RESUMEN
Protein engineering and screening of processive fungal cellobiohydrolases (CBHs) remain challenging due to limited expression hosts, synergy-dependency, and recalcitrant substrates. In particular, glycoside hydrolase family 7 (GH7) CBHs are critically important for the bioeconomy and typically difficult to engineer. Here, we target the discovery of highly active natural GH7 CBHs and engineering of variants with improved activity. Using experimentally assayed activities of genome mined CBHs, we applied sequence and structural alignments to top performers to identify key point mutations linked to improved activity. From â¼1500 known GH7 sequences, an evolutionarily diverse subset of 57 GH7 CBH genes was expressed in Trichoderma reesei and screened using a multiplexed activity screening assay. Ten catalytically enhanced natural variants were identified, produced, purified, and tested for efficacy using industrially relevant conditions and substrates. Three key amino acids in CBHs with performance comparable or superior to Penicillium funiculosum Cel7A were identified and combinatorially engineered into P. funiculosum cel7a, expressed in T. reesei, and assayed on lignocellulosic biomass. The top performer generated using this combined approach of natural diversity genome mining, experimental assays, and computational modeling produced a 41% increase in conversion extent over native P. funiculosum Cel7A, a 55% increase over the current industrial standard T. reesei Cel7A, and 10% improvement over Aspergillus oryzae Cel7C, the best natural GH7 CBH previously identified in our laboratory.
Asunto(s)
Celulosa 1,4-beta-Celobiosidasa , Pruebas de Enzimas , Genoma Fúngico , Mutación , Ingeniería de Proteínas , Aspergillus oryzae/enzimología , Aspergillus oryzae/genética , Celulosa 1,4-beta-Celobiosidasa/química , Celulosa 1,4-beta-Celobiosidasa/clasificación , Celulosa 1,4-beta-Celobiosidasa/genética , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Genoma Fúngico/genética , Ingeniería de Proteínas/métodos , Especificidad por Sustrato , Talaromyces/enzimología , Talaromyces/genética , Trichoderma/enzimología , Trichoderma/genética , Trichoderma/metabolismo , BiocatálisisRESUMEN
Xylophagous larvae of longhorned beetles (Coleoptera; Cerambycidae) efficiently break down polysaccharides of the plant cell wall, which make the bulk of their food, using a range of carbohydrate-active enzymes (CAZymes). In this study, we investigated the function and evolutionary history of the first identified example of insect-encoded members of glycoside hydrolase family 7 (GH7) derived from the Lamiinae Exocentrus adspersus. The genome of this beetle contained two genes encoding GH7 proteins located in tandem and flanked by transposable elements. Phylogenetic analysis revealed that the GH7 sequences of E. adspersus were closely related to those of Ascomycete fungi, suggesting that they were acquired through horizontal gene transfer (HGT) from fungi. However, they were more distantly related to those encoded by genomes of Crustacea and of protist symbionts of termites and cockroaches, supporting that the same enzyme family was recruited several times independently in Metazoa during the course of their evolution. The recombinant E. adspersus GH7 was found to primarily break down cellulose polysaccharides into cellobiose, indicating that it is a cellobiohydrolase, and could also use smaller cellulose oligomers as substrates. Additionally, the cellobiohydrolase activity was boosted by the presence of calcium chloride. Our findings suggest that the combination of GH7 cellobiohydrolases with other previously characterized endo-ß-1,4-glucanases and ß-glucosidases allows longhorned beetles like E. adspersus to efficiently break down cellulose into monomeric glucose.
Asunto(s)
Escarabajos , Animales , Escarabajos/metabolismo , Celulosa 1,4-beta-Celobiosidasa/genética , Celulosa 1,4-beta-Celobiosidasa/química , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Filogenia , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Polisacáridos , CelulosaRESUMEN
Efficient enzymatic saccharification of cellulosic biomass into fermentable sugars can enable production of bioproducts like ethanol. Native crystalline cellulose, or cellulose I, is inefficiently processed via enzymatic hydrolysis but can be converted into the structurally distinct cellulose III allomorph that is processed via cellulase cocktails derived from Trichoderma reesei up to 20-fold faster. However, characterization of individual cellulases from T. reesei, like the processive exocellulase Cel7A, shows reduced binding and activity at low enzyme loadings toward cellulose III. To clarify this discrepancy, we monitored the single-molecule initial binding commitment and subsequent processive motility of Cel7A enzymes and associated carbohydrate-binding modules (CBMs) on cellulose using optical tweezers force spectroscopy. We confirmed a 48% lower initial binding commitment and 32% slower processive motility of Cel7A on cellulose III, which we hypothesized derives from reduced binding affinity of the Cel7A binding domain CBM1. Classical CBM-cellulose pull-down assays, depending on the adsorption model fitted, predicted between 1.2- and 7-fold reduction in CBM1 binding affinity for cellulose III. Force spectroscopy measurements of CBM1-cellulose interactions, along with molecular dynamics simulations, indicated that previous interpretations of classical binding assay results using multisite adsorption models may have complicated analysis, and instead suggest simpler single-site models should be used. These findings were corroborated by binding analysis of other type-A CBMs (CBM2a, CBM3a, CBM5, CBM10, and CBM64) on both cellulose allomorphs. Finally, we discuss how complementary analytical tools are critical to gain insight into the complex mechanisms of insoluble polysaccharides hydrolysis by cellulolytic enzymes and associated carbohydrate-binding proteins.
Asunto(s)
Celulasas/metabolismo , Celulosa/metabolismo , Hypocreales/enzimología , Adsorción , Proteínas Portadoras/metabolismo , Dominio Catalítico , Celulasa/química , Celulasas/química , Celulosa 1,4-beta-Celobiosidasa/química , Hidrólisis , Hypocreales/metabolismo , Simulación de Dinámica Molecular , Unión Proteica , Trichoderma/enzimologíaRESUMEN
Glycoengineering ultimately allows control over glycosylation patterns to generate new glycoprotein variants with desired properties. A common challenge is glycan heterogeneity, which may affect protein function and limit the use of key techniques such as mass spectrometry. Moreover, heterologous protein expression can introduce nonnative glycan chains that may not fulfill the requirement for therapeutic proteins. One strategy to address these challenges is partial trimming or complete removal of glycan chains, which can be obtained through selective application of exoglycosidases. Here, we demonstrate an enzymatic O-deglycosylation toolbox of a GH92 α-1,2-mannosidase from Neobacillus novalis, a GH2 ß-galactofuranosidase from Amesia atrobrunnea and the jack bean α-mannosidase. The extent of enzymatic O-deglycosylation was mapped against a full glycosyl linkage analysis of the O-glycosylated linker of cellobiohydrolase I from Trichoderma reesei (TrCel7A). Furthermore, the influence of deglycosylation on TrCel7A functionality was evaluated by kinetic characterization of native and O-deglycosylated forms of TrCel7A. This study expands structural knowledge on fungal O-glycosylation and presents a ready-to-use enzymatic approach for controlled O-glycan engineering in glycoproteins expressed in filamentous fungi.
Asunto(s)
Celulosa 1,4-beta-Celobiosidasa , Manosa , Celulosa 1,4-beta-Celobiosidasa/química , Proteínas Fúngicas/metabolismo , Glicosilación , Manosa/metabolismo , Manosidasas/genética , Manosidasas/metabolismo , alfa-Manosidasa/metabolismoRESUMEN
Cellobiohydrolases directly convert crystalline cellulose into cellobiose and are of biotechnological interest to achieve efficient biomass utilization. As a result, much research in the field has focused on identifying cellobiohydrolases that are very fast. Cellobiohydrolase A from the bacterium Cellulomonas fimi (CfCel6B) and cellobiohydrolase II from the fungus Trichoderma reesei (TrCel6A) have similar catalytic domains (CDs) and show similar hydrolytic activity. However, TrCel6A and CfCel6B have different cellulose-binding domains (CBDs) and linkers: TrCel6A has a glycosylated peptide linker, whereas CfCel6B's linker consists of three fibronectin type 3 domains. We previously found that TrCel6A's linker plays an important role in increasing the binding rate constant to crystalline cellulose. However, it was not clear whether CfCel6B's linker has similar function. Here we analyze kinetic parameters of CfCel6B using single-molecule fluorescence imaging to compare CfCel6B and TrCel6A. We find that CBD is important for initial binding of CfCel6B, but the contribution of the linker to the binding rate constant or to the dissociation rate constant is minor. The crystal structure of the CfCel6B CD showed longer loops at the entrance and exit of the substrate-binding tunnel compared with TrCel6A CD, which results in higher processivity. Furthermore, CfCel6B CD showed not only fast surface diffusion but also slow processive movement, which is not observed in TrCel6A CD. Combined with the results of a phylogenetic tree analysis, we propose that bacterial cellobiohydrolases are designed to degrade crystalline cellulose using high-affinity CBD and high-processivity CD.
Asunto(s)
Proteínas Bacterianas/química , Cellulomonas/enzimología , Celulosa 1,4-beta-Celobiosidasa/química , Proteínas Fúngicas/química , Hypocreales/enzimología , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dominio Catalítico , Cellulomonas/química , Cellulomonas/metabolismo , Celulosa/metabolismo , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Cristalografía por Rayos X , Proteínas Fúngicas/metabolismo , Hypocreales/química , Hypocreales/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Especificidad por SustratoRESUMEN
This study provides computational-assisted engineering of the cellobiohydrolase I (CBH-I) from Penicillium verruculosum with simultaneous enhanced thermostability and tolerance in ionic liquids, deep eutectic solvent, and concentrated seawater without affecting its wild-type activity. Engineered triple variant CBH-I R1 (A65R-G415R-S181F) showed 2.48-fold higher thermostability in terms of relative activity at 65°C after 1 h of incubation when compared with CBH-I wild type. CBH-I R1 exhibited 1.87-fold, 1.36-fold, and 1.57-fold higher specific activities compared with CBH-I wild type in [Bmim]Cl (50 g/L), [Ch]Cl (50 g/L), and two-fold concentrated seawater, respectively. In the multicellulases mixture, CBH-I R1 showed higher hydrolytic efficiency to hydrolyze aspen wood compared with CBH-I wild type in the buffer, [Bmim]Cl (50 g/L), and two-fold concentrated seawater, respectively. Structural analysis revealed a molecular basis for the higher stability of the CBH-I structure in which A65R and G415R substitutions form salt bridges (D64 R65, E411 R415) and S181F forms π-π interaction (Y155 F181), leading to stabilize surface-exposed flexible α-helixes and loop in the multidomain ß-jelly roll fold structure, respectively. In conclusion, the variant CBH-I R1 could enable efficient lignocellulosic biomass degradation as a cost-effective alternative for the sustainable production of biofuels and value-added chemicals.
Asunto(s)
Biomasa , Celulosa 1,4-beta-Celobiosidasa , Proteínas Fúngicas , Lignina/química , Ingeniería de Proteínas , Talaromyces , Celulosa 1,4-beta-Celobiosidasa/química , Celulosa 1,4-beta-Celobiosidasa/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Talaromyces/enzimología , Talaromyces/genéticaRESUMEN
Cellobiohydrolase Cel7A is an industrial important enzyme that breaks down cellulose by a complex processive mechanism. The enzyme threads the reducing end of a cellulose strand into its tunnel-shaped catalytic domain and progresses along the strand while sequentially releasing the disaccharide cellobiose. While some molecular details of this intricate process have emerged, general structure-function relationships for Cel7A remain poorly elucidated. One interesting aspect is the occurrence of particularly strong ligand interactions in the product binding site. In this work, we analyze these interactions in Cel7A from Trichoderma reesei with special emphasis on the Arg251 and Arg394 residues. We made extensive biochemical characterization of enzymes that were mutated in these two positions and showed that the arginine residues contributed strongly to product binding. Specifically, â¼50% of the total standard free energy of product binding could be ascribed to four hydrogen bonds to Arg251 and Arg394, which had previously been identified in crystal structures. Mutation of either Arg251 or Arg394 lowered production inhibition of Cel7A, but at the same time altered the enzyme product profile and resulted in â¼50% reduction in both processivity and hydrolytic activity. The position of the two arginine residues closely matches the two-fold screw axis symmetry of the substrate, and this energetically favors the productive enzyme-substrate complex. Our results indicate that the strong and specific ligand interactions of Arg251 and Arg394 provide a simple proofreading system that controls the step length during consecutive hydrolysis and minimizes dead time associated with transient, non-productive complexes.
Asunto(s)
Celulosa 1,4-beta-Celobiosidasa/química , Proteínas Fúngicas/química , Trichoderma/enzimología , Sitios de Unión , Dominio Catalítico , Hidrólisis , CinéticaRESUMEN
In the present study, the cellulose from sugarcane tops (SCT) was separated and characterized for its purity. Approximately, 85% (w/w) of total cellulose present in raw SCT was recovered by using alkaline method. The monosaccharide analysis of SCT cellulose by HPLC showed 91% D-glucose, 7.5% D-xylose and 1.5% D-arabinose residues. Surface morphology study of dried cellulosic fibers by FESEM exhibited the fibrous structure. The FTIR analysis of separated cellulose displayed the peaks corresponding to the peaks obtained from commercial cellulose, confirming its purity. The crystallinity index (CrI) of separated cellulose increased to 49% after delignification and xylan extraction from 36% of raw SCT. The typical TGA curve of separated SCT cellulose showed decomposition and mass reduction at 327 °C resulting in single decomposition peak in TGA analysis, confirming its purity. CHNS analysis supported the purity of separated cellulose by confirming absence of nitrogen and sulfur. The separated cellulose was hydrolyzed by recombinant endo-ß-1,4-glucanase (CtCel8A), cellobiohydrolase (CtCBH5A) from Clostridium themocellum and ß-1,4-glucosidase (HtBgl) from Hungateiclostridium thermocellum at pH 5.8, 50 °C for 24 h, resulting in the production of 188 mg/g of total reducing sugar (TRS). The separated cellulose from SCT can be utilized as an alternative substrate for commercialization and for bioethanol production.
Asunto(s)
Proteínas Bacterianas/química , Celulasa/química , Celulosa 1,4-beta-Celobiosidasa/química , Celulosa/química , Saccharum/química , Proteínas Bacterianas/genética , Celulasa/genética , Celulosa 1,4-beta-Celobiosidasa/genética , Clostridium thermocellum/enzimología , Clostridium thermocellum/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genéticaRESUMEN
Glycoside hydrolase family 7 (GH7) cellulases are some of the most efficient degraders of cellulose, making them particularly relevant for industries seeking to produce renewable fuels from lignocellulosic biomass. The secretome of the cellulolytic model fungus Trichoderma reesei contains two GH7s, termed TrCel7A and TrCel7B. Despite having high structural and sequence similarities, the two enzymes are functionally quite different. TrCel7A is an exolytic, processive cellobiohydrolase (CBH), with high activity on crystalline cellulose, whereas TrCel7B is an endoglucanase (EG) with a preference for more amorphous cellulose. At the structural level, these functional differences are usually ascribed to the flexible loops that cover the substrate-binding areas. TrCel7A has an extensive tunnel created by eight peripheral loops, and the absence of four of these loops in TrCel7B makes its catalytic domain a more open cleft. To investigate the structure-function relationships of these loops, here we produced and kinetically characterized several variants in which four loops unique to TrCel7A were individually deleted to resemble the arrangement in the TrCel7B structure. Analysis of a range of kinetic parameters consistently indicated that the B2 loop, covering the substrate-binding subsites -3 and -4 in TrCel7A, was a key determinant for the difference in CBH- or EG-like behavior between TrCel7A and TrCel7B. Conversely, the B3 and B4 loops, located closer to the catalytic site in TrCel7A, were less important for these activities. We surmise that these results could be useful both in further mechanistic investigations and for guiding engineering efforts of this industrially important enzyme family.
Asunto(s)
Secuencia de Aminoácidos , Celulosa 1,4-beta-Celobiosidasa , Proteínas Fúngicas , Eliminación de Secuencia , Trichoderma , Celulosa 1,4-beta-Celobiosidasa/química , Celulosa 1,4-beta-Celobiosidasa/genética , Cristalografía por Rayos X , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Estructura Secundaria de Proteína , Trichoderma/enzimología , Trichoderma/genéticaRESUMEN
Enzymes involved in ß-glucan breakdown in plants include endoglucanases, exoglucanases and ß-glucosidases. Glycoside hydrolase family 3 (GH3) exoglucanases from barley and maize and a few plant GH3 ß-glucosidases have been characterized, but none from rice. A few of these enzymes have been expressed in recombinant yeast and plant systems, but bacterial expression of plant GH3 enzymes has not been successful. We expressed the rice GH3 exoglucanase OsExo2 in Escherichia coli as a thioredoxin fusion protein, while other active plant GH3 enzymes could not be produced in this system. The protein was purified over 2000-fold in three chromatographic steps. The enzyme hydrolyzed ß-1,3- and ß-1,4-linked oligosaccharides and polysaccharides, consistent with a role in cell wall remodeling. Of the oligosaccharides tested, it had highest catalytic efficiency toward laminaritriose, (apparent kcat/Km = 37.7 mM-1s-1). Among polysaccharides, OsExoII hydrolyzed barley mixed ß-glucan and laminarin with similar efficiencies (apparent kcat/Km = 3.7 and 3.4 mL mg-1 s-1, respectively), but achieved its highest apparent kcat with lichenan (2.9 s-1). OsExoII was found to be stimulated by ethylene glycol, which increased the apparent kcat and decreased the Km and was transglycosylated. These results imply that E. coli expression may be successful for certain plant GH3 enzymes and OsExoII may be a useful enzyme for application to glycoside production.
Asunto(s)
Celulosa 1,4-beta-Celobiosidasa , Oryza/genética , Proteínas de Plantas , Proteínas Recombinantes de Fusión , Tiorredoxinas , Catálisis , Celulosa 1,4-beta-Celobiosidasa/biosíntesis , Celulosa 1,4-beta-Celobiosidasa/química , Celulosa 1,4-beta-Celobiosidasa/genética , Celulosa 1,4-beta-Celobiosidasa/aislamiento & purificación , Escherichia coli/genética , Escherichia coli/metabolismo , Oligosacáridos/química , Oryza/enzimología , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Tiorredoxinas/biosíntesis , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/aislamiento & purificaciónRESUMEN
Cellobiohydrolases (CBHs) from glycoside hydrolase family 6 (GH6) make up an important part of the secretome in many cellulolytic fungi. They are also of technical interest, particularly because they are part of the enzyme cocktails that are used for the industrial breakdown of lignocellulosic biomass. Nevertheless, functional studies of GH6 CBHs are scarce and focused on a few model enzymes. To elucidate functional breadth among GH6 CBHs, we conducted a comparative biochemical study of seven GH6 CBHs originating from fungi living in different habitats, in addition to one enzyme variant. The enzyme sequences were investigated by phylogenetic analyses to ensure that they were not closely related phylogenetically. The selected enzymes were all heterologously expressed in Aspergillus oryzae, purified and thoroughly characterized biochemically. This approach allowed direct comparisons of functional data, and the results revealed substantial variability. For example, the adsorption capacity on cellulose spanned two orders of magnitude and kinetic parameters, derived from two independent steady-state methods also varied significantly. While the different functional parameters covered wide ranges, they were not independent since they changed in parallel between two poles. One pole was characterized by strong substrate interactions, high adsorption capacity and low turnover number while the other showed weak substrate interactions, poor adsorption and high turnover. The investigated enzymes essentially defined a continuum between these two opposites, and this scaling of functional parameters raises interesting questions regarding functional plasticity and evolution of GH6 CBHs.
Asunto(s)
Celulosa 1,4-beta-Celobiosidasa , Evolución Molecular , Proteínas Fúngicas , Hongos , Filogenia , Celulosa 1,4-beta-Celobiosidasa/química , Celulosa 1,4-beta-Celobiosidasa/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Hongos/enzimología , Hongos/genética , Especificidad de la EspecieRESUMEN
Cellulose is the most abundant polysaccharide in lignocellulosic biomass, where it is interlinked with lignin and hemicellulose. Bioethanol can be produced from biomass. Since breaking down biomass is difficult, cellulose-active enzymes secreted by filamentous fungi play an important role in degrading recalcitrant lignocellulosic biomass. We characterized a cellobiohydrolase (AfCel6A) and lytic polysaccharide monooxygenase LPMO (AfAA9_B) from Aspergillus fumigatus after they were expressed in Pichia pastoris and purified. The biochemical parameters suggested that the enzymes were stable; the optimal temperature was ~60 °C. Further characterization revealed high turnover numbers (kcat of 147.9 s-1 and 0.64 s-1, respectively). Surprisingly, when combined, AfCel6A and AfAA9_B did not act synergistically. AfCel6A and AfAA9_B association inhibited AfCel6A activity, an outcome that needs to be further investigated. However, AfCel6A or AfAA9_B addition boosted the enzymatic saccharification activity of a cellulase cocktail and the activity of cellulase Af-EGL7. Enzymatic cocktail supplementation with AfCel6A or AfAA9_B boosted the yield of fermentable sugars from complex substrates, especially sugarcane exploded bagasse, by up to 95%. The synergism between the cellulase cocktail and AfAA9_B was enzyme- and substrate-specific, which suggests a specific enzymatic cocktail for each biomass by up to 95%. The synergism between the cellulase cocktail and AfAA9_B was enzyme- and substrate-specific, which suggests a specific enzymatic cocktail for each biomass.
Asunto(s)
Aspergillus fumigatus/enzimología , Celulasa/metabolismo , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Oxigenasas de Función Mixta/metabolismo , Aspergillus fumigatus/genética , Celulasa/química , Celulasa/genética , Celulosa 1,4-beta-Celobiosidasa/química , Celulosa 1,4-beta-Celobiosidasa/genética , Activación Enzimática , Hidrólisis , Cinética , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Modelos Moleculares , Conformación Proteica , Proteínas Recombinantes , Relación Estructura-Actividad , Especificidad por SustratoRESUMEN
Searching for viable strategies to accelerate the catalytic cycle of glycoside hydrolase family 7 (GH7) cellobiohydrolase I (CBHI)-the workhorse cellulose-degrading enzymes, we have performed a total of 12-µs molecular dynamics simulations on GH7 CBHI, which brought to light a new mechanism for cellobiose expulsion, coined "claw-arm" action. The loop flanking the product binding site plays the role of a flexible "arm" extending toward cellobiose, and residue Thr389 of this loop acts as a "claw" that captures cellobiose. Five mutations of residue Thr389 were considered to enhance the loop-cellobiose interaction. The lysine mutant was found to significantly accelerate cellobiose expulsion and facilitate polysaccharide-chain translocation. Lysine mutation of Thr393 in Talaromyces emersonii CBHI (TeCel7A) performed similarly. Lysine approaches the catalytic area and stabilizes the Michaelis complex, potentially affecting glycosylation, the rate-limiting step of the catalytic cycle. QM/MM calculations indicate that lysine replacement diminishes the barrier against proton transfer, the crucial step of glycosylation, by 2.3 kcal/mol. Experimental validation was performed using the full-length wild-type (WT) of TeCel7A and its mutants, recombinantly expressed in Pichia pastoris, to degrade the substrates. Compared with the WT, the lysine mutant revealed an associated higher enzymatic reaction rate. Furthermore, cellobiose yield was also increased by lysine mutation, indicating that dissociation of the enzyme from cellulose was accelerated, which largely stems from the enhanced flexibility of the "arm". The present work is envisioned to help design strategies for improving enzymatic activity, while decreasing enzyme cost.
Asunto(s)
Celulosa 1,4-beta-Celobiosidasa/metabolismo , Lisina/metabolismo , Biocatálisis , Celulosa 1,4-beta-Celobiosidasa/química , Lisina/química , Lisina/genética , Simulación de Dinámica Molecular , Mutación , Talaromyces/enzimologíaRESUMEN
Cellulases are glycosylated enzymes that have wide applications in fields like biofuels. It has been widely accepted that glycosylation of cellulases impact their performance. Trichoderma reesei is the most important cellulase-producer and cellobiohydrolase I (CBHI) is the most important cellulase from T. reesei. Therefore, the glycosylation of T. reesei CBHI has been a focus of research. However, investigations have been focused on N-glycosylation of three of the four potential glycosylation sites, as well as O-glycosylation on the linker region, while a full picture of glycosylation of T. reesei CBHI is still needed. In this work, with extensive mass spectrometric investigations on CBHI from two T. reesei strains grown under three conditions, several new discoveries were made: 1) N45 and N64 are N-glycosylated with high mannose type glycans; 2) the catalytic domain of CBHI is extensively O-glycosylated with hexoses and N-acetylhexosamines; 3) experimental evidence on the mannosylation of carbohydrate binding domain (other than the linker adjacent region) was found. With structural analysis, we found several glycosylation sites (such as T383, S8, and S46) are located at the openings of the substrate-binding tunnel, and potentially involve in the binding of cellulose. These investigations provide a full and comprehensive picture on the glycosylation of CBHI from T. reesei, which benefits the engineering of CBHI by raising potential sites for modification.
Asunto(s)
Celulosa 1,4-beta-Celobiosidasa/química , Trichoderma/enzimología , Dominio Catalítico , Celulosa 1,4-beta-Celobiosidasa/aislamiento & purificación , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Glicosilación , Espectrometría de Masas , Polisacáridos/química , Ingeniería de ProteínasRESUMEN
The microscopic kinetics of enzymes at the single-molecule level often deviate considerably from those expected from bulk biochemical experiments. Here, we propose a coarse-grained-model approach to bridge this gap, focusing on the unexpectedly slow bulk hydrolysis of crystalline cellulose by cellulase, which constitutes a major obstacle to mass production of biofuels and biochemicals. Building on our previous success in tracking the movements of single molecules of cellulase on crystalline cellulose, we develop a mathematical description of the collective motion and function of enzyme molecules hydrolyzing the surface of cellulose. Model simulations robustly explained the experimental findings at both the microscopic and macroscopic levels and revealed a hitherto-unknown mechanism causing a considerable slowdown of the reaction, which we call the crowding-out effect. The size of the cellulase molecule impacted significantly on the collective dynamics, whereas the rate of molecular motion on the surface did not.
Asunto(s)
Celulasa/química , Modelos Químicos , Celulosa/química , Celulosa 1,4-beta-Celobiosidasa/química , Hidrólisis , Cinética , Trichoderma/enzimologíaRESUMEN
Lignin plays an important functional and structural role in plants, but also contributes to the recalcitrance of lignocellulosic biomass to hydrolysis. This study addresses the influence of lignin in hydrolysis of sugarcane bagasse from conventional bred lines (UFV260 and UFV204) that were selected from 432 field-grown clones. In addition to higher sugar production, bagasse clone UFV204 had a small, but statistically significant, lower insoluble lignin content compared with clone UFV260 (15.5% vs, 16.6%) and also exhibited a significantly higher cellulose conversion to glucose (81.3% vs. 63.3%) at a cellulase loading of 5 (filter paper unit) FPU/g of glucan or 3 FPU/g total solids for liquid hot water pretreated bagasse (200°C, 10 min). The enzyme loading was further decreased by 50% to 2.5 FPU/g glucan and resulted in a similar glucan conversion (88.5%) for clone UFV204 when the bagasse was preincubated with bovine serum albumin at pH 4.8 and nonproductive binding of cellulase components was blocked. Comparison of Langmuir adsorption isotherms and differential adsorption of the three major cellulolytic enzyme components endoglucanase, cellobiohydrolase, and ß-glucosidase help to explain differences due to lignin content.
Asunto(s)
Celulosa 1,4-beta-Celobiosidasa/química , Celulosa/química , Saccharum/química , Albúmina Sérica Bovina/química , HidrólisisRESUMEN
Cellobiohydrolases catalyze the processive hydrolysis of cellulose into cellobiose. Here, a Trichoderma virens cDNA predicted to encode for cellobiohydrolase (cbhI) was cloned and expressed heterologously in Aspergillus niger. The cbhI gene has an open reading frame of 1518 bp, encoding for a putative protein of 505 amino acid residues with a calculated molecular mass of approximately 54â¯kDa. The predicted CbhI amino acid sequence has a fungal type carbohydrate binding module separated from a catalytic domain by a threonine rich linker region and showed high sequence homology with glycoside hydrolase family 7 proteins. The partially purified enzyme has an optimum pH of 4.0 with stability ranging from pH 3.0 to 6.0 and an optimum temperature of 60⯰C. The partially purified CbhI has a specific activity of 4.195 Umg-1 and a low Km value of 1.88â¯mM when p-nitrophenyl-ß-D-cellobioside (pNPC) is used as the substrate. The catalytic efficiency (kcat/Km) was 5.68â¯×â¯10-4â¯mM-1s-1, which is comparable to the CbhI enzymes from Trichoderma viridae and Phanaerochaete chrysosporium. CbhI also showed activity towards complex substrates such as Avicel (0.011 Umg-1), which could be useful in complex biomass degradation. Interestingly, CbhI also exhibited a relatively high inhibition constant (Ki) for cellobiose with a value of 8.65â¯mM, making this enzyme more resistant to end-product inhibition compared to other fungal cellobiohydrolases.
Asunto(s)
Celulosa 1,4-beta-Celobiosidasa , Proteínas Fúngicas , Trichoderma , Aspergillus niger/enzimología , Aspergillus niger/genética , Celulosa 1,4-beta-Celobiosidasa/biosíntesis , Celulosa 1,4-beta-Celobiosidasa/química , Celulosa 1,4-beta-Celobiosidasa/genética , Celulosa 1,4-beta-Celobiosidasa/aislamiento & purificación , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Trichoderma/enzimología , Trichoderma/genéticaRESUMEN
Secreted mixtures of Hypocrea jecorina cellulases are able to efficiently degrade cellulosic biomass to fermentable sugars at large, commercially relevant scales. H. jecorina Cel7A, cellobiohydrolase I, from glycoside hydrolase family 7, is the workhorse enzyme of the process. However, the thermal stability of Cel7A limits its use to processes where temperatures are no higher than 50 °C. Enhanced thermal stability is desirable to enable the use of higher processing temperatures and to improve the economic feasibility of industrial biomass conversion. Here, we enhanced the thermal stability of Cel7A through directed evolution. Sites with increased thermal stability properties were combined, and a Cel7A variant (FCA398) was obtained, which exhibited a 10.4 °C increase in Tm and a 44-fold greater half-life compared with the wild-type enzyme. This Cel7A variant contains 18 mutated sites and is active under application conditions up to at least 75 °C. The X-ray crystal structure of the catalytic domain was determined at 2.1 Å resolution and showed that the effects of the mutations are local and do not introduce major backbone conformational changes. Molecular dynamics simulations revealed that the catalytic domain of wild-type Cel7A and the FCA398 variant exhibit similar behavior at 300 K, whereas at elevated temperature (475 and 525 K), the FCA398 variant fluctuates less and maintains more native contacts over time. Combining the structural and dynamic investigations, rationales were developed for the stabilizing effect at many of the mutated sites.
Asunto(s)
Celulosa 1,4-beta-Celobiosidasa , Proteínas Fúngicas , Calor , Hypocrea , Celulosa 1,4-beta-Celobiosidasa/química , Celulosa 1,4-beta-Celobiosidasa/genética , Cristalografía por Rayos X , Evolución Molecular Dirigida , Estabilidad de Enzimas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Hypocrea/enzimología , Hypocrea/genética , Simulación de Dinámica Molecular , Dominios ProteicosRESUMEN
At the catalytic site for the hydrolysis of cellulose the enzyme cellobiohydrolase Cel7A binds the enantiomers of the adrenergic beta-blocker propranolol with different selectivity. Methyl-to-hydroxymethyl group modifications of propranolol, which result in higher affinity and improved selectivity, were herein studied by 1 H,1 H and 1 H,13 C scalar spin-spin coupling constants as well as utilizing the nuclear Overhauser effect (NOE) in conjunction with molecular dynamics simulations of the ligands per se, which showed the presence of all-antiperiplanar conformations, except for the one containing a vicinal oxygen-oxygen arrangement governed by the gauche effect. For the ligand-protein complexes investigated by NMR spectroscopy using, inter alia, transferred NOESY and saturation-transfer difference (STD) NMR experiments the S-isomers were shown to bind with a higher affinity and a conformation similar to that preferred in solution, in contrast to the R-isomer. The fact that the S-form of the propranolol enantiomer is pre-arranged for binding to the protein is also observed for a crystal structure of dihydroxy-(S)-propranolol and Cel7A presented herein. Whereas the binding of propranolol is entropy driven, the complexation with the dihydroxy analogue is anticipated to be favored also by an enthalpic term, such as for its enantiomer, that is, dihydroxy-(R)-propranolol, because hydrogen-bond donation replaces the corresponding bonding from hydroxyl groups in glucosyl residues of the natural substrate. In addition to a favorable entropy component, albeit lesser in magnitude, this represents an effect of enthalpy-to-entropy compensation in ligand-protein interactions.
Asunto(s)
Celulosa 1,4-beta-Celobiosidasa/metabolismo , Hypocrea/enzimología , Propranolol/metabolismo , Sitios de Unión , Dominio Catalítico , Celulosa 1,4-beta-Celobiosidasa/química , Cristalografía por Rayos X , Hypocrea/química , Hypocrea/metabolismo , Isomerismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Propranolol/análogos & derivados , TermodinámicaRESUMEN
Cellobiohydrolase A from Ruminiclostridium thermocellum (Cbh9A) is a processive exoglucanase from family 9 and is an important cellobiohydrolase that hydrolyzes cello-oligosaccharide into cellobiose. Residues Tyr555 and Trp678 considerably affect catalytic activity, but their mechanisms are still unknown. To investigate how the Tyr555 and Trp678 affect the processivity of Cbh9A, conventional molecular dynamics, steered molecular dynamics, and free energy calculation were performed to simulate the processive process of wild type (WT)-Cbh9A, Y555S mutant, and W678G mutant. Analysis of simulation results suggests that the binding free energies between the substrate and WT-Cbh9A are lower than those of Y555S and W678G mutants. The pull forces and energy barrier in Y555S and W678G mutants also reduced significantly during the steered molecular dynamics (SMD) simulation compared with that of the WT-Cbh9A. And the potential mean force calculations showed that the pulling energy barrier of Y555S and W678G mutants is much lower than that of WT-Cbh9A.