA consists of 8,844 nucleotides, excluding the poly(A) at the 3' end. Analysis of the genomic organization of AcVA indicated that it possesses a genomic structure that is typical of carlaviruses and contains six putative open reading frames (ORFs). Pairwise analysis revealed that the replicase and coat protein of AcVA share the highest amino acid sequence identity (43.78% and 57.01%) with those of coleus vein necrosis virus (CVNV) and butterbur mosaic virus (ButMV), respectively. Based on the current classification criteria for carlaviruses, AcVA should be considered a distinct member of the genus Carlavirus.


Asunto(s)
Aconitum/virología , Carlavirus/genética , Genoma Viral/genética , Secuencia de Aminoácidos , Secuencia de Bases , Carlavirus/clasificación , China , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas/virología , Plantas Medicinales/virología , ARN Viral/genética , Proteínas Virales/genética
11.
Arch Virol ; 166(5): 1501-1505, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33677680

RESUMEN

The genus Carlavirus (family Betaflexiviridae, order Tymovirales) currently includes 53 species recognized by the ICTV. The NCBI GenBank database has 43 full-length carlavirus genome sequences (7,890 to 9,073 nt). Surprisingly, the type species Carnation latent virus is not associated with a complete genome sequence of a carnation latent virus (CLV) isolate; GenBank only has accessions with 1313 or fewer nucleotides. The goal of this study was to determine the full-length genome sequence of CLV. Naturally infected greenhouse-grown 'Kiwi Lace' carnation plants that tested positive for CLV by ELISA and RT-PCR were used as source plants for high-throughput sequencing, completed by 5' and 3' RACE and validated by Sanger sequencing of CLV-specific RT-PCR-generated amplicons. The complete CLV-KL sequence (MN450069) was determined to be 8,513 nt in length. In pairwise analysis, the genome shares 40-46% identity with recognized carlaviruses and the six in silico-translated proteins have 15-62% amino acid sequence identity to their respective carlavirus orthologs. The CLV-KL coat protein shares 98.4% identity with the NCBI reference sequence CLV-UK. In phylogenetic analysis, CLV clusters with butterbur mosaic virus, coleus vein necrosis virus, and garlic common latent virus. This is the first report of the full genome sequence of an isolate of carnation latent virus, the type member of the genus Carlavirus.


Asunto(s)
Carlavirus/genética , Dianthus/virología , Genoma Viral/genética , Secuencia de Aminoácidos , Secuencia de Bases , Carlavirus/clasificación , Carlavirus/aislamiento & purificación , Mapeo Cromosómico , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas/virología , ARN Viral/genética , Proteínas Virales/genética
12.
Arch Virol ; 165(1): 241-244, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31701224

RESUMEN

A novel virus was discovered in a Rosa wichuraiana Crep. by high-throughput sequencing and tentatively named "rose virus A" (RVA). Based on sequence identity and phylogenetic analysis, RVA represents a new member of the genus Carlavirus (family Betaflexiviridae). The genome of RVA is 8,849 nucleotides long excluding the poly(A) tail and contains six open reading frames (ORFs). The predicted ORFs code for a replicase, triple gene block (TGB), coat protein, and nucleic acid binding protein, as in a typical carlavirus. RVA is the first carlavirus identified in rose and has the highest nucleotide sequence similarity to poplar mosaic virus. Reverse transcription-PCR-based assays were developed to confirm the presence of RVA in the original source and to screen additional rose plants.


Asunto(s)
Carlavirus/genética , Rosa/virología , Secuenciación Completa del Genoma/métodos , Carlavirus/clasificación , Tamaño del Genoma , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Sistemas de Lectura Abierta , Filogenia
13.
Arch Virol ; 165(12): 2953-2959, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33040310

RESUMEN

Chrysanthemum virus B encodes a multifunctional p12 protein that acts as a transcriptional activator in the nucleus and as a suppressor of RNA silencing in the cytoplasm. Here, we investigated the impact of p12 on accumulation of major classes of small RNAs (sRNAs). The results show dramatic changes in the sRNA profiles characterised by an overall reduction in sRNA accumulation, changes in the pattern of size distribution of canonical siRNAs and in the ratio between sense and antisense strands, lower abundance of siRNAs with a U residue at the 5'-terminus, and changes in the expression of certain miRNAs, most of which were downregulated.


Asunto(s)
Carlavirus/genética , MicroARNs/genética , Interferencia de ARN , ARN de Planta/genética , ARN Interferente Pequeño/genética , Chrysanthemum/genética , Chrysanthemum/virología , Citoplasma/virología
14.
Virol J ; 16(1): 18, 2019 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-30728059

RESUMEN

BACKGROUND: Infectious cDNA clones are a powerful tool for studies on RNA viruses using reverse genetics. Potato virus S (PVS) is a carlavirus with a worldwide distribution. Although the complete genome sequences of many PVS isolates have been reported, the construction of an infectious cDNA clone of PVS is yet to be reported. The aim of this study is the development and molecular characterization of an infectious cDNA clone of PVS. METHODS: A full-length cDNA clone pPVS-H-FL-AB was constructed by connecting eight cDNA clones of PVS isolate H95. Capped RNA transcripts from pPVS-H-FL-AB and a modified clone pPVS-H-FL-H, containing the consensus genome sequence of PVS-H95, proved to be non-infectious. Therefore, a full-length cDNA clone pPVS-H-FL-ß was reconstructed from PVS-H00, isolated from PVS-H95 populations by repeating a single local lesion isolation in Chenopodium quinoa three times; PVS-H00 appeared to be a selected variant that survived genetic bottlenecks. The sequence of cDNA clone pPVS-H-FL-ß was determined as the genome sequence of PVS-H00 and compared with the consensus sequence of PVS-H95 genome. RESULTS: All Nicotiana occidentalis plants inoculated with ≥0.2 µg capped RNA transcripts from pPVS-H-FL-ß developed symptoms on upper leaves, as observed with PVS-H00 inoculation. Similar levels of viral genomic and subgenomic RNAs and coat protein were detected in systemically infected leaves. Sequence comparison of PVS-H95 and PVS-H00 revealed 370 nucleotide polymorphisms (4.4% of the entire genome sequence), causing 91 amino acid substitutions in six open reading frames (ORFs). The infectivity of chimeric RNAs derived from recombinants between the two cDNA clones revealed that the lack of infectivity of pPVS-H-FL-H transcripts was due to ORF1, which encodes replicase and harbors 80 amino acid substitutions compared with pPVS-H-FL-ß. Approximately 71.3% amino acid substitutions in replicase were located within the variable region of unknown function between the putative methyltransferase and ovarian tumor-like protease domains. CONCLUSIONS: This is the first report of the development of an infectious cDNA clone of PVS. Our analyses suggest that PVS population within a plant exists as quasispecies and the replicase sequence diversity of PVS obstruct the construction of a full-length infectious cDNA clone.


Asunto(s)
Carlavirus/genética , ADN Complementario , Solanum/virología , Clonación Molecular , Genoma Viral , Enfermedades de las Plantas/virología , Cuasiespecies , ARN Viral/genética , Nicotiana/virología
15.
Arch Virol ; 164(7): 1873-1876, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31076911

RESUMEN

Two large contigs with sequence similarities to different carlaviruses were identified by high-throughput sequencing in samples from a cactus plant. The complete genomes of the two viruses, tentatively named "cactus carlavirus 1" (CCV-1) and "cactus carlavirus 2" (CCV-2), were determined to be 8,441 and 8,396 nucleotides long, respectively, excluding the poly(A) tail. These viruses have the typical genomic organization of members of the genus Carlavirus. CCV-1 appears to be a cactus isolate of the carlavirus HSO-2016a, with 90.1% nucleotide sequence identity between the two virus genomes, whereas CCV-2 may be classified as a member of a new species. The sequences of CCV-2 and other carlaviruses are 48.9-60.0% identical at the whole-genome level.


Asunto(s)
Cactaceae/virología , Carlavirus/genética , Carlavirus/aislamiento & purificación , Genoma Viral/genética , Enfermedades de las Plantas/virología , ARN Viral/genética , Secuencia de Bases , Carlavirus/clasificación , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia
16.
Arch Virol ; 164(11): 2891-2894, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31506787

RESUMEN

Contigs with sequence similarity to potato virus P (PVP), which belongs to the genus Carlavirus, were identified by high-throughput sequencing analysis in potato tubers collected from a farmer's potato production field in Surazhevka, Artyom, Primorskiy Krai (Russia) in 2018. The complete genome sequence of this virus consisted of 8,394 nucleotides, excluding the poly(A) tail. This is the first report of PVP being detected outside South America. The isolate had high sequence similarity to PVP isolates from Argentina and Brazil, but low sequence similarity was observed in the genes encoding the RNA-dependent RNA polymerase (69% nucleotide sequence identity and 80% amino acid sequence identity) and coat protein (78% nucleotide sequence identity and 89% amino acid sequence identity). Phylogenetic analysis revealed that this PVP-like virus clustered with known PVP isolates but was distinct from them. Comparison of the sequences using the classification criteria of the ICTV indicated that this PVP-like virus is a strain of PVP.


Asunto(s)
Carlavirus/genética , Genoma Viral/genética , Enfermedades de las Plantas/virología , Solanum tuberosum/virología , Secuencia de Aminoácidos , Proteínas de la Cápside/genética , Carlavirus/clasificación , Carlavirus/aislamiento & purificación , ARN Polimerasas Dirigidas por ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Viral/genética , Federación de Rusia , Secuenciación Completa del Genoma
17.
Arch Virol ; 163(7): 1973-1976, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29525974

RESUMEN

A new virus causing a serious stunt disease of chrysanthemum was identified in China by high-throughput sequencing (HTS) and named chrysanthemum virus R (CVR). The complete sequence of CVR was determined by reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). The genomic RNA of CVR consists of 8,874 nucleotides (nt), excluding the poly(A) tail, contains six putative open reading frames (ORFs), and has a genomic organization typical of members of the genus Carlavirus. BLAST analysis of the full genome sequence showed low similarity (38%-56% sequence identity) to other members of the genus Carlavirus. BLAST analysis and phylogenetic analysis based on the amino acid (aa) sequences of the CVR replicase and coat protein (CP) confirmed that CVR is a distinct member of the genus Carlavirus.


Asunto(s)
Carlavirus/genética , Chrysanthemum/virología , Nucleótidos/genética , Enfermedades de las Plantas/virología , Secuencia de Aminoácidos , Carlavirus/aislamiento & purificación , China , ADN Complementario , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Sistemas de Lectura Abierta , Filogenia , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN
18.
Appl Microbiol Biotechnol ; 102(24): 10743-10754, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30291368

RESUMEN

Availability of and easy access to diverse plant viruses and viroids is a prerequisite in applied and basic studies related to viruses and viroids. Long-term preservation of viruses and viroids is difficult. A protocol was described for long-term preservation of potato leafroll virus (PLRV), potato virus S (PVS), and potato spindle tuber viroid (PSTVd) in cryopreserved shoot tips of potato cv. Zihuabai. Shoot regrowth levels following cryopreservation were higher in 1.5 mm-shoot tips (58-60%) than in 0.5-mm-ones (30-38%). All shoots recovered from 0.5-mm-shoot tips were PVS- and PSTVd-preserved, but none of them were PLRV-preserved. Cryopreservation of 1.5-mm-shoot tips resulted in 35% and 100% of PLRV- and PVS- and PSTVd-preserved shoots. Studies on cell survival patterns and virus localization provided explanations to the varying PLRV-preservation frequencies produced by cryopreservation of the two sizes of shoot tips. Although micropropagation efficiencies were low after 12 weeks of subculture following cryopreservation, similar efficiencies were obtained after 16 weeks of subculture in pathogen-preserved shoots recovered from cryopreservation, compared with the diseased in vitro stock shoots (the control). Pathogen concentrations in the three pathogens-preserved shoots analyzed by qRT-PCR were similar to those in micropropagated shoots. The three pathogens cryopreserved in shoot tips were readily transmitted by grafting and mechanical inoculation to potato plants. PLRV, PVS, and PSTVd represent a diverse range of plant viruses and viroid in terms of taxonomy and infectious ability. Therefore, shoot tip cryopreservation opens a new avenue for long-term preservation of the virus and viroid.


Asunto(s)
Carlavirus , Luteoviridae , Brotes de la Planta/virología , Solanum tuberosum/virología , Viroides , Carlavirus/genética , Regulación Viral de la Expresión Génica , Luteoviridae/genética , Enfermedades de las Plantas/virología , Patología de Plantas , Brotes de la Planta/crecimiento & desarrollo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Viroides/genética
19.
Plant Dis ; 102(5): 869-885, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-30673374

RESUMEN

Biological characteristics of 11 Potato virus S (PVS) isolates from three cultivated potato species (Solanum spp.) growing in five Andean countries and 1 from Scotland differed in virulence depending on isolate and host species. Nine isolates infected Chenopodium quinoa systemically but two others and the Scottish isolate remained restricted to inoculated leaves; therefore, they belonged to biologically defined strains PVSA and PVSO, respectively. When nine wild potato species were inoculated, most developed symptomless systemic infection but Solanum megistacrolobum developed systemic hypersensitive resistance (SHR) with one PVSO and two PVSA isolates. Andean potato cultivars developed mostly asymptomatic primary infection but predominantly symptomatic secondary infection. In both wild and cultivated potato plants, PVSA and PVSO elicited similar foliage symptoms. Following graft inoculation, all except two PVSO isolates were detected in partially PVS-resistant cultivar Saco, while clone Snec 66/139-19 developed SHR with two isolates each of PVSA and PVSO. Myzus persicae transmitted all nine PVSA isolates but none of the three PVSO isolates. All 12 isolates were transmitted by plant-to-plant contact. In infective sap, all isolates had thermal inactivation points of 55 to 60°C. Longevities in vitro were 25 to 40 days with six PVSA isolates but less than 21 days for the three PVSO isolates. Dilution end points were 10-3 for two PVSO isolates but 10-4 to 10-6 with the other isolates. Complete new genome sequences were obtained from seven Andean PVS isolates; seven isolates from Africa, Australia, or Europe; and single isolates from S. muricatum and Arracacia xanthorhiza. These 17 new genomes and 23 from GenBank provided 40 unique sequences; however, 5 from Eurasia were recombinants. Phylogenetic analysis of the 35 nonrecombinants revealed three major lineages, two predominantly South American (SA) and evenly branched and one non-SA with a single long basal branch and many distal subdivisions. Using least squares dating and nucleotide sequences, the two nodes of the basal PVS trifurcation were dated at 1079 and 1055 Common Era (CE), the three midphylogeny nodes of the SA lineages at 1352, 1487, and 1537 CE, and the basal node to the non-SA lineage at 1837 CE. The Potato rough dwarf virus/Potato virus P (PVS/PRDV/PVP) cluster was sister to PVS and diverged 5,000 to 7,000 years ago. The non-SA PVS lineage contained 18 of 19 isolates from S. tuberosum subsp. tuberosum but the two SA lineages contained 6 from S. tuberosum subsp. andigena, 4 from S. phureja, 3 from S. tuberosum subsp. tuberosum, and 1 each from S. muricatum, S. curtilobum, and A. xanthorrhiza. This suggests that a potato-infecting proto-PVS/PRDV/PVP emerged in South America at least 5,000 years ago, became endemic, and diverged into a range of local Solanum spp. and other species, and one early lineage spread worldwide in potato. Preventing establishment of the SA lineages is advised for all countries still without them.


Asunto(s)
Carlavirus/genética , Carlavirus/fisiología , Filogenia , Enfermedades de las Plantas/virología , Solanum tuberosum/virología , Hojas de la Planta/virología , América del Sur
20.
Acta Virol ; 62(2): 214-219, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29895164

RESUMEN

The aim of this study was to investigate biological and molecular properties of two Ukrainian tomato isolates of potato virus M (PVM), K-16 and Pol-14, to determine their phylogenetic relationships and the genetic variability of PVM isolates. Study of phylogenetic relationships of two Ukrainian tomato PVM isolates with 35 isolates represented in GenBank was conducted. It was found that the coat protein (CP) gene sequence identity between two Ukrainian PVM isolates is 94.3% at the nucleotide level and 100% at the amino acid level. The highest level of the sequence identity (97.0% and 96.5% nt and 100% aa) have the isolates K-16 and Pol-14 with the German potato isolate DSMZ PV0273, Indian potato isolates Del 123, Del 134, Del 147, M 34 and Chinese isolate from pepino GS-6-2 (isolate K-16), which testifies about their common origin. Ukrainian tomato isolates K-16 and Pol-14 belong together with all European, Chinese, Iranian, Indian isolates to PVM-o clade or group I. It was found that the nucleotide substitutions in the capsid protein gene of all tomato PVM isolates (except the Italian) are synonymous. Analysis showed that the global dN/dS ratio for the entire CP gene sequences used in the study was 0.041 (p Keywords: potato virus M; Solanum lycopersicum; phylogenetic analysis; genetic variability; selection pressure.


Asunto(s)
Carlavirus/aislamiento & purificación , Variación Genética , Filogenia , Enfermedades de las Plantas/virología , Solanum lycopersicum/virología , Proteínas de la Cápside/genética , Carlavirus/clasificación , Carlavirus/genética , Irán , Solanum tuberosum/virología , Ucrania
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA