Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioessays ; 45(12): e2300077, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37750435

RESUMEN

In the context of macroevolutionary transitions, environmental changes prompted vertebrates already bearing genetic variations to undergo gradual adaptations resulting in profound anatomical, physiological, and behavioral adaptations. The emergence of new genes led to the genetic variation essential in metazoan evolution, just as was gene loss, both sources of genetic variation resulting in adaptive phenotypic diversity. In this context, F12-coding protein with defense and hemostatic roles emerged some 425 Mya, and it might have contributed in aquatic vertebrates to the transition from water-to-land. Conversely, the F12 loss in marine, air-breathing mammals like cetaceans has been associated with phenotypic adaptations in some terrestrial mammals in their transition to aquatic lifestyle. More recently, the advent of technological innovations in western lifestyle with blood-contacting devices and harmful environmental nanoparticles, has unfolded new roles of FXII. Environment operates as either a positive or a relaxed selective pressure on genes, and consequently genes are selected or lost. FXII, an old dog facing environmental novelties can learn new tricks and teach us new therapeutic avenues.


Asunto(s)
Cetáceos , Vertebrados , Animales , Cetáceos/genética , Mamíferos
2.
BMC Biol ; 22(1): 186, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218857

RESUMEN

BACKGROUND: Habitat transitions have considerable consequences in organism homeostasis, as they require the adjustment of several concurrent physiological compartments to maintain stability and adapt to a changing environment. Within the range of molecules with a crucial role in the regulation of different physiological processes, neuropeptides are key agents. Here, we examined the coding status of several neuropeptides and their receptors with pleiotropic activity in Cetacea. RESULTS: Analysis of 202 mammalian genomes, including 41 species of Cetacea, exposed an intricate mutational landscape compatible with gene sequence modification and loss. Specifically for Cetacea, in the 12 genes analysed we have determined patterns of loss ranging from species-specific disruptive mutations (e.g. neuropeptide FF-amide peptide precursor; NPFF) to complete erosion of the gene across the cetacean stem lineage (e.g. somatostatin receptor 4; SSTR4). CONCLUSIONS: Impairment of some of these neuromodulators may have contributed to the unique energetic metabolism, circadian rhythmicity and diving response displayed by this group of iconic mammals.


Asunto(s)
Cetáceos , Receptores de Neuropéptido , Animales , Receptores de Neuropéptido/genética , Receptores de Neuropéptido/metabolismo , Cetáceos/genética , Cetáceos/fisiología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Pleiotropía Genética , Mutación , Filogenia
3.
BMC Genomics ; 25(1): 339, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575860

RESUMEN

BACKGROUND: Cetaceans, having experienced prolonged adaptation to aquatic environments, have undergone evolutionary changes in their respiratory systems. This process of evolution has resulted in the emergence of distinctive phenotypic traits, notably the abundance of elastic fibers and thickened alveolar walls in their lungs, which may facilitate alveolar collapse during diving. This structure helps selective exchange of oxygen and carbon dioxide, while minimizing nitrogen exchange, thereby reducing the risk of DCS. Nevertheless, the scientific inquiry into the mechanisms through which these unique phenotypic characteristics govern the diving behavior of marine mammals, including cetaceans, remains unresolved. RESULTS: This study entails an evolutionary analysis of 42 genes associated with pulmonary fibrosis across 45 mammalian species. Twenty-one genes in cetaceans exhibited accelerated evolution, featuring specific amino acid substitutions in 14 of them. Primarily linked to the development of the respiratory system and lung morphological construction, these genes play a crucial role. Moreover, among marine mammals, we identified eight genes undergoing positive selection, and the evolutionary rates of three genes significantly correlated with diving depth. Specifically, the SFTPC gene exhibited convergent amino acid substitutions. Through in vitro cellular experiments, we illustrated that convergent amino acid site mutations in SFTPC contribute positively to pulmonary fibrosis in marine mammals, and the presence of this phenotype can induce deep alveolar collapse during diving, thereby reducing the risk of DCS during diving. CONCLUSIONS: The study unveils pivotal genetic signals in cetaceans and other marine mammals, arising through evolution. These genetic signals may influence lung characteristics in marine mammals and have been linked to a reduced risk of developing DCS. Moreover, the research serves as a valuable reference for delving deeper into human diving physiology.


Asunto(s)
Fibrosis Pulmonar , Animales , Humanos , Cetáceos/genética , Cetáceos/metabolismo , Pulmón/metabolismo , Mamíferos/metabolismo , Oxígeno/metabolismo
4.
Mol Biol Evol ; 40(5)2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37146172

RESUMEN

Convergent adaptation to the same environment by multiple lineages frequently involves rapid evolutionary change at the same genes, implicating these genes as important for environmental adaptation. Such adaptive molecular changes may yield either change or loss of protein function; loss of function can eliminate newly deleterious proteins or reduce energy necessary for protein production. We previously found a striking case of recurrent pseudogenization of the Paraoxonase 1 (Pon1) gene among aquatic mammal lineages-Pon1 became a pseudogene with genetic lesions, such as stop codons and frameshifts, at least four times independently in aquatic and semiaquatic mammals. Here, we assess the landscape and pace of pseudogenization by studying Pon1 sequences, expression levels, and enzymatic activity across four aquatic and semiaquatic mammal lineages: pinnipeds, cetaceans, otters, and beavers. We observe in beavers and pinnipeds an unexpected reduction in expression of Pon3, a paralog with similar expression patterns but different substrate preferences. Ultimately, in all lineages with aquatic/semiaquatic members, we find that preceding any coding-level pseudogenization events in Pon1, there is a drastic decrease in expression, followed by relaxed selection, thus allowing accumulation of disrupting mutations. The recurrent loss of Pon1 function in aquatic/semiaquatic lineages is consistent with a benefit to Pon1 functional loss in aquatic environments. Accordingly, we examine diving and dietary traits across pinniped species as potential driving forces of Pon1 functional loss. We find that loss is best associated with diving activity and likely results from changes in selective pressures associated with hypoxia and hypoxia-induced inflammation.


Asunto(s)
Arildialquilfosfatasa , Caniformia , Animales , Arildialquilfosfatasa/genética , Mamíferos/genética , Cetáceos/genética , Roedores , Hipoxia
5.
J Mol Evol ; 92(3): 300-316, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735005

RESUMEN

Cetaceans and pinnipeds are lineages of mammals that have independently returned to the aquatic environment, acquiring varying degrees of dependence on it while sharing adaptations for underwater living. Here, we focused on one critical adaptation from both groups, their ability to withstand the ischemia and reperfusion experienced during apnea diving, which can lead to the production of reactive oxygen species (ROS) and subsequent oxidative damage. Previous studies have shown that cetaceans and pinnipeds possess efficient antioxidant enzymes that protect against ROS. In this study, we investigated the molecular evolution of key antioxidant enzyme genes (CAT, GPX3, GSR, PRDX1, PRDX3, and SOD1) and the ROS-producing gene XDH, in cetaceans and pinnipeds lineages. We used the ratio of non-synonymous (dN) to synonymous (dS) substitutions as a measure to identify signatures of adaptive molecular evolution in these genes within and between the two lineages. Additionally, we performed protein modeling and variant impact analyzes to assess the functional consequences of observed mutations. Our findings revealed distinct selective regimes between aquatic and terrestrial mammals in five of the examined genes, including divergences within cetacean and pinniped lineages, between ancestral and recent lineages and between crowns groups. We identified specific sites under positive selection unique to Cetacea and Pinnipedia, with one site showing evidence of convergent evolution in species known for their long and deep-diving capacities. Notably, many sites under adaptive selection exhibited radical changes in amino acid properties, with some being damaging mutations in human variations, but with no apparent detrimental impacts on aquatic mammals. In conclusion, our study provides insights into the adaptive changes that have occurred in the antioxidant systems of aquatic mammals throughout their evolutionary history. We observed both distinctive features within each group of Cetacea and Pinnipedia and instances of convergence. These findings highlight the dynamic nature of the antioxidant system in response to challenges of the aquatic environment and provide a foundation for further investigations into the molecular mechanisms underlying these adaptations.


Asunto(s)
Antioxidantes , Caniformia , Cetáceos , Evolución Molecular , Animales , Cetáceos/genética , Cetáceos/metabolismo , Caniformia/genética , Antioxidantes/metabolismo , Filogenia , Adaptación Fisiológica/genética , Especies Reactivas de Oxígeno/metabolismo , Selección Genética
6.
Proc Biol Sci ; 291(2032): 20241106, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39378996

RESUMEN

Cetaceans have evolved unique limb structures, such as flippers, due to genetic changes during their transition to aquatic life. However, the full understanding of the genetic and evolutionary mechanisms behind these changes is still developing. By examining 25 limb-related protein-coding genes across various mammalian species, we compared genetic changes between aquatic mammals, like whales, and other mammals with unique limb structures such as bats, rodents and elephants. Our findings revealed significant modifications in limb-related genes, including variations in the Hox, GDF5 and Evx genes. Notably, a relaxed selection in several key genes was observed, suggesting a lifting of developmental constraints, which might have facilitated the emergence of morphological innovations in cetacean limb morphology. We also uncovered non-synonymous changes, insertions and deletions in these genes, particularly in the polyalanine tract of HOXD13, which are distinctive to cetaceans or convergent with other aquatic mammals. These genetic variations correlated with the diverse and specialized limb structures observed in cetaceans, indicating a complex interplay of relaxed selection and specific mutations in mammalian limb evolution.


Asunto(s)
Cetáceos , Miembro Anterior , Mamíferos , Animales , Cetáceos/genética , Cetáceos/anatomía & histología , Mamíferos/genética , Mamíferos/anatomía & histología , Miembro Anterior/anatomía & histología , Evolución Biológica , Selección Genética , Evolución Molecular
7.
Mol Biol Evol ; 39(11)2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36288798

RESUMEN

Uncoupling protein 1 (UCP1) is an essential protein in the mitochondrial inner membrane that mediates nonshivering thermogenesis (NST) and plays an important role in thermoregulation and fat deposition. However, the relationship between the evolution of UCP1 and fat deposition in the blubber layer in cetaceans remains unclear. Here, frameshift mutations, premature termination, and relaxed selection pressure (ω = 0.9557, P < 0.05) were detected in UCP1 in cetaceans, suggesting that UCP1 was inactivated during cetacean evolution. By time estimation, it was found that the inactivation of UCP1 in cetaceans occurred between 53.1 and 50.2 Ma. However, combined with findings from immunohistochemical analysis of the blubber layer of the Yangtze finless porpoise and in vitro functional assays, a premature termination of cetacean UCP1 resulted in a reduction of UCP1-mediated NST capacity (about 50%) and lipolytic capacity (about 40%), both of which were beneficial to maintain blubber layer and body temperature without excessive fat consumption. This study provides new insights into the molecular mechanisms of the blubber thickening in cetaceans and highlights the importance of UCP1 attenuation in cetaceans for secondary aquatic adaptation.


Asunto(s)
Cetáceos , Termogénesis , Animales , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Termogénesis/genética , Cetáceos/genética , Cetáceos/metabolismo , Adaptación Fisiológica , Aclimatación , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
8.
J Mol Evol ; 91(4): 458-470, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37249590

RESUMEN

The mammalian skin exhibits a rich spectrum of evolutionary adaptations. The pilosebaceous unit, composed of the hair shaft, follicle, and the sebaceous gland, is the most striking synapomorphy. The evolutionary diversification of mammals across different ecological niches was paralleled by the appearance of an ample variety of skin modifications. Pangolins, order Pholidota, exhibit keratin-derived scales, one of the most iconic skin appendages. This formidable armor is intended to serve as a deterrent against predators. Surprisingly, while pangolins have hair on their abdomens, the occurrence of sebaceous and sweat glands is contentious. Here, we explore various molecular modules of skin physiology in four pangolin genomes, including that of sebum production. We show that genes driving wax monoester formation, Awat1/2, show patterns of inactivation in the stem pangolin branch, while the triacylglycerol synthesis gene Dgat2l6 seems independently eroded in the African and Asian clades. In contrast, Elovl3 implicated in the formation of specific neutral lipids required for skin barrier function is intact and expressed in the pangolin skin. An extended comparative analysis shows that genes involved in skin pathogen defense and structural integrity of keratinocyte layers also show inactivating mutations: associated with both ancestral and independent pseudogenization events. Finally, we deduce that the suggested absence of sweat glands is not paralleled by the inactivation of the ATP-binding cassette transporter Abcc11, as previously described in Cetacea. Our findings reveal the sophisticated and complex history of gene retention and loss as key mechanisms in the evolution of the highly modified mammalian skin phenotypes.


Asunto(s)
Redes Reguladoras de Genes , Pangolines , Animales , Pangolines/genética , Glándulas Sebáceas , Mamíferos/genética , Cetáceos/genética
9.
J Mol Evol ; 91(6): 865-881, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38010516

RESUMEN

The genetic basis underlying adaptive physiological mechanisms has been extensively explored in mammals after colonizing the seas. However, independent lineages of aquatic mammals exhibit complex patterns of secondary colonization in freshwater environments. This change in habitat represents new osmotic challenges, and additional changes in key systems, such as the osmoregulatory system, are expected. Here, we studied the selective regime on coding and regulatory regions of 20 genes related to the osmoregulation system in strict aquatic mammals from independent evolutionary lineages, cetaceans, and sirenians, with representatives in marine and freshwater aquatic environments. We identified positive selection signals in genes encoding the protein vasopressin (AVP) in mammalian lineages with secondary colonization in the fluvial environment and in aquaporins for lineages inhabiting the marine and fluvial environments. A greater number of sites with positive selection signals were found for the dolphin species compared to the Amazonian manatee. Only the AQP5 and AVP genes showed selection signals in more than one independent lineage of these mammals. Furthermore, the vasopressin gene tree indicates greater similarity in river dolphin sequences despite the independence of their lineages based on the species tree. Patterns of distribution and enrichment of Transcription Factors in the promoter regions of target genes were analyzed and appear to be phylogenetically conserved among sister species. We found accelerated evolution signs in genes ACE, AQP1, AQP5, AQP7, AVP, NPP4, and NPR1 for the fluvial mammals. Together, these results allow a greater understanding of the molecular bases of the evolution of genes responsible for osmotic control in aquatic mammals.


Asunto(s)
Delfines , Osmorregulación , Animales , Osmorregulación/genética , Cetáceos/genética , Mamíferos/genética , Agua Dulce , Vasopresinas/genética , Evolución Molecular , Filogenia
10.
J Hered ; 114(1): 14-21, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36146890

RESUMEN

Heteroplasmy in the mitochondrial genome offers a rare opportunity to track the evolution of a newly arising maternal lineage in populations of non-model species. Here, we identified a previously unreported mitochondrial DNA haplotype while assembling an integrated database of DNA profiles and photo-identification records from humpback whales in southeastern Alaska (SEAK). The haplotype, referred to as A8, was shared by only 2 individuals, a mature female with her female calf, and differed by only a single base pair from a common haplotype in the North Pacific, referred to as A-. To investigate the origins of the A8 haplotype, we reviewed n = 1,089 electropherograms (including replicate samples) of n = 710 individuals with A- haplotypes from an existing collection. From this review, we found 20 individuals with clear evidence of heteroplasmy for A-/A8 (parental/derived) haplotypes. Of these, 15 were encountered in SEAK, 4 were encountered on the Hawaiian breeding ground (the primary migratory destination for whales in SEAK), and 1 was encountered in the northern Gulf of Alaska. We used genotype exclusion and likelihood to identify one of the heteroplasmic females as the likely mother of the A8 cow and grandmother of the A8 calf, establishing the inheritance and germ-line fixation of the new haplotype from the parental heteroplasmy. The mutation leading to this heteroplasmy and the fixation of the A8 haplotype provide an opportunity to document the population dynamics and regional fidelity of a newly arising maternal lineage in a population recovering from exploitation.


Asunto(s)
Yubarta , Animales , Femenino , Bovinos , Yubarta/genética , ADN Mitocondrial/genética , Heteroplasmia , Mitocondrias/genética , Cetáceos/genética
11.
J Hered ; 114(6): 612-624, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37647537

RESUMEN

In many organisms, especially those of conservation concern, traditional lines of evidence for taxonomic delineation, such as morphological data, are often difficult to obtain. In these cases, genetic data are often the only source of information available for taxonomic studies. In particular, population surveys of mitochondrial genomes offer increased resolution and precision in support of taxonomic decisions relative to conventional use of the control region or other gene fragments of the mitochondrial genome. To improve quantitative guidelines for taxonomic decisions in cetaceans, we build on a previous effort targeting the control region and evaluate, for whole mitogenome sequences, a suite of divergence and diagnosability estimates for pairs of recognized cetacean populations, subspecies, and species. From this overview, we recommend new guidelines based on complete mitogenomes, combined with other types of evidence for isolation and divergence, which will improve resolution for taxonomic decisions, especially in the face of small sample sizes or low levels of genetic diversity. We further use simulated data to assist interpretations of divergence in the context of varying forms of historical demography, culture, and ecology.


Asunto(s)
Genoma Mitocondrial , Animales , Cetáceos/genética , Demografía , Ecología , Tamaño de la Muestra , Filogenia
12.
Syst Biol ; 70(5): 922-939, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-33507304

RESUMEN

Phylogenetic trees provide a powerful framework for testing macroevolutionary hypotheses, but it is becoming increasingly apparent that inferences derived from extant species alone can be highly misleading. Trees incorporating living and extinct taxa are needed to address fundamental questions about the origins of diversity and disparity but it has proved challenging to generate robust, species-rich phylogenies that include large numbers of fossil taxa. As a result, most studies of diversification dynamics continue to rely on molecular phylogenies. Here, we extend and apply a recently developed meta-analytic approach for synthesizing previously published phylogenetic studies to infer a well-resolved set of species level, time-scaled phylogenetic hypotheses for extinct and extant cetaceans (whales, dolphins, and allies). Our trees extend sampling from the $\sim 90$ extant species to over 500 living and extinct species, and therefore allow for more robust inference of macroevolutionary dynamics. While the diversification scenarios, we recover are broadly concordant with those inferred from molecular phylogenies they differ in critical ways, notably in the relative contributions of extinction and speciation rate shifts in driving rapid radiations. The metatree approach provides the most immediate route for generating higher level phylogenies of extinct taxa and opens the door to re-evaluation of macroevolutionary hypotheses derived only from extant taxa.[Extinction; macroevolution; matrix representation with parsimony; morphology; supertree.].


Asunto(s)
Cetáceos , Fósiles , Animales , Cetáceos/genética , Filogenia
13.
Biochem Genet ; 60(6): 2299-2312, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35334059

RESUMEN

Viruses are the most common and abundant organisms in the marine environment. To better understand how cetaceans have adapted to this virus-rich environment, we compared cetacean virus-responsive genes to those from terrestrial mammals. We identified virus-responsive gene sequences in seven species of cetaceans, which we compared with orthologous sequences in seven terrestrial mammals. As a result of evolution analysis using the branch model and the branch-site model, 21 genes were selected using at least one model. IFN-ε, an antiviral cytokine expressed at mucous membranes, and its receptor IFNAR1 contain cetacean-specific amino acid substitutions that might change the interaction between the two proteins and lead to regulation of the immune system against viruses. Cetacean-specific amino acid substitutions in IL-6, IL-27, and the signal transducer and activator of transcription (STAT)1 are also predicted to alter the mucosal immune response of cetaceans. Since mucosal membranes are the first line of defense against the external environment and are involved in immune tolerance, our analysis of cetacean virus-responsive genes suggests that genes with cetacean-specific mutations in mucosal immunity-related genes play an important role in the protection and/or regulation of immune responses against viruses.


Asunto(s)
Cetáceos , Inmunidad Mucosa , Animales , Inmunidad Mucosa/genética , Filogenia , Cetáceos/genética , Mamíferos , Adaptación Fisiológica
14.
Genomics ; 113(5): 2925-2933, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34166750

RESUMEN

Cetaceans have evolved elongated soft-tissue flipper with digits made of hyperphalangy. Cetaceans were found to have 2-3 more alanine residues in Hoxd13 than other mammals, which were suggested to be related to their flipper. However, how Hoxd13 regulates other genes and induces hyperphalangy in cetaceans remain poorly understood. Here, we overexpressed the bottlenose dolphin Hoxd13 in zebrafish (Danio rerio). Combined with transcriptome data and evolutionary analyses, our results revealed that the Wingless/Integrated (Wnt) and Hedgehog signaling pathways and multiple genes might regulate hyperphalangy development in cetaceans. Meanwhile, the Notch and mitogen-activated protein kinase (Mapk) signaling pathways and Fibroblast growth factor receptor 1 (Fgfr1) are probably correlated with interdigital tissues retained in the cetacean flipper. In conclusion, this is the first study to use a transgenic zebrafish to explore the molecular evolution of Hoxd13 in cetaceans, and it provides new insights into cetacean flipper formation.


Asunto(s)
Delfín Mular , Pez Cebra , Animales , Evolución Biológica , Delfín Mular/genética , Cetáceos/genética , Proteínas Hedgehog/genética , Pez Cebra/genética
15.
Genomics ; 113(1 Pt 2): 1064-1070, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33157262

RESUMEN

The ancestors of Cetacea underwent profound morpho-physiological alterations. By displaying an exclusive aquatic existence, cetaceans evolved unique patterns of locomotor activity, vigilant behaviour, thermoregulation and circadian rhythmicity. Deciphering the molecular landscape governing many of these adaptations is key to understand the evolution of phenotypes. Here, we investigate Cortistatin (CORT), a neuropeptide displaying an important role in mammalian biorhythm regulation. This neuropeptide is a known neuroendocrine factor, stimulating slow-wave sleep, but also involved in the regulation of energy metabolism and hypomotility inducement. We assessed the functional status of CORT in 359 mammalian genomes (25 orders), including 30 species of Cetacea. Our findings indicate that cetaceans and other mammals with atypical biorhythms, thermal constraints and/or energy metabolism, have accumulated deleterious mutations in CORT. In light of the pleiotropic action of this neuropeptide, we suggest that this inactivation contributed to a plethora of phenotypic adjustments to accommodate adaptive solutions to specific ecological niches.


Asunto(s)
Cetáceos/genética , Ritmo Circadiano , Metabolismo Energético , Evolución Molecular , Neuropéptidos/genética , Adaptación Fisiológica , Animales , Cetáceos/metabolismo , Cetáceos/fisiología , Homeostasis , Seudogenes
16.
Mol Biol Evol ; 37(7): 2069-2083, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32170943

RESUMEN

The transition to an aquatic lifestyle in cetaceans (whales and dolphins) resulted in a radical transformation in their sensory systems. Toothed whales acquired specialized high-frequency hearing tied to the evolution of echolocation, whereas baleen whales evolved low-frequency hearing. More generally, all cetaceans show adaptations for hearing and seeing underwater. To determine the extent to which these phenotypic changes have been driven by molecular adaptation, we performed large-scale targeted sequence capture of 179 sensory genes across the Cetacea, incorporating up to 54 cetacean species from all major clades as well as their closest relatives, the hippopotamuses. We screened for positive selection in 167 loci related to vision and hearing and found that the diversification of cetaceans has been accompanied by pervasive molecular adaptations in both sets of genes, including several loci implicated in nonsyndromic hearing loss. Despite these findings, however, we found no direct evidence of positive selection at the base of odontocetes coinciding with the origin of echolocation, as found in studies examining fewer taxa. By using contingency tables incorporating taxon- and gene-based controls, we show that, although numbers of positively selected hearing and nonsyndromic hearing loss genes are disproportionately high in cetaceans, counts of vision genes do not differ significantly from expected values. Alongside these adaptive changes, we find increased evidence of pseudogenization of genes involved in cone-mediated vision in mysticetes and deep-diving odontocetes.


Asunto(s)
Evolución Biológica , Cetáceos/genética , Audición/genética , Selección Genética , Visión Ocular/genética , Animales , Silenciador del Gen
17.
Proc Biol Sci ; 288(1945): 20202592, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33622125

RESUMEN

Cetaceans are the longest-living species of mammals and the largest in the history of the planet. They have developed mechanisms against diseases such cancer, although the underlying molecular bases of these remain unknown. The goal of this study was to investigate the role of natural selection in the evolution of 1077 tumour suppressor genes (TSGs) in cetaceans. We used a comparative genomic approach to analyse two sources of molecular variation in the form of dN/dS rates and gene copy number variation. We found a signal of positive selection in the ancestor of cetaceans within the CXCR2 gene, an important regulator of DNA damage, tumour dissemination and immune system. Further, in the ancestor of baleen whales, we found six genes exhibiting positive selection relating to diseases such as breast carcinoma, lung neoplasm (ADAMTS8) and leukaemia (ANXA1). The TSGs turnover rate (gene gain and loss) was almost 2.4-fold higher in cetaceans when compared with other mammals, and notably even faster in baleen whales. The molecular variants in TSGs found in baleen whales, combined with the faster gene turnover rate, could have favoured the evolution of their particular traits of anti-cancer resistance, gigantism and longevity. Additionally, we report 71 genes with duplications, of which 11 genes are linked to longevity (e.g. NOTCH3 and SIK1) and are important regulators of senescence, cell proliferation and metabolism. Overall, these results provide evolutionary evidence that natural selection in TSGs could act on species with large body sizes and extended lifespan, providing novel insights into the genetic basis of disease resistance.


Asunto(s)
Cetáceos/genética , Duplicación de Gen , Genes Supresores de Tumor , Neoplasias , Animales , Variaciones en el Número de Copia de ADN , Evolución Molecular , Neoplasias/genética , Neoplasias/veterinaria , Filogenia
18.
J Evol Biol ; 34(7): 1046-1060, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33896059

RESUMEN

Cetacea, whales, dolphins and porpoises form an order of mammals adapted to aquatic life. Their transition to an aquatic habitat resulted in exceptional protection against cellular insults, including oxidative and osmotic stress. Here, we considered the structure and molecular evolution of the superoxide dismutase (SOD) gene family, which encodes essential enzymes in the mammalian antioxidant system, in the superorder Cetartiodactyla. To this end, we juxtaposed cetaceans and their closest extant relatives (order Artiodactyla). We identified 94 genes in 23 species, of which 70 are bona fide intact genes. Although the SOD gene family is conserved in Cetartiodactyla, lineage-specific gene duplications and deletions were observed. Phylogenetic analyses show that the SOD2 subfamily diverged from a clade containing SOD1 and SOD3, suggesting that cytoplasmic, extracellular and mitochondrial SODs have started down independent evolutionary paths. Specific-amino acid changes (e.g. K130N in SOD2) that may enhance ROS elimination were identified in cetaceans. In silico analysis suggests that the core transcription factor repertoire of cetartiodactyl SOD genes may include Sp1, NF-κB, Nrf2 and AHR. Putative transcription factors binding sites responding to hypoxia were (e.g. Suppressor of Hairless; Su(H)) found in the cetacean SOD1 gene. We found significant evidence for positive selection in cetaceans using codon models. Cetaceans with different diving abilities also show divergent evolution of SOD1 and SOD2. Our genome-wide analysis of SOD genes helps clarify their relationship and evolutionary trajectory and identify putative functional changes in cetaceans.


Asunto(s)
Artiodáctilos , Cetáceos , Animales , Cetáceos/genética , Mamíferos , Filogenia , Superóxido Dismutasa/genética
19.
Syst Biol ; 69(3): 479-501, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31633766

RESUMEN

The evolution of cetaceans, from their early transition to an aquatic lifestyle to their subsequent diversification, has been the subject of numerous studies. However, although the higher-level relationships among cetacean families have been largely settled, several aspects of the systematics within these groups remain unresolved. Problematic clades include the oceanic dolphins (37 spp.), which have experienced a recent rapid radiation, and the beaked whales (22 spp.), which have not been investigated in detail using nuclear loci. The combined application of high-throughput sequencing with techniques that target specific genomic sequences provide a powerful means of rapidly generating large volumes of orthologous sequence data for use in phylogenomic studies. To elucidate the phylogenetic relationships within the Cetacea, we combined sequence capture with Illumina sequencing to generate data for $\sim $3200 protein-coding genes for 68 cetacean species and their close relatives including the pygmy hippopotamus. By combining data from $>$38,000 exons with existing sequences from 11 cetaceans and seven outgroup taxa, we produced the first comprehensive comparative genomic data set for cetaceans, spanning 6,527,596 aligned base pairs (bp) and 89 taxa. Phylogenetic trees reconstructed with maximum likelihood and Bayesian inference of concatenated loci, as well as with coalescence analyses of individual gene trees, produced mostly concordant and well-supported trees. Our results completely resolve the relationships among beaked whales as well as the contentious relationships among oceanic dolphins, especially the problematic subfamily Delphinidae. We carried out Bayesian estimation of species divergence times using MCMCTree and compared our complete data set to a subset of clocklike genes. Analyses using the complete data set consistently showed less variance in divergence times than the reduced data set. In addition, integration of new fossils (e.g., Mystacodon selenensis) indicates that the diversification of Crown Cetacea began before the Late Eocene and the divergence of Crown Delphinidae as early as the Middle Miocene. [Cetaceans; phylogenomics; Delphinidae; Ziphiidae; dolphins; whales.].


Asunto(s)
Cetáceos/clasificación , Cetáceos/genética , Filogenia , Animales , Biodiversidad , Clasificación , Secuenciación de Nucleótidos de Alto Rendimiento , Especificidad de la Especie
20.
Mol Biol Rep ; 48(1): 315-322, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33296067

RESUMEN

The Ganges river dolphin, Platanista gangetica gangetica is one of the endangered cetaceans. Due to increasing anthropogenic activities, it has faced a significant reduction in distribution range since the late 1800s and has even gone extinct from most of the early localities. The investigation of complete mitogenome holds significant relevance for identifying evolutionary relationships and monitoring the endangered species. Herein, we report and characterize for the first time the 16,319 bp complete mitochondrial genome of P. g. gangetica. It comprises 13 protein-coding genes, 22 transfer RNA (tRNA) genes, two ribosomal RNA genes, and one control region (CR). The genome composition was A + T biased (59.6%) and exhibited a positive AT-skew (0.104) and negative GC-skew (- 0.384). All the genes were encoded on the heavy strand, except eight tRNAs and the ND6 gene. In the CR, an 18 bp tandem repeat sequence was observed. Our Bayesian Inference (BI) and Maximum Likelihood (ML) based phylogenetic analysis indicated that studied river dolphins were polyphyletic and the placement of Platanista was to be more basal than other river dolphins (Lipotes, Inia and Pontoporia). The pairwise genetic distance of Platanista with other cetaceans was varied, with an overall close affinity with whales. The model-based BI and ML phylogenetic analysis indicated that Platanista clustering with Ziphiidae with high to moderate supportive values (PP/BP = 98/68). The results of this study provide insights important for the conservation genetics and further evolutionary studies of the freshwater river dolphins.


Asunto(s)
Cetáceos/genética , Delfines/genética , Especies en Peligro de Extinción , Genoma Mitocondrial/genética , Animales , Delfines/clasificación , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA