Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74.985
Filtrar
Más filtros

Colección CLAP
Intervalo de año de publicación
1.
Cell ; 181(5): 997-1003.e9, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32359424

RESUMEN

Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2 infection and was first reported in central China in December 2019. Extensive molecular surveillance in Guangdong, China's most populous province, during early 2020 resulted in 1,388 reported RNA-positive cases from 1.6 million tests. In order to understand the molecular epidemiology and genetic diversity of SARS-CoV-2 in China, we generated 53 genomes from infected individuals in Guangdong using a combination of metagenomic sequencing and tiling amplicon approaches. Combined epidemiological and phylogenetic analyses indicate multiple independent introductions to Guangdong, although phylogenetic clustering is uncertain because of low virus genetic variation early in the pandemic. Our results illustrate how the timing, size, and duration of putative local transmission chains were constrained by national travel restrictions and by the province's large-scale intensive surveillance and intervention measures. Despite these successes, COVID-19 surveillance in Guangdong is still required, because the number of cases imported from other countries has increased.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/epidemiología , Neumonía Viral/epidemiología , Teorema de Bayes , COVID-19 , China/epidemiología , Infecciones por Coronavirus/virología , Monitoreo Epidemiológico , Humanos , Funciones de Verosimilitud , Pandemias , Neumonía Viral/virología , SARS-CoV-2 , Viaje
2.
N Engl J Med ; 391(9): 821-831, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39231344

RESUMEN

BACKGROUND: In June 2019, a patient presented with persistent fever and multiple organ dysfunction after a tick bite at a wetland park in Inner Mongolia. Next-generation sequencing in this patient revealed an infection with a previously unknown orthonairovirus, which we designated Wetland virus (WELV). METHODS: We conducted active hospital-based surveillance to determine the prevalence of WELV infection among febrile patients with a history of tick bites. Epidemiologic investigation was performed. The virus was isolated, and its infectivity and pathogenicity were investigated in animal models. RESULTS: WELV is a member of the orthonairovirus genus in the Nairoviridae family and is most closely related to the tickborne Hazara orthonairovirus genogroup. Acute WELV infection was identified in 17 patients from Inner Mongolia, Heilongjiang, Jilin, and Liaoning, China, by means of reverse-transcriptase-polymerase-chain-reaction assay. These patients presented with nonspecific symptoms, including fever, dizziness, headache, malaise, myalgia, arthritis, and back pain and less frequently with petechiae and localized lymphadenopathy. One patient had neurologic symptoms. Common laboratory findings were leukopenia, thrombocytopenia, and elevated d-dimer and lactate dehydrogenase levels. Serologic assessment of convalescent-stage samples obtained from 8 patients showed WELV-specific antibody titers that were 4 times as high as those in acute-phase samples. WELV RNA was detected in five tick species and in sheep, horses, pigs, and Transbaikal zokors (Myospalax psilurus) sampled in northeastern China. The virus that was isolated from the index patient and ticks showed cytopathic effects in human umbilical-vein endothelial cells. Intraperitoneal injection of the virus resulted in lethal infections in BALB/c, C57BL/6, and Kunming mice. The Haemaphysalis concinna tick is a possible vector that can transovarially transmit WELV. CONCLUSIONS: A newly discovered orthonairovirus was identified and shown to be associated with human febrile illnesses in northeastern China. (Funded by the National Natural Science Foundation of China and the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences.).


Asunto(s)
Fiebre , Nairovirus , Mordeduras de Garrapatas , Adulto , Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven , Anticuerpos Antivirales/sangre , China/epidemiología , Fiebre/diagnóstico , Fiebre/epidemiología , Fiebre/virología , Nairovirus/genética , Nairovirus/aislamiento & purificación , Nairovirus/patogenicidad , Filogenia , Mordeduras de Garrapatas/complicaciones , Mordeduras de Garrapatas/virología , Prevalencia , Modelos Animales de Enfermedad , Ovinos , Caballos , Porcinos , Lactante , Preescolar , Niño , Adolescente , Anciano de 80 o más Años
3.
Genome Res ; 34(6): 877-887, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38977307

RESUMEN

The zoonotic parasite Cryptosporidium parvum is a global cause of gastrointestinal disease in humans and ruminants. Sequence analysis of the highly polymorphic gp60 gene enabled the classification of C. parvum isolates into multiple groups (e.g., IIa, IIc, Id) and a large number of subtypes. In Europe, subtype IIaA15G2R1 is largely predominant and has been associated with many water- and food-borne outbreaks. In this study, we generated new whole-genome sequence (WGS) data from 123 human- and ruminant-derived isolates collected in 13 European countries and included other available WGS data from Europe, Egypt, China, and the United States (n = 72) in the largest comparative genomics study to date. We applied rigorous filters to exclude mixed infections and analyzed a data set from 141 isolates from the zoonotic groups IIa (n = 119) and IId (n = 22). Based on 28,047 high-quality, biallelic genomic SNPs, we identified three distinct and strongly supported populations: Isolates from China (IId) and Egypt (IIa and IId) formed population 1; a minority of European isolates (IIa and IId) formed population 2; and the majority of European (IIa, including all IIaA15G2R1 isolates) and all isolates from the United States (IIa) clustered in population 3. Based on analyses of the population structure, population genetics, and recombination, we show that population 3 has recently emerged and expanded throughout Europe to then, possibly from the United Kingdom, reach the United States, where it also expanded. The reason(s) for the successful spread of population 3 remain elusive, although genes under selective pressure uniquely in this population were identified.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Brotes de Enfermedades , Cryptosporidium parvum/genética , Estados Unidos/epidemiología , Europa (Continente)/epidemiología , Humanos , Criptosporidiosis/parasitología , Criptosporidiosis/epidemiología , Animales , Genómica/métodos , Polimorfismo de Nucleótido Simple , Filogenia , Secuenciación Completa del Genoma/métodos , Genoma de Protozoos , China/epidemiología , Egipto/epidemiología
4.
Nature ; 600(7887): 127-132, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34695837

RESUMEN

Considerable uncertainty surrounds the timeline of introductions and onsets of local transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) globally1-7. Although a limited number of SARS-CoV-2 introductions were reported in January and February 2020 (refs.8,9), the narrowness of the initial testing criteria, combined with a slow growth in testing capacity and porous travel screening10, left many countries vulnerable to unmitigated, cryptic transmission. Here we use a global metapopulation epidemic model to provide a mechanistic understanding of the early dispersal of infections and the temporal windows of the introduction of SARS-CoV-2 and onset of local transmission in Europe and the USA. We find that community transmission of SARS-CoV-2 was likely to have been present in several areas of Europe and the USA by January 2020, and estimate that by early March, only 1 to 4 in 100 SARS-CoV-2 infections were detected by surveillance systems. The modelling results highlight international travel as the key driver of the introduction of SARS-CoV-2, with possible introductions and transmission events as early as December 2019 to January 2020. We find a heterogeneous geographic distribution of cumulative infection attack rates by 4 July 2020, ranging from 0.78% to 15.2% across US states and 0.19% to 13.2% in European countries. Our approach complements phylogenetic analyses and other surveillance approaches and provides insights that can be used to design innovative, model-driven surveillance systems that guide enhanced testing and response strategies.


Asunto(s)
COVID-19/epidemiología , COVID-19/transmisión , Modelos Epidemiológicos , SARS-CoV-2/aislamiento & purificación , Viaje en Avión/estadística & datos numéricos , COVID-19/mortalidad , COVID-19/virología , China/epidemiología , Brotes de Enfermedades/estadística & datos numéricos , Europa (Continente)/epidemiología , Humanos , Densidad de Población , Factores de Tiempo , Estados Unidos/epidemiología
5.
Proc Natl Acad Sci U S A ; 121(5): e2312832120, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38252836

RESUMEN

Following a sustainable development pathway designed to keep warming below 2 °C will benefit human health. We quantify premature deaths attributable to fine particulate matter (PM2.5) air pollution and heat exposures for China, South Asia, and the United States using projections from multiple climate models under high- and low-emission scenarios. Projected changes in premature deaths are typically dominated by population aging, primarily reflecting increased longevity leading to greater sensitivity to environmental risks. Changes in PM2.5 exposure typically have small impacts on premature deaths under a high-emission scenario but provide substantial benefits under a low-emission scenario. PM2.5-attributable deaths increase in South Asia throughout the century under both scenarios but shift to decreases by late century in China, and US values decrease throughout the century. In contrast, heat exposure increases under both scenarios and combines with population aging to drive projected increases in deaths in all countries. Despite population aging, combined PM2.5- and heat-related deaths decrease under the low-emission scenario by ~2.4 million per year by midcentury and ~2.9 million by century's end, with ~3% and ~21% of these reductions from heat, respectively. Intermodel variations in exposure projections generally lead to uncertainties of <40% except for US and China heat impacts. Health benefits of low emissions are larger from reduced heat exposure than improved air quality by the late 2090s in the United States. In contrast, in South and East Asia, the PM2.5-related benefits are largest throughout the century, and their valuation exceeds the cost of decarbonization, especially in China, over the next 30 y.


Asunto(s)
Contaminación del Aire , Mortalidad Prematura , Humanos , Estados Unidos/epidemiología , Calor , China/epidemiología , Sur de Asia , Material Particulado
6.
Proc Natl Acad Sci U S A ; 121(4): e2312556121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38227655

RESUMEN

Hemorrhagic fever with renal syndrome (HFRS) is a zoonotic disease caused by the rodent-transmitted orthohantaviruses (HVs), with China possessing the most cases globally. The virus hosts in China are Apodemus agrarius and Rattus norvegicus, and the disease spread is strongly influenced by global climate dynamics. To assess and predict the spatiotemporal trends of HFRS from 2005 to 2098, we collected historical HFRS data in mainland China (2005-2020), historical and projected climate and population data (2005-2098), and spatial variables including biotic, environmental, topographical, and socioeconomic. Spatiotemporal predictions and mapping were conducted under 27 scenarios incorporating multiple integrated representative concentration pathway models and population scenarios. We identify the type of magistral HVs host species as the best spatial division, including four region categories. Seven extreme climate indices associated with temperature and precipitation have been pinpointed as key factors affecting the trends of HFRS. Our predictions indicate that annual HFRS cases will increase significantly in 62 of 356 cities in mainland China. Rattus regions are predicted to be the most active, surpassing Apodemus and Mixed regions. Eighty cities are identified as at severe risk level for HFRS, each with over 50 reported cases annually, including 22 new cities primarily located in East China and Rattus regions after 2020, while 6 others develop new risk. Our results suggest that the risk of HFRS will remain high through the end of this century, with Rattus norvegicus being the most active host, and that extreme climate indices are significant risk factors. Our findings can inform evidence-based policymaking regarding future risk of HFRS.


Asunto(s)
Fiebre Hemorrágica con Síndrome Renal , Ratas , Animales , Fiebre Hemorrágica con Síndrome Renal/epidemiología , Fiebre Hemorrágica con Síndrome Renal/etiología , Clima , Zoonosis , China/epidemiología , Murinae , Incidencia
7.
Proc Natl Acad Sci U S A ; 121(8): e2317704121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38346203

RESUMEN

While modern family-related ideas and behaviors have become more widely accepted in contemporary China, Chinese Muslim minorities continue to hold on to traditional religious practices. Surprisingly, data from our survey conducted in Gansu province in China's northwestern borderlands reveal that Muslims of the Hui and Dongxiang ethnicities reported much higher rates of cohabitation experience than the secular majority Han. Based on follow-up qualitative interviews, we found the answer to lie in the interplay between the highly interventionist Chinese state and the robust cultural resilience of local Islamic communities. While the state maintains a high minimum legal age of marriage, the early marriage norm remains strong in Chinese Muslim communities, where religion constitutes an alternative and often more powerful source of legitimacy-at least in the private sphere of life. Using the 2000 census data, we further show that women in almost all 10 Muslim ethnic groups have higher percentages of underage births and premarital births than Han women, both nationally and in the northwest where most Chinese Muslims live. As the once-outlawed behavior of cohabitation became more socially acceptable during the reform and opening-up era, young Muslim Chinese often found themselves in "arranged cohabitations" as de facto marriages formed at younger-than-legal ages. In doing so, Chinese Muslim communities have reinvented the meaning of cohabitation. Rather than liberal intimate relationship based on individual autonomy, cohabitation has served as a coping strategy by which Islamic patriarchs circumvent the Chinese state's aggressive regulations aimed at "modernizing" the Muslim family.


Asunto(s)
Pueblo Asiatico , Cultura , Islamismo , Matrimonio , Femenino , Humanos , Pueblo Asiatico/estadística & datos numéricos , China/epidemiología , Etnicidad , Conducta Sexual/etnología , Conducta Sexual/estadística & datos numéricos , Matrimonio/etnología , Matrimonio/legislación & jurisprudencia , Matrimonio/estadística & datos numéricos
8.
Proc Natl Acad Sci U S A ; 121(21): e2322920121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38748587

RESUMEN

In this paper, we present findings from four separate studies using different data sources and methods to examine Chinese attitudes toward the United States amid the COVID-19 pandemic. The empirical results consistently indicate a marked and significant decline in Chinese attitudes toward the US between late 2019 and the end of 2022. Using a quasi-experimental design and granular survey data that exploit daily variations in public opinion, we offer additional evidence that the decline in Chinese attitudes toward the United States followed a distinct pattern not true for Chinese attitudes toward other countries. Specifically, the rise in Chinese unfavorability toward the United States closely corresponded to the heightened Chinese attention to the pandemic's progression in the United States. These results collectively suggest a causal effect of COVID-19, shedding light on how public health crises, international relations, and media jointly shape the increasing enmity between the two great powers.


Asunto(s)
Actitud , COVID-19 , Pueblos del Este de Asia , Pandemias , Opinión Pública , SARS-CoV-2 , Humanos , China/epidemiología , COVID-19/epidemiología , COVID-19/psicología , Pueblos del Este de Asia/psicología , Internacionalidad , Encuestas y Cuestionarios , Estados Unidos/epidemiología
9.
PLoS Pathog ; 20(5): e1012263, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38805547

RESUMEN

Genetic variants in Epstein-Barr virus (EBV) have been strongly associated with nasopharyngeal carcinoma (NPC) in South China. However, different results regarding the most significant viral variants, with polymorphisms in EBER2 and BALF2 loci, have been reported in separate studies. In this study, we newly sequenced 100 EBV genomes derived from 61 NPC cases and 39 population controls. Comprehensive genomic analyses of EBV sequences from both NPC patients and healthy carriers in South China were conducted, totaling 279 cases and 227 controls. Meta-analysis of genome-wide association study revealed a 4-bp deletion downstream of EBER2 (coordinates, 7188-7191; EBER-del) as the most significant variant associated with NPC. Furthermore, multiple viral variants were found to be genetically linked to EBER-del forming a risk haplotype, suggesting that multiple viral variants might be associated with NPC pathogenesis. Population structure and phylogenetic analyses further characterized a high risk EBV lineage for NPC revealing a panel of 38 single nucleotide polymorphisms (SNPs), including those in the EBER2 and BALF2 loci. With linkage disequilibrium clumping and feature selection algorithm, the 38 SNPs could be narrowed down to 9 SNPs which can be used to accurately detect the high risk EBV lineage. In summary, our study provides novel insight into the role of EBV genetic variation in NPC pathogenesis by defining a risk haplotype of EBV for downstream functional studies and identifying a single high risk EBV lineage characterized by 9 SNPs for potential application in population screening of NPC.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Genoma Viral , Herpesvirus Humano 4 , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Femenino , Humanos , Masculino , China/epidemiología , Pueblos del Este de Asia , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Virus de Epstein-Barr/genética , Variación Genética , Estudio de Asociación del Genoma Completo , Herpesvirus Humano 4/genética , Carcinoma Nasofaríngeo/virología , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/virología , Neoplasias Nasofaríngeas/genética , Filogenia , Polimorfismo de Nucleótido Simple
10.
Circ Res ; 135(9): 954-966, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39308399

RESUMEN

BACKGROUND: Alterations in lipid metabolism and DNA methylation are 2 hallmarks of aging. Connecting metabolomic, epigenomic, and aging outcomes help unravel the complex mechanisms underlying aging. We aimed to assess whether DNA methylation clocks mediate the association of circulating metabolites with incident atherosclerotic cardiovascular disease (ASCVD) and frailty. METHODS: The China Kadoorie Biobank is a prospective cohort study with a baseline survey from 2004 to 2008 and a follow-up period until December 31, 2018. We used the Infinium Methylation EPIC BeadChip to measure the methylation levels of 988 participants' baseline blood leukocyte DNA. Metabolite profiles, including lipoprotein particles, lipid constituents, and various circulating metabolites, were measured using quantitative nuclear magnetic resonance. The pace of DNA methylation age acceleration (AA) was calculated using 5 widely used epigenetic clocks (the first generation: Horvath, Hannum, and Li; the second generation: Grim and Pheno). Incident ASCVD was ascertained through linkage with local death and disease registries and national health insurance databases, supplemented by active follow-up. The frailty index was constructed using medical conditions, symptoms, signs, and physical measurements collected at baseline. RESULTS: A total of 508 incident cases of ASCVD were documented during a median follow-up of 9.5 years. The first generation of epigenetic clocks was associated with the risk of ASCVD (P<0.05). For each SD increment in LiAA, HorvathAA, and HannumAA, the corresponding hazard ratios for ASCVD risk were 1.16 (1.05-1.28), 1.10 (1.00-1.22), and 1.17 (1.04-1.31), respectively. Only LiAA mediated the association of various metabolites (lipids, fatty acids, histidine, and inflammatory biomarkers) with ASCVD, with the mediating proportion reaching up to 15% for the diameter of low-density lipoprotein (P=1.2×10-2). Regarding general aging, a 1-SD increase in GrimAA was associated with an average increase of 0.10 in the frailty index (P=2.0×10-3), and a 33% and 63% increased risk of prefrailty and frailty at baseline (P=1.5×10-2 and 5.8×10-2), respectively; this association was not observed with other clocks. GrimAA mediated the effect of various lipids, fatty acids, glucose, lactate, and inflammatory biomarkers on the frailty index, with the mediating proportion reaching up to 22% for triglycerides in very small-sized very low-density lipoprotein (P=6.0×10-3). CONCLUSIONS: These findings suggest that epigenomic mechanisms may play a role in the associations between circulating metabolites and the aging process. Different mechanisms underlie the first and second generations of DNA methylation age in cardiovascular and general aging.


Asunto(s)
Envejecimiento , Metilación de ADN , Fragilidad , Humanos , Femenino , Masculino , Persona de Mediana Edad , Anciano , Envejecimiento/metabolismo , Envejecimiento/genética , Estudios Prospectivos , Fragilidad/genética , Fragilidad/metabolismo , Fragilidad/epidemiología , Epigénesis Genética , Metaboloma , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/epidemiología , Aterosclerosis/sangre , China/epidemiología , Anciano de 80 o más Años , Adulto
11.
Nature ; 584(7821): 420-424, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32674112

RESUMEN

As countries in the world review interventions for containing the pandemic of coronavirus disease 2019 (COVID-19), important lessons can be drawn from the study of the full transmission dynamics of its causative agent-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)- in Wuhan (China), where vigorous non-pharmaceutical interventions have suppressed the local outbreak of this disease1. Here we use a modelling approach to reconstruct the full-spectrum dynamics of COVID-19 in Wuhan between 1 January and 8 March 2020 across 5 periods defined by events and interventions, on the basis of 32,583 laboratory-confirmed cases1. Accounting for presymptomatic infectiousness2, time-varying ascertainment rates, transmission rates and population movements3, we identify two key features of the outbreak: high covertness and high transmissibility. We estimate 87% (lower bound, 53%) of the infections before 8 March 2020 were unascertained (potentially including asymptomatic and mildly symptomatic individuals); and a basic reproduction number (R0) of 3.54 (95% credible interval 3.40-3.67) in the early outbreak, much higher than that of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS)4,5. We observe that multipronged interventions had considerable positive effects on controlling the outbreak, decreasing the reproduction number to 0.28 (95% credible interval 0.23-0.33) and-by projection-reducing the total infections in Wuhan by 96.0% as of 8 March 2020. We also explore the probability of resurgence following the lifting of all interventions after 14 consecutive days of no ascertained infections; we estimate this probability at 0.32 and 0.06 on the basis of models with 87% and 53% unascertained cases, respectively-highlighting the risk posed by substantial covert infections when changing control measures. These results have important implications when considering strategies of continuing surveillance and interventions to eventually contain outbreaks of COVID-19.


Asunto(s)
Infecciones por Coronavirus/transmisión , Modelos Biológicos , Neumonía Viral/transmisión , COVID-19 , China/epidemiología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Monitoreo Epidemiológico , Femenino , Humanos , Masculino , Pandemias/prevención & control , Neumonía Viral/epidemiología , Neumonía Viral/prevención & control , Reproducibilidad de los Resultados , Procesos Estocásticos
12.
Nature ; 582(7812): 389-394, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32349120

RESUMEN

Sudden, large-scale and diffuse human migration can amplify localized outbreaks of disease into widespread epidemics1-4. Rapid and accurate tracking of aggregate population flows may therefore be epidemiologically informative. Here we use 11,478,484 counts of mobile phone data from individuals leaving or transiting through the prefecture of Wuhan between 1 January and 24 January 2020 as they moved to 296 prefectures throughout mainland China. First, we document the efficacy of quarantine in ceasing movement. Second, we show that the distribution of population outflow from Wuhan accurately predicts the relative frequency and geographical distribution of infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) until 19 February 2020, across mainland China. Third, we develop a spatio-temporal 'risk source' model that leverages population flow data (which operationalize the risk that emanates from epidemic epicentres) not only to forecast the distribution of confirmed cases, but also to identify regions that have a high risk of transmission at an early stage. Fourth, we use this risk source model to statistically derive the geographical spread of COVID-19 and the growth pattern based on the population outflow from Wuhan; the model yields a benchmark trend and an index for assessing the risk of community transmission of COVID-19 over time for different locations. This approach can be used by policy-makers in any nation with available data to make rapid and accurate risk assessments and to plan the allocation of limited resources ahead of ongoing outbreaks.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Brotes de Enfermedades/estadística & datos numéricos , Neumonía Viral/epidemiología , Neumonía Viral/transmisión , Dinámica Poblacional/estadística & datos numéricos , Análisis Espacio-Temporal , Viaje/estadística & datos numéricos , COVID-19 , China/epidemiología , Ciudades/epidemiología , Infecciones por Coronavirus/diagnóstico , Conjuntos de Datos como Asunto , Mapeo Geográfico , Humanos , Aplicaciones Móviles , Modelos Biológicos , Pandemias , Neumonía Viral/diagnóstico , Salud Pública/estadística & datos numéricos
13.
Nature ; 582(7813): 561-565, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32365353

RESUMEN

Reverse genetics has been an indispensable tool to gain insights into viral pathogenesis and vaccine development. The genomes of large RNA viruses, such as those from coronaviruses, are cumbersome to clone and manipulate in Escherichia coli owing to the size and occasional instability of the genome1-3. Therefore, an alternative rapid and robust reverse-genetics platform for RNA viruses would benefit the research community. Here we show the full functionality of a yeast-based synthetic genomics platform to genetically reconstruct diverse RNA viruses, including members of the Coronaviridae, Flaviviridae and Pneumoviridae families. Viral subgenomic fragments were generated using viral isolates, cloned viral DNA, clinical samples or synthetic DNA, and these fragments were then reassembled in one step in Saccharomyces cerevisiae using transformation-associated recombination cloning to maintain the genome as a yeast artificial chromosome. T7 RNA polymerase was then used to generate infectious RNA to rescue viable virus. Using this platform, we were able to engineer and generate chemically synthesized clones of the virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)4, which has caused the recent pandemic of coronavirus disease (COVID-19), in only a week after receipt of the synthetic DNA fragments. The technical advance that we describe here facilitates rapid responses to emerging viruses as it enables the real-time generation and functional characterization of evolving RNA virus variants during an outbreak.


Asunto(s)
Betacoronavirus/genética , Clonación Molecular/métodos , Infecciones por Coronavirus/virología , Genoma Viral/genética , Genómica/métodos , Neumonía Viral/virología , Genética Inversa/métodos , Biología Sintética/métodos , Animales , COVID-19 , China/epidemiología , Chlorocebus aethiops , Cromosomas Artificiales de Levadura/metabolismo , Infecciones por Coronavirus/epidemiología , ARN Polimerasas Dirigidas por ADN/metabolismo , Evolución Molecular , Humanos , Mutación , Pandemias/estadística & datos numéricos , Neumonía Viral/epidemiología , Virus Sincitiales Respiratorios/genética , SARS-CoV-2 , Saccharomyces cerevisiae/genética , Células Vero , Proteínas Virales/metabolismo , Virus Zika/genética
14.
Nature ; 585(7825): 410-413, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32365354

RESUMEN

On 11 March 2020, the World Health Organization (WHO) declared coronavirus disease 2019 (COVID-19) a pandemic1. The strategies based on non-pharmaceutical interventions that were used to contain the outbreak in China appear to be effective2, but quantitative research is still needed to assess the efficacy of non-pharmaceutical interventions and their timings3. Here, using epidemiological data on COVID-19 and anonymized data on human movement4,5, we develop a modelling framework that uses daily travel networks to simulate different outbreak and intervention scenarios across China. We estimate that there were a total of 114,325 cases of COVID-19 (interquartile range 76,776-164,576) in mainland China as of 29 February 2020. Without non-pharmaceutical interventions, we predict that the number of cases would have been 67-fold higher (interquartile range 44-94-fold) by 29 February 2020, and we find that the effectiveness of different interventions varied. We estimate that early detection and isolation of cases prevented more infections than did travel restrictions and contact reductions, but that a combination of non-pharmaceutical interventions achieved the strongest and most rapid effect. According to our model, the lifting of travel restrictions from 17 February 2020 does not lead to an increase in cases across China if social distancing interventions can be maintained, even at a limited level of an on average 25% reduction in contact between individuals that continues until late April. These findings improve our understanding of the effects of non-pharmaceutical interventions on COVID-19, and will inform response efforts across the world.


Asunto(s)
Trazado de Contacto/métodos , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Desinfección de las Manos/métodos , Pandemias/prevención & control , Neumonía Viral/epidemiología , Neumonía Viral/prevención & control , Cuarentena/métodos , Aislamiento Social , Viaje/legislación & jurisprudencia , COVID-19 , China/epidemiología , Infecciones por Coronavirus/transmisión , Humanos , Neumonía Viral/transmisión , Medición de Riesgo , Factores de Tiempo
15.
Nature ; 582(7813): 557-560, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32340022

RESUMEN

The ongoing outbreak of coronavirus disease 2019 (COVID-19) has spread rapidly on a global scale. Although it is clear that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted through human respiratory droplets and direct contact, the potential for aerosol transmission is poorly understood1-3. Here we investigated the aerodynamic nature of SARS-CoV-2 by measuring viral RNA in aerosols in different areas of two Wuhan hospitals during the outbreak of COVID-19 in February and March 2020. The concentration of SARS-CoV-2 RNA in aerosols that was detected in isolation wards and ventilated patient rooms was very low, but it was higher in the toilet areas used by the patients. Levels of airborne SARS-CoV-2 RNA in the most public areas was undetectable, except in two areas that were prone to crowding; this increase was possibly due to individuals infected with SARS-CoV-2 in the crowd. We found that some medical staff areas initially had high concentrations of viral RNA with aerosol size distributions that showed peaks in the submicrometre and/or supermicrometre regions; however, these levels were reduced to undetectable levels after implementation of rigorous sanitization procedures. Although we have not established the infectivity of the virus detected in these hospital areas, we propose that SARS-CoV-2 may have the potential to be transmitted through aerosols. Our results indicate that room ventilation, open space, sanitization of protective apparel, and proper use and disinfection of toilet areas can effectively limit the concentration of SARS-CoV-2 RNA in aerosols. Future work should explore the infectivity of aerosolized virus.


Asunto(s)
Aerosoles/análisis , Aerosoles/química , Aparatos Sanitarios , Betacoronavirus/aislamiento & purificación , Infecciones por Coronavirus/virología , Hospitales , Neumonía Viral/virología , Lugar de Trabajo , Betacoronavirus/genética , COVID-19 , China/epidemiología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/transmisión , Aglomeración , Desinfección , Humanos , Unidades de Cuidados Intensivos , Máscaras , Cuerpo Médico , Pandemias/prevención & control , Pacientes/estadística & datos numéricos , Neumonía Viral/epidemiología , Neumonía Viral/prevención & control , Neumonía Viral/transmisión , ARN Viral/análisis , SARS-CoV-2 , Aislamiento Social , Ventilación
16.
Nature ; 584(7820): 262-267, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32512578

RESUMEN

Governments around the world are responding to the coronavirus disease 2019 (COVID-19) pandemic1, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with unprecedented policies designed to slow the growth rate of infections. Many policies, such as closing schools and restricting populations to their homes, impose large and visible costs on society; however, their benefits cannot be directly observed and are currently understood only through process-based simulations2-4. Here we compile data on 1,700 local, regional and national non-pharmaceutical interventions that were deployed in the ongoing pandemic across localities in China, South Korea, Italy, Iran, France and the United States. We then apply reduced-form econometric methods, commonly used to measure the effect of policies on economic growth5,6, to empirically evaluate the effect that these anti-contagion policies have had on the growth rate of infections. In the absence of policy actions, we estimate that early infections of COVID-19 exhibit exponential growth rates of approximately 38% per day. We find that anti-contagion policies have significantly and substantially slowed this growth. Some policies have different effects on different populations, but we obtain consistent evidence that the policy packages that were deployed to reduce the rate of transmission achieved large, beneficial and measurable health outcomes. We estimate that across these 6 countries, interventions prevented or delayed on the order of 61 million confirmed cases, corresponding to averting approximately 495 million total infections. These findings may help to inform decisions regarding whether or when these policies should be deployed, intensified or lifted, and they can support policy-making in the more than 180 other countries in which COVID-19 has been reported7.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Neumonía Viral/epidemiología , Neumonía Viral/prevención & control , Cuarentena/métodos , Número Básico de Reproducción , COVID-19 , China/epidemiología , Infecciones por Coronavirus/mortalidad , Infecciones por Coronavirus/transmisión , Francia/epidemiología , Humanos , Irán/epidemiología , Italia/epidemiología , Neumonía Viral/mortalidad , Neumonía Viral/transmisión , República de Corea/epidemiología , Instituciones Académicas/organización & administración , Aislamiento Social , Estados Unidos/epidemiología
17.
Nature ; 579(7798): 270-273, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32015507

RESUMEN

Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats1-4. Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans5-7. Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor-angiotensin converting enzyme II (ACE2)-as SARS-CoV.


Asunto(s)
Betacoronavirus/clasificación , Betacoronavirus/genética , Quirópteros/virología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Brotes de Enfermedades , Neumonía Viral/epidemiología , Neumonía Viral/virología , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Antivirales/sangre , Betacoronavirus/metabolismo , Betacoronavirus/ultraestructura , COVID-19 , Línea Celular , China/epidemiología , Chlorocebus aethiops , Femenino , Genoma Viral/genética , Humanos , Masculino , Peptidil-Dipeptidasa A/metabolismo , Filogenia , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/clasificación , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , SARS-CoV-2 , Homología de Secuencia de Ácido Nucleico , Síndrome Respiratorio Agudo Grave , Células Vero
18.
Nature ; 583(7815): 282-285, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32218527

RESUMEN

The ongoing outbreak of viral pneumonia in China and across the world is associated with a new coronavirus, SARS-CoV-21. This outbreak has been tentatively associated with a seafood market in Wuhan, China, where the sale of wild animals may be the source of zoonotic infection2. Although bats are probable reservoir hosts for SARS-CoV-2, the identity of any intermediate host that may have facilitated transfer to humans is unknown. Here we report the identification of SARS-CoV-2-related coronaviruses in Malayan pangolins (Manis javanica) seized in anti-smuggling operations in southern China. Metagenomic sequencing identified pangolin-associated coronaviruses that belong to two sub-lineages of SARS-CoV-2-related coronaviruses, including one that exhibits strong similarity in the receptor-binding domain to SARS-CoV-2. The discovery of multiple lineages of pangolin coronavirus and their similarity to SARS-CoV-2 suggests that pangolins should be considered as possible hosts in the emergence of new coronaviruses and should be removed from wet markets to prevent zoonotic transmission.


Asunto(s)
Betacoronavirus/genética , Betacoronavirus/aislamiento & purificación , Euterios/virología , Evolución Molecular , Genoma Viral/genética , Homología de Secuencia de Ácido Nucleico , Secuencia de Aminoácidos , Animales , Betacoronavirus/química , Betacoronavirus/clasificación , COVID-19 , China/epidemiología , Quirópteros/virología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Reservorios de Enfermedades/virología , Genómica , Humanos , Malasia , Pandemias , Filogenia , Neumonía Viral/epidemiología , Neumonía Viral/transmisión , Neumonía Viral/virología , Recombinación Genética , SARS-CoV-2 , Alineación de Secuencia , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Zoonosis/virología
19.
Nature ; 583(7816): 437-440, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32434211

RESUMEN

In December 2019, coronavirus disease 2019 (COVID-19), which is caused by the new coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified in Wuhan (Hubei province, China)1; it soon spread across the world. In this ongoing pandemic, public health concerns and the urgent need for effective therapeutic measures require a deep understanding of the epidemiology, transmissibility and pathogenesis of COVID-19. Here we analysed clinical, molecular and immunological data from 326 patients with confirmed SARS-CoV-2 infection in Shanghai. The genomic sequences of SARS-CoV-2, assembled from 112 high-quality samples together with sequences in the Global Initiative on Sharing All Influenza Data (GISAID) dataset, showed a stable evolution and suggested that there were two major lineages with differential exposure history during the early phase of the outbreak in Wuhan. Nevertheless, they exhibited similar virulence and clinical outcomes. Lymphocytopenia, especially reduced CD4+ and CD8+ T cell counts upon hospital admission, was predictive of disease progression. High levels of interleukin (IL)-6 and IL-8 during treatment were observed in patients with severe or critical disease and correlated with decreased lymphocyte count. The determinants of disease severity seemed to stem mostly from host factors such as age and lymphocytopenia (and its associated cytokine storm), whereas viral genetic variation did not significantly affect outcomes.


Asunto(s)
Betacoronavirus/genética , Betacoronavirus/patogenicidad , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Interacciones Huésped-Patógeno/inmunología , Linfopenia/virología , Neumonía Viral/inmunología , Neumonía Viral/virología , Síndrome de Dificultad Respiratoria/virología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento , Animales , Infecciones Asintomáticas/epidemiología , Betacoronavirus/clasificación , Betacoronavirus/aislamiento & purificación , COVID-19 , China/epidemiología , Estudios de Cohortes , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/epidemiología , Enfermedad Crítica/epidemiología , Progresión de la Enfermedad , Evolución Molecular , Femenino , Variación Genética , Genoma Viral/genética , Hospitalización/estadística & datos numéricos , Humanos , Mediadores de Inflamación/inmunología , Interleucina-6/sangre , Interleucina-6/inmunología , Interleucina-8/sangre , Interleucina-8/inmunología , Recuento de Linfocitos , Linfopenia/complicaciones , Masculino , Persona de Mediana Edad , Pandemias , Filogenia , Neumonía Viral/complicaciones , Neumonía Viral/epidemiología , Síndrome de Dificultad Respiratoria/complicaciones , SARS-CoV-2 , Linfocitos T/citología , Linfocitos T/inmunología , Factores de Tiempo , Resultado del Tratamiento , Virulencia/genética , Esparcimiento de Virus , Adulto Joven , Zoonosis/transmisión , Zoonosis/virología
20.
Nature ; 581(7807): 221-224, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32225175

RESUMEN

A novel severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2) recently emerged and is rapidly spreading in humans, causing COVID-191,2. A key to tackling this pandemic is to understand the receptor recognition mechanism of the virus, which regulates its infectivity, pathogenesis and host range. SARS-CoV-2 and SARS-CoV recognize the same receptor-angiotensin-converting enzyme 2 (ACE2)-in humans3,4. Here we determined the crystal structure of the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 (engineered to facilitate crystallization) in complex with ACE2. In comparison with the SARS-CoV RBD, an ACE2-binding ridge in SARS-CoV-2 RBD has a more compact conformation; moreover, several residue changes in the SARS-CoV-2 RBD stabilize two virus-binding hotspots at the RBD-ACE2 interface. These structural features of SARS-CoV-2 RBD increase its ACE2-binding affinity. Additionally, we show that RaTG13, a bat coronavirus that is closely related to SARS-CoV-2, also uses human ACE2 as its receptor. The differences among SARS-CoV-2, SARS-CoV and RaTG13 in ACE2 recognition shed light on the potential animal-to-human transmission of SARS-CoV-2. This study provides guidance for intervention strategies that target receptor recognition by SARS-CoV-2.


Asunto(s)
Betacoronavirus/química , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Receptores Virales/química , Receptores Virales/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Zoonosis/virología , Enzima Convertidora de Angiotensina 2 , Animales , Betacoronavirus/efectos de los fármacos , Betacoronavirus/metabolismo , Sitios de Unión , COVID-19 , China/epidemiología , Quirópteros/virología , Coronavirus/química , Coronavirus/aislamiento & purificación , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Cristalización , Cristalografía por Rayos X , Reservorios de Enfermedades/virología , Euterios/virología , Humanos , Modelos Moleculares , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/epidemiología , Neumonía Viral/transmisión , Neumonía Viral/virología , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Zoonosis/epidemiología , Zoonosis/transmisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA