RESUMEN
Sphingolipids are an important class of lipids present in all eukaryotic cells that regulate critical cellular processes. Disturbances in sphingolipid homeostasis have been linked to several diseases in humans. Ceramides are central in sphingolipid metabolism and are largely synthesized by six ceramide synthase (CerS) isoforms (CerS1-6), each with a preference for different fatty acyl chain lengths. Although the tissue distribution of CerS mRNA expression in humans and the roles of CerS isoforms in synthesizing ceramides with different acyl chain lengths are known, it is unknown how CerS expression dictates ceramides and downstream metabolites within tissues. In this study, we analyzed sphingolipid levels and CerS mRNA expression in 3-month-old C57BL/6J mouse brain, heart, kidney, liver, lung, and skeletal muscle. The results showed that CerS expression and sphingolipid species abundance varied by tissue and that CerS expression was a predictor of ceramide species within tissues. Interestingly, although CerS expression was not predictive of complex sphingolipid species within all tissues, composite scores for CerSs contributions to total sphingolipids measured in each tissue correlated to CerS expression. Lastly, we determined that the most abundant ceramide species in mouse tissues aligned with CerS mRNA expression in corresponding human tissues (based on chain length preference), suggesting that mice are relevant preclinical models for ceramide and sphingolipid research. SIGNIFICANCE STATEMENT: The current study demonstrates that ceramide synthase (CerS) expression in specific tissues correlates not only with ceramide species but contributes to the generation of complex sphingolipids as well. As many of the CerSs and/or specific ceramide species have been implicated in disease, these studies suggest the potential for CerSs as therapeutic targets and the use of sphingolipid species as diagnostics in specific tissues.
Asunto(s)
Ceramidas , Oxidorreductasas , Esfingolípidos , Ratones , Animales , Humanos , Lactante , Esfingolípidos/genética , Esfingolípidos/metabolismo , Ratones Endogámicos C57BL , Ceramidas/genética , Ceramidas/metabolismo , Isoformas de Proteínas , Envejecimiento/genética , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
CCR5 is not only a coreceptor for HIV-1 infection in CD4+ T cells, but also contributes to their functional fitness. Here, we show that by limiting transcription of specific ceramide synthases, CCR5 signaling reduces ceramide levels and thereby increases T-cell antigen receptor (TCR) nanoclustering in antigen-experienced mouse and human CD4+ T cells. This activity is CCR5-specific and independent of CCR5 co-stimulatory activity. CCR5-deficient mice showed reduced production of high-affinity class-switched antibodies, but only after antigen rechallenge, which implies an impaired memory CD4+ T-cell response. This study identifies a CCR5 function in the generation of CD4+ T-cell memory responses and establishes an antigen-independent mechanism that regulates TCR nanoclustering by altering specific lipid species.
Asunto(s)
Antígenos/inmunología , Linfocitos T CD4-Positivos/inmunología , Ceramidas/inmunología , Memoria Inmunológica , Receptores CCR5/deficiencia , Animales , Antígenos/genética , Linfocitos T CD4-Positivos/citología , Ceramidas/genética , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Receptores CCR5/inmunologíaRESUMEN
Toxoplasma gondii is an obligate, intracellular apicomplexan protozoan parasite of both humans and animals that can cause fetal damage and abortion and severe disease in the immunosuppressed. Sphingolipids have indispensable functions as signaling molecules and are essential and ubiquitous components of eukaryotic membranes that are both synthesized and scavenged by the Apicomplexa. Ceramide is the precursor for all sphingolipids, and here we report the identification, localization and analyses of the Toxoplasma ceramide synthases TgCerS1 and TgCerS2. Interestingly, we observed that while TgCerS1 was a fully functional orthologue of the yeast ceramide synthase (Lag1p) capable of catalyzing the conversion of sphinganine to ceramide, in contrast TgCerS2 was catalytically inactive. Furthermore, genomic deletion of TgCerS1 using CRISPR/Cas-9 led to viable but slow-growing parasites indicating its importance but not indispensability. In contrast, genomic knock out of TgCerS2 was only accessible utilizing the rapamycin-inducible Cre recombinase system. Surprisingly, the results demonstrated that this "pseudo" ceramide synthase, TgCerS2, has a considerably greater role in parasite fitness than its catalytically active orthologue (TgCerS1). Phylogenetic analyses indicated that, as in humans and plants, the ceramide synthase isoforms found in Toxoplasma and other Apicomplexa may have arisen through gene duplication. However, in the Apicomplexa the duplicated copy is hypothesized to have subsequently evolved into a non-functional "pseudo" ceramide synthase. This arrangement is unique to the Apicomplexa and further illustrates the unusual biology that characterize these protozoan parasites.
Asunto(s)
Parásitos , Toxoplasma , Humanos , Animales , Toxoplasma/genética , Duplicación de Gen , Filogenia , Esfingolípidos , Ceramidas/genética , Proteínas Protozoarias/genéticaRESUMEN
Herpes simplex virus (HSV)-1 dramatically alters the architecture and protein composition of cellular membranes during infection, but its effects upon membrane lipid composition remain unclear. HSV-1 pUL21 is a virus-encoded protein phosphatase adaptor that promotes dephosphorylation of multiple cellular and virus proteins, including the cellular ceramide (Cer) transport protein CERT. CERT mediates nonvesicular Cer transport from the endoplasmic reticulum to the trans-Golgi network, whereupon Cer is converted to sphingomyelin (SM) and other sphingolipids that play important roles in cellular proliferation, signaling, and membrane trafficking. Here, we use click chemistry to profile the kinetics of sphingolipid metabolism, showing that pUL21-mediated dephosphorylation activates CERT and accelerates Cer-to-SM conversion. Purified pUL21 and full-length CERT interact with submicromolar affinity, and we solve the solution structure of the pUL21 C-terminal domain in complex with the CERT Pleckstrin homology and steroidogenic acute regulatory-related lipid transfer domains using small-angle X-ray scattering. We identify a single amino acid mutation on the surface of pUL21 that disrupts CERT binding in vitro and in cultured cells. This residue is highly conserved across the genus Simplexvirus. In addition, we identify a pUL21 residue essential for binding to HSV-1 pUL16. Sphingolipid profiling demonstrates that Cer-to-SM conversion is severely diminished in the context of HSV-1 infection, a defect that is compounded when infecting with a virus encoding the mutated form of pUL21 that lacks the ability to activate CERT. However, virus replication and spread in cultured keratinocytes or epithelial cells is not significantly altered when pUL21-mediated CERT dephosphorylation is abolished. Collectively, we demonstrate that HSV-1 modifies sphingolipid metabolism via specific protein-protein interactions.
Asunto(s)
Herpesvirus Humano 1 , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Serina-Treonina Quinasas , Ceramidas/genética , Ceramidas/metabolismo , Esfingomielinas/metabolismo , Esfingolípidos/metabolismo , Transporte Biológico/fisiología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Aparato de Golgi/metabolismoRESUMEN
Signalling lipids of the N-acyl ethanolamine (NAE) and ceramide (CER) classes have emerged as potential biomarkers of cardiovascular disease (CVD). We sought to establish the heritability of plasma NAEs (including the endocannabinoid anandamide) and CERs, to identify common DNA variants influencing the circulating concentrations of the heritable lipids, and assess causality of these lipids in CVD using 2-sample Mendelian randomization (2SMR). Nine NAEs and 16 CERs were analyzed in plasma samples from 999 members of 196 British Caucasian families, using targeted ultra-performance liquid chromatography with tandem mass spectrometry. All lipids were significantly heritable (h2 = 36-62%). A missense variant (rs324420) in the gene encoding the enzyme fatty acid amide hydrolase (FAAH), which degrades NAEs, associated at genome-wide association study (GWAS) significance (P < 5 × 10-8) with four NAEs (DHEA, PEA, LEA and VEA). For CERs, rs680379 in the SPTLC3 gene, which encodes a subunit of the rate-limiting enzyme in CER biosynthesis, associated with a range of species (e.g. CER[N(24)S(19)]; P = 4.82 × 10-27). We observed three novel associations between SNPs at the CD83, SGPP1 and DEGS1 loci, and plasma CER traits (P < 5 × 10-8). 2SMR in the CARDIoGRAMplusC4D cohorts (60 801 cases; 123 504 controls) and in the DIAGRAM cohort (26 488 cases; 83 964 controls), using the genetic instruments from our family-based GWAS, did not reveal association between genetically determined differences in CER levels and CVD or diabetes. Two of the novel GWAS loci, SGPP1 and DEGS1, suggested a casual association between CERs and a range of haematological phenotypes, through 2SMR in the UK Biobank, INTERVAL and UKBiLEVE cohorts (n = 110 000-350 000).
Asunto(s)
Biomarcadores/sangre , Enfermedades Cardiovasculares/sangre , Ceramidas/sangre , Etanolaminas/sangre , Predisposición Genética a la Enfermedad , Lipidómica/métodos , Polimorfismo de Nucleótido Simple , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/patología , Estudios de Casos y Controles , Ceramidas/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Análisis de la Aleatorización Mendeliana , Persona de Mediana EdadRESUMEN
The lipid composition of HIV-1 virions is enriched in sphingomyelin (SM), but the roles that SM or other sphingolipids (SLs) might play in the HIV-1 replication pathway have not been elucidated. In human cells, SL levels are regulated by ceramide synthase (CerS) enzymes that produce ceramides, which can be converted to SMs, hexosylceramides, and other SLs. In many cell types, CerS2, which catalyzes the synthesis of very long chain ceramides, is the major CerS. We have examined how CerS2 deficiency affects the assembly and infectivity of HIV-1. As expected, we observed that very long chain ceramide, hexosylceramide, and SM were reduced in CerS2 knockout cells. CerS2 deficiency did not affect HIV-1 assembly or the incorporation of the HIV-1 envelope (Env) protein into virus particles, but it reduced the infectivites of viruses produced in the CerS2-deficient cells. The reduced viral infection levels were dependent on HIV-1 Env, since HIV-1 particles that were pseudotyped with the vesicular stomatitis virus glycoprotein did not exhibit reductions in infectivity. Moreover, cell-cell fusion assays demonstrated that the functional defect of HIV-1 Env in CerS2-deficient cells was independent of other viral proteins. Overall, our results indicate that the altered lipid composition of CerS2-deficient cells specifically inhibit the HIV-1 Env receptor binding and/or fusion processes.
Asunto(s)
Eliminación de Gen , Infecciones por VIH/genética , VIH-1/fisiología , Proteínas de la Membrana/genética , Esfingosina N-Aciltransferasa/genética , Proteínas Supresoras de Tumor/genética , Ceramidas/genética , Ceramidas/metabolismo , Células HEK293 , Infecciones por VIH/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Esfingosina N-Aciltransferasa/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Internalización del VirusRESUMEN
Sphingolipids are a vital component of plant cellular endomembranes and carry out multiple functional and regulatory roles. Different sphingolipid species confer rigidity to the membrane structure, facilitate trafficking of secretory proteins, and initiate programmed cell death. Although the regulation of the sphingolipid pathway is yet to be uncovered, increasing evidence has pointed to orosomucoid proteins (ORMs) playing a major regulatory role and potentially interacting with a number of components in the pathway, including both enzymes and sphingolipids. However, experimental exploration of new regulatory interactions is time consuming and often infeasible. In this work, a computational approach was taken to address this challenge. A metabolic network of the sphingolipid pathway in plants was reconstructed. The steady-state rates of reactions in the network were then determined through measurements of growth and cellular composition of the different sphingolipids in Arabidopsis seedlings. The Ensemble modeling framework was modified to accurately account for activation mechanisms and subsequently used to generate sets of kinetic parameters that converge to the measured steady-state fluxes in a thermodynamically consistent manner. In addition, the framework was appended with an additional module to automate screening the parameters and to output models consistent with previously reported network responses to different perturbations. By analyzing the network's response in the presence of different combinations of regulatory mechanisms, the model captured the experimentally observed repressive effect of ORMs on serine palmitoyltransferase (SPT). Furthermore, predictions point to a second regulatory role of ORM proteins, namely as an activator of class II (or LOH1 and LOH3) ceramide synthases. This activating role was found to be modulated by the concentration of free ceramides, where an accumulation of these sphingolipid species dampened the activating effect of ORMs on ceramide synthase. The predictions pave the way for future guided experiments and have implications in engineering crops with higher biotic stress tolerance.
Asunto(s)
Proteínas de Arabidopsis , Regulación de la Expresión Génica de las Plantas/genética , Orosomucoide , Esfingolípidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ceramidas/genética , Ceramidas/metabolismo , Biología Computacional , Redes y Vías Metabólicas/genética , Modelos Biológicos , Orosomucoide/genética , Orosomucoide/metabolismo , Plantones/genética , Plantones/metabolismo , Esfingolípidos/genética , Esfingolípidos/metabolismoRESUMEN
A complex assembly of lipids including fatty acids, cholesterol, and ceramides is vital to the integrity of the mammalian epidermal barrier. The formation of this barrier requires oxidation of the substrate fatty acid, linoleic acid (LA), which is initiated by the enzyme 12R-lipoxygenase (LOX). In the epidermis, unoxidized LA is primarily found in long-chain acylceramides termed esterified omega-hydroxy sphingosine (EOS)/phytosphingosine/hydroxysphingosine (collectively EOx). The precise structure and localization of LOX-oxidized EOx in the human epidermis is unknown, as is their regulation in diseases such as psoriasis, one of the most common inflammatory diseases affecting the skin. Here, using precursor LC/MS/MS, we characterized multiple intermediates of EOx, including 9-HODE, 9,10-epoxy-13-HOME, and 9,10,13-TriHOME, in healthy human epidermis likely to be formed via the epidermal LOX pathways. The top layers of the skin contained more LA, 9-HODE, and 9,10,13-TriHOME EOSs, whereas 9,10-epoxy-13-HOME EOS was more prevalent deeper in the stratum corneum. In psoriatic lesions, levels of native EOx and free HODEs and HOMEs were significantly elevated, whereas oxidized species were generally reduced. A transcriptional network analysis of human psoriatic lesions identified significantly elevated expression of the entire biosynthetic/metabolic pathway for oxygenated ceramides, suggesting a regulatory function for EOx lipids in reconstituting epidermal integrity. The role of these new lipids in progression or resolution of psoriasis is currently unknown. We also discovered the central coordinated role of the zinc finger protein transcription factor, ZIC1, in driving the phenotype of this disease. In summary, long-chain oxygenated ceramide metabolism is dysregulated at the lipidomic level in psoriasis, likely driven by the transcriptional differences also observed, and we identified ZIC1 as a potential regulatory target for future therapeutic interventions.
Asunto(s)
Ceramidas/biosíntesis , Ácido Linoleico/biosíntesis , Lipidómica , Psoriasis/metabolismo , Ceramidas/química , Ceramidas/genética , Humanos , Ácido Linoleico/química , Ácido Linoleico/genética , Estructura Molecular , Psoriasis/genéticaRESUMEN
BACKGROUND: This study aimed to explore the effects of ceramide (Cer) on NLRP3 inflammasome activation and their underlying mechanisms. METHODS: Lipopolysaccharide (LPS)/adenosine triphosphate (ATP)-induced NLRP3 inflammasome activation in J774A.1 cells and THP-1 macrophages was used as an in vitro model of inflammation. Western blotting and real-time PCR (RT-PCR) were used to detect the protein and mRNA levels, respectively. IL-1ß and IL-18 levels were measured by ELISA. ASM assay kit and immunofluorescence were used to detect ASM activity and Cer content. RESULTS: Imipramine, a well-known inhibitor of ASM, significantly inhibited LPS/ATP-induced activity of ASM and the consequent accumulation of Cer. Additionally, imipramine suppressed the LPS/ATP-induced expression of thioredoxin interacting protein (TXNIP), NLRP3, caspase-1, IL-1ß, and IL-18 at the protein and mRNA level. Interestingly verapamil, a TXNIP inhibitor, suppressed LPS/ATP-induced activation of TXNIP/NLRP3 inflammasome but did not affect LPS/ATP-induced ASM activation and Cer formation. TXNIP siRNA and verapamil inhibited C2-Cer-induced upregulation of TXNIP and activation of the NLRP3 inflammasome. In addition, the pretreatment of cells with sulfo-N-succinimidyl oleate (SSO), an irreversible inhibitor of the scavenger receptor CD36, blocked Cer-induced upregulation of nuclear factor-κB (NF-κB) activity, TXNIP expression, and NLRP3 inflammasome activation. Inhibition of NF-κB activation by SN50 prevented Cer-induced upregulation of TXNIP and activation of the NLRP3 inflammasome but did not affect CD36 expression. CONCLUSION: This study demonstrated that the ASM/Cer/TXNIP signaling pathway is involved in NLRP3 inflammasome activation. The results documented that the CD36-dependent NF-κB-TXNIP signaling pathway plays an essential role in the Cer-induced activation of NLRP3 inflammasomes in macrophages.
Asunto(s)
Proteínas Portadoras/genética , Ceramidas/genética , Inflamación/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Adenosina Trifosfato/metabolismo , Caspasa 1/genética , Regulación de la Expresión Génica/genética , Humanos , Inflamasomas/genética , Inflamación/metabolismo , Inflamación/patología , Interleucina-18/genética , Interleucina-1beta/genética , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , FN-kappa B/antagonistas & inhibidores , FN-kappa B/genética , Ácidos Oléicos/farmacología , Péptidos/farmacología , Transducción de Señal/efectos de los fármacos , Esfingomielina Fosfodiesterasa/genética , Succinimidas/farmacología , Verapamilo/farmacologíaRESUMEN
Abnormally enlarged early endosomes (EEs) are pathological features of neurodegenerative diseases, yet insight into the mechanisms and consequences of EE expansion remains elusive. Here, we report swollen apical EEs in the retinal pigment epithelium (RPE) of aged human donors and in the pigmented Abca4-/- mouse model of Stargardt early-onset macular degeneration. Using high-resolution live-cell imaging, we show that age-related and pathological accumulation of lipofuscin bisretinoids increases ceramide at the apical surface of the RPE, which promotes inward budding and homotypic fusion of EEs. These enlarged endosomes internalize the complement protein C3 into the RPE, resulting in the intracellular generation of C3a fragments. Increased C3a in turn activates the mechanistic target of rapamycin (mTOR), a regulator of critical metabolic processes such as autophagy. The antidepressant desipramine, which decreases ceramide levels by inhibiting acid sphingomyelinase, corrects EE defects in the RPE of Abca4-/- mice. This prevents C3 internalization and limits the formation of C3a fragments within the RPE. Although uncontrolled complement activation is associated with macular degenerations, how complement contributes to pathology in a progressive disease is not well understood. Our studies link expansion of the EE compartment with intracellular complement generation and aberrant mTOR activation, which could set the stage for chronic metabolic reprogramming in the RPE as a prelude to disease. The pivotal role of ceramide in driving EE biogenesis and fusion in the Abca4-/- mice RPE suggests that therapeutic targeting of ceramide could be effective in Stargardt disease and other macular degenerations.
Asunto(s)
Complemento C3a/metabolismo , Endosomas/metabolismo , Degeneración Macular/congénito , Epitelio Pigmentado de la Retina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Transportadoras de Casetes de Unión a ATP/deficiencia , Anciano , Anciano de 80 o más Años , Animales , Ceramidas/genética , Ceramidas/metabolismo , Complemento C3a/genética , Modelos Animales de Enfermedad , Endosomas/genética , Endosomas/patología , Femenino , Humanos , Degeneración Macular/genética , Degeneración Macular/metabolismo , Degeneración Macular/patología , Masculino , Ratones , Ratones Noqueados , Epitelio Pigmentado de la Retina/patología , Enfermedad de Stargardt , Porcinos , Serina-Treonina Quinasas TOR/genéticaRESUMEN
Therapy-induced senescence is a state of cell cycle arrest that occurs as a response to various chemotherapeutic reagents, especially ones that cause DNA damage. Senescent cells display resistance to cell death and can impair the efficacy of chemotherapeutic strategies. Since lipids can exhibit pro-survival activity, it is envisioned in this article that probing the lipidome could provide insights into novel lipids that are involved in senescence. Therefore, a tissue culture model system is established and the cellular lipidomes of senescent and proliferating cells are comparatively analyzed. Out of thousands of features detected, 17 species are identified that show significant changes in senescent cells. The majority of these species (11 out of 17) are atypical sphingolipids, 1-deoxyceramides/dihydroceramides, which are produced as a result of the utilization of alanine, instead of serine during sphingolipid biosynthesis. These lipids are depleted in senescent cells. Elevating the levels of deoxyceramides by supplementing the growth medium with metabolic precursors or by directly adding deoxyceramide result in decreased senescence, suggesting that these species might play a key role in this process.
Asunto(s)
Senescencia Celular/genética , Lipidómica , Lípidos/genética , Esfingolípidos/genética , Alanina/metabolismo , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Puntos de Control del Ciclo Celular/genética , Ceramidas/biosíntesis , Ceramidas/clasificación , Ceramidas/genética , Daño del ADN/efectos de los fármacos , Humanos , Lípidos/clasificación , Esfingolípidos/clasificaciónRESUMEN
Increasing evidence confirms that exosome-mediated transfer of microRNAs can influence cancer progression including tumor cell invasion, cell proliferation, and drug resistance via cell-cell communication. However, the potential role of exosomal-miR-1260b in lung adenocarcinoma (LAC) remains poorly understood. Thus, this study focused on investigating the function of exosomal-miR-1260b on cell invasion. Exosomal-miR-1260b was found to be higher in plasma of patients with LAC than that of healthy persons via quantitative real-time polymerase chain reaction assay. The sensitivity and specificity of exosomal-miR-1260b (cutoff point: 2.027) were 72% and 86%, and area under the curve of 0.845 (95% CI = 0.772-0.922). Elevated expression of miR-1260b in LAC tissues was positively correlated with exosomal-miR-1260b in plasma (r = .642, p < .05). Furthermore, ceramide biosynthesis regulated exosomal-miR-1260b secretion. Exosome-mediated transfer of miR-1260b promoted A549 cell invasion and was still functional inside A549 cells. Moreover, exosomal-miR-1260b regulated Wnt/ß-catenin signaling pathway by inhibiting sFRP1 and Smad4. This study identified a new regulation mechanism involving in cell invasion by exosome-mediated tumor-cell-to-tumor-cell communication. Targeting exosome-microRNAs may provide new insights into the diagnosis and treatment of LAC.
Asunto(s)
Adenocarcinoma del Pulmón/genética , Movimiento Celular/genética , Exosomas/genética , Neoplasias Pulmonares/genética , MicroARNs/genética , Vía de Señalización Wnt/genética , beta Catenina/genética , Células A549 , Adenocarcinoma del Pulmón/patología , Línea Celular Tumoral , Proliferación Celular/genética , Ceramidas/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Pulmonares/patología , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Transducción de Señal/genética , Proteína Smad4/genéticaRESUMEN
GBA1 encodes the lysosomal enzyme ß-glucocerebrosidase (GCase) which converts glucosylceramide into ceramide and glucose. Mutations in GBA1 lead to Gaucher's disease and are a major risk factor for Parkinson's disease (PD) and Dementia with Lewy bodies (DLB), synucleinopathies characterized by accumulation of intracellular α-synuclein. In this study, we examined whether decreased ceramide that is observed in GCase-deficient cells contributes to α-synuclein accumulation. We demonstrated that deficiency of GCase leads to a reduction of C18-ceramide species and altered intracellular localization of Rab8a, a small GTPase implicated in secretory autophagy, that contributed to impaired secretion of α-synuclein and accumulation of intracellular α-synuclein. This secretory defect was rescued by exogenous C18-ceramide or chemical inhibition of lysosomal enzyme acid ceramidase that converts lysosomal ceramide into sphingosine. Inhibition of acid ceramidase by carmofur resulted in increased ceramide levels and decreased glucosylsphingosine levels in GCase-deficient cells, and also reduced oxidized α-synuclein and levels of ubiquitinated proteins in GBA1-PD patient-derived dopaminergic neurons. Together, these results suggest that decreased ceramide generation via the catabolic lysosomal salvage pathway in GCase mutant cells contributes to α-synuclein accumulation, potentially due to impaired secretory autophagy. We thus propose that acid ceramidase inhibition which restores ceramide levels may be a potential therapeutic strategy to target synucleinopathies linked to GBA1 mutations including PD and DLB.
Asunto(s)
Glucosilceramidasa/genética , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética , Proteínas de Unión al GTP rab/genética , Autofagia/genética , Sistemas CRISPR-Cas/genética , Línea Celular , Ceramidas/genética , Ceramidas/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Edición Génica , Expresión Génica/genética , Glucosilceramidasa/farmacocinética , Humanos , Enfermedad por Cuerpos de Lewy/genética , Enfermedad por Cuerpos de Lewy/patología , Lisosomas/genética , Lisosomas/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Isoformas de Proteínas/genéticaRESUMEN
Farber disease (FD) is a debilitating lysosomal storage disorder characterized by severe inflammation and neurodegeneration. FD is caused by mutations in the ASAH1 gene, resulting in deficient acid ceramidase (ACDase) activity. Patients with ACDase deficiency exhibit a broad clinical spectrum. In classic cases, patients develop hepatosplenomegaly, nervous system involvement, and childhood mortality. Ocular manifestations include decreased vision, a grayish appearance to the retina with a cherry red spot, and nystagmus. That said, the full effect of ACDase deficiency on the visual system has not been studied in detail. We previously developed a mouse model that is orthologous for a known patient mutation in Asah1 that recapitulates human FD. Herein, we report evidence of a severe ocular pathology in Asah1P361R/P361R mice. Asah1P361R/P361R mice exhibit progressive retinal and optic nerve pathology. Through noninvasive ocular imaging and histopathological analyses of these Asah1P361R/P361R animals, we revealed progressive inflammation, the presence of retinal dysplasia, and significant storage pathology in various cell types in both the retina and optic nerves. Lipidomic analyses of retinal tissues revealed an abnormal accumulation of ceramides and other sphingolipids. Electroretinograms and behavioral tests showed decreased retinal and visual responses. Taken together, these data suggest that ACDase deficiency leads to sphingolipid imbalance, inflammation, dysmorphic retinal and optic nerve pathology, and severe visual impairment.
Asunto(s)
Ceramidasa Ácida/genética , Lipogranulomatosis de Farber , Mutación Missense , Nervio Óptico , Retina , Trastornos de la Visión , Ceramidasa Ácida/metabolismo , Sustitución de Aminoácidos , Animales , Ceramidas/genética , Ceramidas/metabolismo , Modelos Animales de Enfermedad , Lipogranulomatosis de Farber/enzimología , Lipogranulomatosis de Farber/genética , Lipogranulomatosis de Farber/patología , Inflamación/enzimología , Inflamación/genética , Inflamación/patología , Ratones , Ratones Mutantes , Nervio Óptico/enzimología , Nervio Óptico/patología , Retina/enzimología , Retina/patología , Esfingolípidos/genética , Esfingolípidos/metabolismo , Trastornos de la Visión/enzimología , Trastornos de la Visión/genética , Trastornos de la Visión/patologíaRESUMEN
Human primary bronchial epithelial cells differentiated in vitro represent a valuable tool to study lung diseases such as cystic fibrosis (CF), an inherited disorder caused by mutations in the gene coding for the Cystic Fibrosis Transmembrane Conductance Regulator. In CF, sphingolipids, a ubiquitous class of bioactive lipids mainly associated with the outer layer of the plasma membrane, seem to play a crucial role in the establishment of the severe lung complications. Nevertheless, no information on the involvement of sphingolipids and their metabolism in the differentiation of primary bronchial epithelial cells are available so far. Here we show that ceramide and globotriaosylceramide increased during cell differentiation, whereas glucosylceramide and gangliosides content decreased. In addition, we found that apical plasma membrane of differentiated bronchial cells is characterized by a higher content of sphingolipids in comparison to the other cell membranes and that activity of sphingolipids catabolic enzymes associated with this membrane results altered with respect to the total cell activities. In particular, the apical membrane of CF cells was characterized by high levels of ceramide and glucosylceramide, known to have proinflammatory activity. On this basis, our data further support the role of sphingolipids in the onset of CF lung pathology.
Asunto(s)
Diferenciación Celular/genética , Fibrosis Quística/genética , Hidrolasas/genética , Esfingolípidos/genética , Bronquios/enzimología , Membrana Celular/enzimología , Membrana Celular/genética , Ceramidas/genética , Fibrosis Quística/enzimología , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Glucosilceramidas/genética , Humanos , Hidrolasas/química , Cultivo Primario de Células , Esfingolípidos/metabolismoRESUMEN
BACKGROUND: Genome-wide association studies in asthma have repeatedly identified single nucleotide polymorphisms in the ORM (yeast)-like protein isoform 3 (ORMDL3) gene across different populations. Although the ORM homologues in yeast are well-known inhibitors of sphingolipid synthesis, it is still unclear whether and how mammalian ORMDL3 regulates sphingolipid metabolism and whether altered sphingolipid synthesis would be causally related to asthma risk. OBJECTIVE: We sought to examine the in vivo role of ORMDL3 in sphingolipid metabolism and allergic asthma. METHODS: Ormdl3-LacZ reporter mice, gene-deficient Ormdl3-/- mice, and overexpressing Ormdl3Tg/wt mice were exposed to physiologically relevant aeroallergens, such as house dust mite (HDM) or Alternaria alternata, to induce experimental asthma. Mass spectrometry-based sphingolipidomics were performed, and airway eosinophilia, TH2 cytokine production, immunoglobulin synthesis, airway remodeling, and bronchial hyperreactivity were measured. RESULTS: HDM challenge significantly increased levels of total sphingolipids in the lungs of HDM-sensitized mice compared with those in control mice. In Ormdl3Tg/wt mice the allergen-induced increase in lung ceramide levels was significantly reduced, whereas total sphingolipid levels were not affected. Conversely, in liver and serum, levels of total sphingolipids, including ceramides, were increased in Ormdl3-/- mice, whereas they were decreased in Ormdl3Tg/wt mice. This difference was independent of allergen exposure. Despite these changes, all features of asthma were identical between wild-type, Ormdl3Tg/wt, and Ormdl3-/- mice across several models of experimental asthma. CONCLUSION: ORMDL3 regulates systemic ceramide levels, but genetically interfering with Ormdl3 expression does not result in altered experimental asthma.
Asunto(s)
Asma/inmunología , Ceramidas/inmunología , Metabolismo de los Lípidos/inmunología , Proteínas de la Membrana/inmunología , Células Th2/inmunología , Animales , Asma/genética , Ceramidas/genética , Citocinas/genética , Citocinas/inmunología , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Metabolismo de los Lípidos/genética , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Células Th2/patologíaRESUMEN
PUMA, a BH3-only pro-apoptotic Bcl2 family protein, is known to translocate from the cytosol into the mitochondria in order to induce apoptosis. Interestingly, the induction of PUMA by p53 plays a critical role in DNA damage-induced apoptosis. In this study, we reported mitophagy inducing potential of PUMA triggered by phytolectin Abrus agglutinin (AGG) in U87MG glioblastoma cells and established AGG-induced ceramide acts as the chief mediator of mitophagy dependent cell death through activation of both mitochondrial ROS as well as ER stress. Importantly, AGG upregulates PUMA expression in U87MG cells with the generation of dysfunctional mitochondria, with gain and loss of function of PUMA is shown to alter mitophagy induction. At the molecular level, our study identified that the LC3 interacting region (LIR) located at the C-terminal end of PUMA interacts with LC3 in order to stimulate mitophagy. In addition, AGG is also found to trigger ubiquitination of PUMA which in turn interacted with p62 for prompting mitophagy suggesting that AGG turns on PUMA-mediated mitophagy in U87MG cells in both p62-dependent as well as in p62-independent manner. Interestingly, AGG-triggered ceramide production through activation of ceramide synthase-1 leads to induction of ER stress and ROS accumulation to promote mitochondrial damage as well as mitophagy. Further, upon pre-treatment with Mdivi-1, DRP1 inhibitor, AGG exposure results in suppression of apoptosis in U87MG cells indicating AGG-induced mitophagy switches to apoptosis that can be exploited for better cancer therapeutics.
Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Mitofagia/genética , Neoplasias/tratamiento farmacológico , Lectinas de Plantas/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas/genética , Apoptosis/genética , Ceramidas/biosíntesis , Ceramidas/genética , Citosol/metabolismo , Daño del ADN/genética , Células HeLa , Humanos , Mitocondrias/genética , Neoplasias/genética , Neoplasias/patología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de SeñalRESUMEN
Syrian hamsters undergo a reversible hyperphosphorylation of protein τ during hibernation, providing a unique natural model that may unveil the physiological mechanisms behind this critical process involved in the development of Alzheimer's disease and other tauopathies. The hibernation cycle of these animals fluctuates between a pair of stages: 3-4 days of torpor bouts interspersed with periods of euthermia called arousals that last several hours. In this study, we investigated for the first time the metabolic changes in brain tissue during hibernation. A total of 337 metabolites showed statistically significant differences during hibernation. Based on these metabolites, several pathways were found to be significantly regulated and, therefore, play a key role in the regulation of hibernation processes. The increase in the levels of ceramides containing more than 20 C atoms was found in torpor animals, reflecting a higher activity of CerS2 during hibernation, linked to neurofibrillary tangle generation and structural changes in the Golgi apparatus. Our results open up the debate about the possible significance of some metabolites during hibernation, which may possibly be related to τ phosphorylation and dephosphorylation events. In general, this study may provide insights into novel neuroprotective agents because the alterations described throughout the hibernation process are reversible.
Asunto(s)
Encéfalo/metabolismo , Hibernación/genética , Mesocricetus/metabolismo , Metabolómica/métodos , Animales , Encéfalo/fisiología , Ceramidas/genética , Ceramidas/metabolismo , Cricetinae , Hibernación/fisiología , Mesocricetus/fisiología , Fosforilación/genética , Proteínas tau/genética , Proteínas tau/metabolismoRESUMEN
Sphingolipids (SPLs) have been proposed as potential therapeutic targets for strokes, but no reports have ever profiled the changes of the entire range of SPLs after a stroke. This study applied sphingolipidomic methods to investigate the temporal and individual changes in the sphingolipidome including the effect of atorvastatin after ischemic brain injury. We conducted sphingolipidomic profiling of mouse brain tissue by liquid chromatography-electrospray ionization tandem mass spectrometry at 3 h and 24 h after 1 h of middle cerebral artery occlusion (MCAO), and SPL levels were compared with those of the Sham control group. At 3 h post-MCAO, ceramides (Cers) exhibited an increase in levels of long-chain Cers but a decrease in very-long-chain Cers. Moreover, sphingosine, the precursor of sphingosine-1-phosphate (S1P), decreased and S1P increased at 3 h after MCAO. In contrast to 3 h, both long-chain and very-long-chain Cers showed an increased trend at 24 h post-MCAO. Most important, the administration of atorvastatin improved the neurological function of the mice and significantly reversed the SPL changes resulting from the ischemic injury. Furthermore, we used plasma samples from nonstroke control and stroke patients at time points of 72 h after a stroke, and found a similar trend of Cers as in the MCAO model. This study successfully elucidated the overall effect of ischemic injury on SPL metabolism with and without atorvastatin treatment. The network of SPL components that change upon ischemic damage may provide novel therapeutic targets for ischemic stroke.
Asunto(s)
Lesiones Encefálicas/genética , Isquemia Encefálica/genética , Esfingolípidos/genética , Accidente Cerebrovascular/genética , Animales , Atorvastatina/farmacología , Encéfalo/metabolismo , Encéfalo/patología , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Ceramidas/genética , Ceramidas/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Modelos Animales de Enfermedad , Humanos , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Lipidómica/métodos , Lisofosfolípidos/metabolismo , Ratones , Esfingolípidos/aislamiento & purificación , Esfingolípidos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Espectrometría de Masas en Tándem/métodosRESUMEN
Extracellular vesicles are important carriers of cellular materials and have critical roles in cell-to-cell communication in both health and disease. Ceramides are implicated in extracellular vesicle biogenesis, yet the cellular machinery that mediates the formation of ceramide-enriched extracellular vesicles remains unknown. We demonstrate here that the ceramide transport protein StAR-related lipid transfer domain 11 (STARD11) mediates the release of palmitate-stimulated extracellular vesicles having features consistent with exosomes. Using palmitate as a model of lipotoxic diseases and as a substrate for ceramide biosynthesis in human and murine liver cell lines and primary mouse hepatocytes, we found that STARD11-deficient cells release fewer extracellular vesicles. Moreover, STARD11 reciprocally regulated exosome ceramide enrichment and cellular ceramide depletion. We further observed that in STARD11 knockout cells intracellular ceramide accumulates and that this apparent inability to transfer cellular ceramide into extracellular vesicles reduces cellular viability. Using endogenous markers, we uncovered structural and functional colocalization of the endoplasmic reticulum (ER), STARD11, and multivesicular bodies. This colocalization increased following palmitate treatment, suggesting a functional association that may mediate ceramide trafficking from the ER to the multivesicular body. However, the size and number of multivesicular bodies were comparable in WT and STARD11-knockout cells. In conclusion, we propose a model of how STARD11 mediates ceramide trafficking in palmitate-treated cells and stimulates exosome biogenesis.