Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(37): e2122032119, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36067315

RESUMEN

Photosynthetic organisms have developed a regulation mechanism called state transition (ST) to rapidly adjust the excitation balance between the two photosystems by light-harvesting complex II (LHCII) movement. Though many researchers have assumed coupling of the dynamic transformations of the thylakoid membrane with ST, evidence of that remains elusive. To clarify the above-mentioned coupling in a model organism Chlamydomonas, here we used two advanced microscope techniques, the excitation-spectral microscope (ESM) developed recently by us and the superresolution imaging based on structured-illumination microscopy (SIM). The ESM observation revealed ST-dependent spectral changes upon repeated ST inductions. Surprisingly, it clarified a less significant ST occurrence in the region surrounding the pyrenoid, which is a subcellular compartment specialized for the carbon-fixation reaction, than that in the other domains. Further, we found a species dependence of this phenomenon: 137c strain showed the significant intracellular inhomogeneity of ST occurrence, whereas 4A+ strain hardly did. On the other hand, the SIM observation resolved partially irreversible fine thylakoid transformations caused by the ST-inducing illumination. This fine, irreversible thylakoid transformation was also observed in the STT7 kinase-lacking mutant. This result revealed that the fine thylakoid transformation is not induced solely by the LHCII phosphorylation, suggesting the highly susceptible nature of the thylakoid ultrastructure to the photosynthetic light reactions.


Asunto(s)
Chlamydomonas , Complejos de Proteína Captadores de Luz , Complejo de Proteína del Fotosistema II , Tilacoides , Chlamydomonas/enzimología , Chlamydomonas/efectos de la radiación , Luz , Complejos de Proteína Captadores de Luz/química , Fosforilación , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/química , Tilacoides/enzimología , Tilacoides/efectos de la radiación
2.
J Cell Physiol ; 238(3): 549-565, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36852649

RESUMEN

Certain ciliary transmembrane and membrane-associated signaling proteins export from cilia as intraflagellar transport (IFT) cargoes in a BBSome-dependent manner. Upon reaching the ciliary tip via anterograde IFT, the BBSome disassembles before being reassembled to form an intact entity for cargo phospholipase D (PLD) coupling. During this BBSome remodeling process, Chlamydomonas Rab-like 4 GTPase IFT27, by binding its partner IFT25 to form the heterodimeric IFT25/27, is indispensable for BBSome reassembly. Here, we show that IFT27 binds IFT25 in an IFT27 nucleotide-independent manner. IFT25/27 and the IFT subcomplexes IFT-A and -B are irrelevant for maintaining the stability of one another. GTP-loading onto IFT27 enhances the IFT25/27 affinity for binding to the IFT-B subcomplex core IFT-B1 entity in cytoplasm, while GDP-bound IFT27 does not prevent IFT25/27 from entering and cycling through cilia by integrating into IFT-B1. Upon at the ciliary tip, IFT25/27 cycles on and off IFT-B1 and this process is irrelevant with the nucleotide state of IFT27. During BBSome remodeling at the ciliary tip, IFT25/27 promotes BBSome reassembly independent of IFT27 nucleotide state, making postremodeled BBSomes available for PLD to interact with. Thus, IFT25/27 facilitates BBSome-dependent PLD export from cilia via controlling availability of intact BBSomes at the ciliary tip, while IFT27 nucleotide state does not participate in this regulatory event.


Asunto(s)
Chlamydomonas , Cilios , Nucleótidos , Fosfolipasa D , Proteínas de Unión al GTP rab , Cilios/química , Cilios/metabolismo , Flagelos/química , Flagelos/metabolismo , Fosfolipasa D/metabolismo , Transporte de Proteínas , Transducción de Señal , Chlamydomonas/citología , Chlamydomonas/enzimología , Chlamydomonas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Guanosina Trifosfato/metabolismo , Guanosina Difosfato/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(16): 8048-8053, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30923119

RESUMEN

In land plants and algae, the Calvin-Benson (CB) cycle takes place in the chloroplast, a specialized organelle in which photosynthesis occurs. Thioredoxins (TRXs) are small ubiquitous proteins, known to harmonize the two stages of photosynthesis through a thiol-based mechanism. Among the 11 enzymes of the CB cycle, the TRX target phosphoribulokinase (PRK) has yet to be characterized at the atomic scale. To accomplish this goal, we determined the crystal structures of PRK from two model species: the green alga Chlamydomonas reinhardtii (CrPRK) and the land plant Arabidopsis thaliana (AtPRK). PRK is an elongated homodimer characterized by a large central ß-sheet of 18 strands, extending between two catalytic sites positioned at its edges. The electrostatic surface potential of the catalytic cavity has both a positive region suitable for binding the phosphate groups of substrates and an exposed negative region to attract positively charged TRX-f. In the catalytic cavity, the regulatory cysteines are 13 Å apart and connected by a flexible region exclusive to photosynthetic eukaryotes-the clamp loop-which is believed to be essential for oxidation-induced structural rearrangements. Structural comparisons with prokaryotic and evolutionarily older PRKs revealed that both AtPRK and CrPRK have a strongly reduced dimer interface and an increased number of random-coiled regions, suggesting that a general loss in structural rigidity correlates with gains in TRX sensitivity during the molecular evolution of PRKs in eukaryotes.


Asunto(s)
Arabidopsis , Chlamydomonas , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fotosíntesis/fisiología , Proteínas de Plantas/química , Arabidopsis/química , Arabidopsis/enzimología , Chlamydomonas/química , Chlamydomonas/enzimología , Cristalografía , Modelos Moleculares , Oxidación-Reducción , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/química
4.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34948247

RESUMEN

Microalgae are photosynthetic unicellular organisms that can be found in very different environments, both terrestrial and marine, including extreme environments such as cold, hot and high/low salinity [...].


Asunto(s)
Microalgas/enzimología , Microalgas/genética , Microalgas/metabolismo , Biomasa , Chlamydomonas/enzimología , Chlamydomonas/metabolismo , Fotosíntesis
5.
FASEB J ; 33(5): 6431-6441, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30794426

RESUMEN

Members of the MAPK superfamily are known as key regulators of ciliogenesis. Long flagellar (LF) 4, a MAPK-related kinase in Chlamydomonas, is the first kinase that was implicated in ciliary assembly and length. However, little is known about its cellular properties, regulation, and molecular functions. LF4 is localized both in the flagella and cell body with enrichment at the 2 basal bodies, shown by super-resolution microscopy. LF4 is constitutively phosphorylated at T159 at the kinase activation loop and remains at the basal bodies during flagellar assembly. Gene mutations that affect the kinase activity or T159 phosphorylation alter the localization of LF4 at the basal bodies, and the mutants fail to rescue lf4-3, a null mutant. LF4 does not affect the velocities of intraflagellar transport (IFT). However, LF4 null mutation induces accumulation of IFT proteins in the flagellum and reduces the phosphorylation of the kinesin-II subunit FLA8/KIF3B, indicating that LF4 negatively regulates IFT entry. Furthermore, LF2, a cell cycle-related kinase, and LF3, a novel protein, are required for LF4 phosphorylation. Our study demonstrates that LF4 is likely a constitutively active kinase that is regulated by LF2 and regulates IFT entry at the basal bodies to control flagellar assembly and length.-Wang, Y., Ren, Y., Pan, J. Regulation of flagellar assembly and length in Chlamydomonas by LF4, a MAPK-related kinase.


Asunto(s)
Chlamydomonas/enzimología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Flagelos/enzimología , Proteínas de Plantas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Chlamydomonas/genética , Quinasas MAP Reguladas por Señal Extracelular/genética , Flagelos/genética , Fosforilación , Proteínas de Plantas/genética
6.
Cell Mol Life Sci ; 76(12): 2329-2348, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30879092

RESUMEN

Many secreted peptides used for cell-cell communication require conversion of a C-terminal glycine to an amide for bioactivity. This reaction is catalyzed only by the integral membrane protein peptidylglycine α-amidating monooxygenase (PAM). PAM has been highly conserved and is found throughout the metazoa; PAM-like sequences are also present in choanoflagellates, filastereans, unicellular and colonial chlorophyte green algae, dinoflagellates and haptophytes. Recent studies have revealed that in addition to playing a key role in peptidergic signaling, PAM also regulates ciliogenesis in vertebrates, planaria and chlorophyte algae, and is required for the stability of actin-based microvilli. Here we briefly introduce the basic principles involved in ciliogenesis, the sequential reactions catalyzed by PAM and the trafficking of PAM through the secretory and endocytic pathways. We then discuss the multi-faceted roles this enzyme plays in the formation and maintenance of cytoskeleton-based cellular protrusions and propose models for how PAM protein and amidating activity might contribute to ciliogenesis. Finally, we consider why some ciliated organisms lack PAM, and discuss the potential ramifications of ciliary localized PAM for the endocrine features commonly observed in patients with ciliopathies.


Asunto(s)
Chlamydomonas/enzimología , Cilios/metabolismo , Oxigenasas de Función Mixta/metabolismo , Complejos Multienzimáticos/metabolismo , Péptidos/metabolismo , Proteínas de Plantas/metabolismo , Actinas/metabolismo , Chlamydomonas/citología , Chlamydomonas/metabolismo , Chlamydomonas/ultraestructura , Cilios/ultraestructura , Oxigenasas de Función Mixta/análisis , Modelos Moleculares , Complejos Multienzimáticos/análisis , Proteínas de Plantas/análisis , Biosíntesis de Proteínas , Transporte de Proteínas , Transducción de Señal
7.
Plant J ; 90(2): 358-371, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28142200

RESUMEN

Peroxisomes are thought to have played a key role in the evolution of metabolic networks of photosynthetic organisms by connecting oxidative and biosynthetic routes operating in different compartments. While the various oxidative pathways operating in the peroxisomes of higher plants are fairly well characterized, the reactions present in the primitive peroxisomes (microbodies) of algae are poorly understood. Screening of a Chlamydomonas insertional mutant library identified a strain strongly impaired in oil remobilization and defective in Cre05.g232002 (CrACX2), a gene encoding a member of the acyl-CoA oxidase/dehydrogenase superfamily. The purified recombinant CrACX2 expressed in Escherichia coli catalyzed the oxidation of fatty acyl-CoAs into trans-2-enoyl-CoA and produced H2 O2 . This result demonstrated that CrACX2 is a genuine acyl-CoA oxidase, which is responsible for the first step of the peroxisomal fatty acid (FA) ß-oxidation spiral. A fluorescent protein-tagging study pointed to a peroxisomal location of CrACX2. The importance of peroxisomal FA ß-oxidation in algal physiology was shown by the impact of the mutation on FA turnover during day/night cycles. Moreover, under nitrogen depletion the mutant accumulated 20% more oil than the wild type, illustrating the potential of ß-oxidation mutants for algal biotechnology. This study provides experimental evidence that a plant-type FA ß-oxidation involving H2 O2 -producing acyl-CoA oxidation activity has already evolved in the microbodies of the unicellular green alga Chlamydomonas reinhardtii.


Asunto(s)
Acil-CoA Oxidasa/metabolismo , Chlamydomonas/enzimología , Chlamydomonas/metabolismo , Peroxisomas/metabolismo , Chlamydomonas/genética , Peróxido de Hidrógeno/metabolismo , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/fisiología , Nitrógeno/metabolismo , Oxidación-Reducción
8.
New Phytol ; 219(2): 588-604, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29736931

RESUMEN

The objective of this work was to characterize photosynthetic ferredoxin from the Antarctic green alga Chlamydomonas sp. UWO241, a key enzyme involved in distributing photosynthetic reducing power. We hypothesize that ferredoxin possesses characteristics typical of cold-adapted enzymes, namely increased structural flexibility and high activity at low temperatures, accompanied by low stability at moderate temperatures. To address this objective, we purified ferredoxin from UWO241 and characterized the temperature dependence of its enzymatic activity and protein conformation. The UWO241 ferredoxin protein, RNA, and DNA sequences were compared with homologous sequences from related organisms. We provide evidence for the duplication of the main ferredoxin gene in the UWO241 nuclear genome and the presence of two highly similar proteins. Ferredoxin from UWO241 has both high activity at low temperatures and high stability at moderate temperatures, representing a novel class of cold-adapted enzymes. Our study reveals novel insights into how photosynthesis functions in the cold. The presence of two distinct ferredoxin proteins in UWO241 could provide an adaptive advantage for survival at cold temperatures. The primary amino acid sequence of ferredoxin is highly conserved among photosynthetic species, and we suggest that subtle differences in sequence can lead to significant changes in activity at low temperatures.


Asunto(s)
Adaptación Fisiológica , Chlamydomonas/fisiología , Frío , Fotosíntesis , Secuencia de Aminoácidos , Regiones Antárticas , Chlamydomonas/enzimología , Chlamydomonas/genética , Ferredoxinas/química , Ferredoxinas/metabolismo , Genoma , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estabilidad Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transcriptoma/genética
9.
Plant Physiol ; 174(4): 2083-2097, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28588114

RESUMEN

The metabolism of glycerol-3-phosphate (G3P) is important for environmental stress responses by eukaryotic microalgae. G3P is an essential precursor for glycerolipid synthesis and the accumulation of triacylglycerol (TAG) in response to nutrient starvation. G3P dehydrogenase (GPDH) mediates G3P synthesis, but the roles of specific GPDH isoforms are currently poorly understood. Of the five GPDH enzymes in the model alga Chlamydomonas reinhardtii, GPD2 and GPD3 were shown to be induced by nutrient starvation and/or salt stress. Heterologous expression of GPD2, a putative chloroplastic GPDH, and GPD3, a putative cytosolic GPDH, in a yeast gpd1Δ mutant demonstrated the functionality of both enzymes. C. reinhardtii knockdown mutants for GPD2 and GPD3 showed no difference in growth but displayed significant reduction in TAG concentration compared with the wild type in response to phosphorus or nitrogen starvation. Overexpression of GPD2 and GPD3 in C. reinhardtii gave distinct phenotypes. GPD2 overexpression lines showed only subtle metabolic phenotypes and no significant alteration in growth. In contrast, GPD3 overexpression lines displayed significantly inhibited growth and chlorophyll concentration, reduced glycerol concentration, and changes to lipid composition compared with the wild type, including increased abundance of phosphatidic acids but reduced abundance of diglycerides, triglycerides, and phosphatidylglycerol lipids. This may indicate a block in the downstream glycerolipid metabolism pathway in GPD3 overexpression lines. Thus, lipid engineering by GPDH modification may depend on the activities of other downstream enzyme steps. These results also suggest that GPD2 and GPD3 GPDH isoforms are important for nutrient starvation-induced TAG accumulation but have distinct metabolic functions.


Asunto(s)
Chlamydomonas/enzimología , Glicerolfosfato Deshidrogenasa/metabolismo , Metabolismo de los Lípidos , Biomasa , Carbohidratos/análisis , Chlamydomonas/genética , Chlamydomonas/crecimiento & desarrollo , Clorofila/metabolismo , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Genes de Plantas , Prueba de Complementación Genética , Glicerol/metabolismo , Mutación/genética , Fenotipo , Plantas Modificadas Genéticamente , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN , Almidón/metabolismo , Estrés Fisiológico/genética
10.
PLoS Genet ; 11(9): e1005508, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26348919

RESUMEN

CCDC39 and CCDC40 were first identified as causative mutations in primary ciliary dyskinesia patients; cilia from patients show disorganized microtubules, and they are missing both N-DRC and inner dynein arms proteins. In Chlamydomonas, we used immunoblots and microtubule sliding assays to show that mutants in CCDC40 (PF7) and CCDC39 (PF8) fail to assemble N-DRC, several inner dynein arms, tektin, and CCDC39. Enrichment screens for suppression of pf7; pf8 cells led to the isolation of five independent extragenic suppressors defined by four different mutations in a NIMA-related kinase, CNK11. These alleles partially rescue the flagellar length defect, but not the motility defect. The suppressor does not restore the missing N-DRC and inner dynein arm proteins. In addition, the cnk11 mutations partially suppress the short flagella phenotype of N-DRC and axonemal dynein mutants, but do not suppress the motility defects. The tpg1 mutation in TTLL9, a tubulin polyglutamylase, partially suppresses the length phenotype in the same axonemal dynein mutants. In contrast to cnk11, tpg1 does not suppress the short flagella phenotype of pf7. The polyglutamylated tubulin in the proximal region that remains in the tpg1 mutant is reduced further in the pf7; tpg1 double mutant by immunofluorescence. CCDC40, which is needed for docking multiple other axonemal complexes, is needed for tubulin polyglutamylation in the proximal end of the flagella. The CCDC39 and CCDC40 proteins are likely to be involved in recruiting another tubulin glutamylase(s) to the flagella. Another difference between cnk11-1 and tpg1 mutants is that cnk11-1 cells show a faster turnover rate of tubulin at the flagellar tip than in wild-type flagella and tpg1 flagella show a slower rate. The double mutant shows a turnover rate similar to tpg1, which suggests the faster turnover rate in cnk11-1 flagella requires polyglutamylation. Thus, we hypothesize that many short flagella mutants in Chlamydomonas have increased instability of axonemal microtubules. Both CNK11 and tubulin polyglutamylation play roles in regulating the stability of axonemal microtubules.


Asunto(s)
Axonema , Chlamydomonas/fisiología , Flagelos/fisiología , Proteínas Quinasas/metabolismo , Chlamydomonas/enzimología , Chlamydomonas/genética , Genes de Plantas , Movimiento , Mutación , Temperatura
11.
Plant J ; 85(2): 219-28, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26663146

RESUMEN

The plastid terminal oxidase PTOX is a plastohydroquinone:oxygen oxidoreductase that is important for carotenoid biosynthesis and plastid development. Its role in photosynthesis is controversially discussed. Under a number of abiotic stress conditions, the protein level of PTOX increases. PTOX is thought to act as a safety valve under high light protecting the photosynthetic apparatus against photodamage. However, transformants with high PTOX level were reported to suffer from photoinhibition. To analyze the effect of PTOX on the photosynthetic electron transport, tobacco expressing PTOX-1 from Chlamydomonas reinhardtii (Cr-PTOX1) was studied by chlorophyll fluorescence, thermoluminescence, P700 absorption kinetics and CO2 assimilation. Cr-PTOX1 was shown to compete very efficiently with the photosynthetic electron transport for PQH2 . High pressure liquid chromatography (HPLC) analysis confirmed that the PQ pool was highly oxidized in the transformant. Immunoblots showed that, in the wild-type, PTOX was associated with the thylakoid membrane only at a relatively alkaline pH value while it was detached from the membrane at neutral pH. We present a model proposing that PTOX associates with the membrane and oxidizes PQH2 only when the oxidation of PQH2 by the cytochrome b6 f complex is limiting forward electron transport due to a high proton gradient across the thylakoid membrane.


Asunto(s)
Chlamydomonas/enzimología , Nicotiana/enzimología , Nicotiana/genética , Oxidorreductasas/metabolismo , Fotosíntesis/genética , Plastidios/enzimología , Chlamydomonas/genética , Transporte de Electrón/genética , Oxidorreductasas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
12.
New Phytol ; 214(2): 655-667, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28084636

RESUMEN

Introducing components of algal carbon concentrating mechanisms (CCMs) into higher plant chloroplasts could increase photosynthetic productivity. A key component is the Rubisco-containing pyrenoid that is needed to minimise CO2 retro-diffusion for CCM operating efficiency. Rubisco in Arabidopsis was re-engineered to incorporate sequence elements that are thought to be essential for recruitment of Rubisco to the pyrenoid, namely the algal Rubisco small subunit (SSU, encoded by rbcS) or only the surface-exposed algal SSU α-helices. Leaves of Arabidopsis rbcs mutants expressing 'pyrenoid-competent' chimeric Arabidopsis SSUs containing the SSU α-helices from Chlamydomonas reinhardtii can form hybrid Rubisco complexes with catalytic properties similar to those of native Rubisco, suggesting that the α-helices are catalytically neutral. The growth and photosynthetic performance of complemented Arabidopsis rbcs mutants producing near wild-type levels of the hybrid Rubisco were similar to those of wild-type controls. Arabidopsis rbcs mutants expressing a Chlamydomonas SSU differed from wild-type plants with respect to Rubisco catalysis, photosynthesis and growth. This confirms a role for the SSU in influencing Rubisco catalytic properties.


Asunto(s)
Arabidopsis/genética , Chlamydomonas/enzimología , Prueba de Complementación Genética , Mutación/genética , Subunidades de Proteína/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Biocatálisis , Clorofila/metabolismo , Fluorescencia , Regulación de la Expresión Génica de las Plantas , Isoenzimas/metabolismo , Fenotipo , Fotosíntesis , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Subunidades de Proteína/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribulosa-Bifosfato Carboxilasa/química
13.
Plant Physiol ; 172(4): 2219-2234, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27756818

RESUMEN

Autophagy is a major catabolic pathway by which eukaryotic cells deliver unnecessary or damaged cytoplasmic material to the vacuole for its degradation and recycling in order to maintain cellular homeostasis. Control of autophagy has been associated with the production of reactive oxygen species in several organisms, including plants and algae, but the precise regulatory molecular mechanisms remain unclear. Here, we show that the ATG4 protease, an essential protein for autophagosome biogenesis, plays a central role for the redox regulation of autophagy in the model green alga Chlamydomonas reinhardtii Our results indicate that the activity of C. reinhardtii ATG4 is regulated by the formation of a single disulfide bond with a low redox potential that can be efficiently reduced by the NADPH/thioredoxin system. Moreover, we found that treatment of C. reinhardtii cells with norflurazon, an inhibitor of carotenoid biosynthesis that generates reactive oxygen species and triggers autophagy in this alga, promotes the oxidation and aggregation of ATG4. We propose that the activity of the ATG4 protease is finely regulated by the intracellular redox state, and it is inhibited under stress conditions to ensure lipidation of ATG8 and thus autophagy progression in C. reinhardtii.


Asunto(s)
Autofagia , Chlamydomonas/citología , Chlamydomonas/enzimología , Proteínas de Plantas/metabolismo , Autofagia/efectos de la radiación , Chlamydomonas/efectos de la radiación , Secuencia Conservada , Cisteína/metabolismo , Disulfuros/metabolismo , Activación Enzimática/efectos de la radiación , Luz , Modelos Biológicos , Mutación/genética , NADP/metabolismo , Oxidación-Reducción/efectos de la radiación , Agregado de Proteínas/efectos de la radiación , Multimerización de Proteína/efectos de la radiación , Serina/genética , Estrés Fisiológico/efectos de la radiación , Relación Estructura-Actividad , Tiorredoxinas/metabolismo
14.
Curr Microbiol ; 74(8): 921-929, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28516199

RESUMEN

Calmodulin (CaM) is a Ca2+-binding protein that plays a role in several Ca2+ signaling pathways, which dynamically regulates the activities of hundreds of proteins. The ice alga Chlamydomonas sp. ICE-L, which has the ability to adapt to extreme polar conditions, is a crucial primary producer in Antarctic ecosystem. This study hypothesized that Cam helps the ICE-L to adapt to the fluctuating conditions in the polar environment. It first verified the overall length of Cam, through RT-PCR and RACE-PCR, based on partial Cam transcriptome library of ICE-L. Then, the nucleotide and predicted amino acid sequences were, respectively, analyzed by various bioinformatics approaches to gain more insights into the computed physicochemical properties of the CaM. Potential involvements of Cam in responding to certain stimuli (i.e., UVB radiation, high salinity, and temperature) were investigated by differential expression, measuring its transcription levels by means of quantitative RT-PCR. Results showed that CaM was indeed inducible and regulated by high UVB radiation, high salinity, and nonoptimal temperature conditions. Different conditions had different expression tendencies, which provided an important basis for investigating the adaptation mechanism of Cam in ICE-L.


Asunto(s)
Calmodulina/análisis , Calmodulina/genética , Chlamydomonas/enzimología , Perfilación de la Expresión Génica , Regiones Antárticas , Calmodulina/química , Chlamydomonas/efectos de los fármacos , Chlamydomonas/genética , Chlamydomonas/efectos de la radiación , Clonación Molecular , Biología Computacional , Presión Osmótica , Reacción en Cadena de la Polimerasa , Salinidad , Temperatura , Rayos Ultravioleta
15.
Prep Biochem Biotechnol ; 47(2): 143-150, 2017 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-27191514

RESUMEN

Arctic Chlamydomonas sp. is a dominant microalgal strain in cold or frozen freshwater in the Arctic region. The full-length open reading frame of the omega-6 fatty acid desaturase gene (AChFAD6) was obtained from the transcriptomic database of Arctic Chlamydomonas sp. from the KOPRI culture collection of polar micro-organisms. Amino acid sequence analysis indicated the presence of three conserved histidine-rich segments as unique characteristics of omega-6 fatty acid desaturases, and three transmembrane regions transported to plastidic membranes by chloroplast transit peptides in the N-terminal region. The AChFAD6 desaturase activity was examined by expressing wild-type and V254A mutant (Mut-AChFAD6) heterologous recombinant proteins. Quantitative gas chromatography indicated that the concentration of linoleic acids in AChFAD6-transformed cells increased more than 3-fold [6.73 ± 0.13 mg g-1 dry cell weight (DCW)] compared with cells transformed with vector alone. In contrast, transformation with Mut-AChFAD6 increased the concentration of oleic acid to 9.23 ± 0.18 mg g-1 DCW, indicating a change in enzymatic activity to mimic that of stearoyl-CoA desaturase. These results demonstrate that AChFAD6 of Arctic Chlamydomonas sp. increases membrane fluidity by enhancing denaturation of C18 fatty acids and facilitates production of large quantities of linoleic fatty acids in prokaryotic expression systems.


Asunto(s)
Chlamydomonas/enzimología , Ácido Graso Desaturasas/metabolismo , Mutación Puntual , Secuencia de Aminoácidos , Regiones Árticas , Escherichia coli/genética , Ácido Graso Desaturasas/química , Ácido Graso Desaturasas/clasificación , Ácido Graso Desaturasas/genética , Filogenia , Homología de Secuencia de Aminoácido
16.
Plant Biotechnol J ; 14(11): 2158-2167, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27133096

RESUMEN

Despite a strong interest in microalgal oil production, our understanding of the biosynthetic pathways that produce algal lipids and the genes involved in the biosynthetic processes remains incomplete. Here, we report that Chlamydomonas reinhardtii Cre09.g398289 encodes a plastid-targeted 2-lysophosphatidic acid acyltransferase (CrLPAAT1) that acylates the sn-2 position of a 2-lysophosphatidic acid to form phosphatidic acid, the first common precursor of membrane and storage lipids. In vitro enzyme assays showed that CrLPAAT1 prefers 16:0-CoA to 18:1-CoA as an acyl donor. Fluorescent protein-tagged CrLPAAT1 was localized to the plastid membrane in C. reinhardtii cells. Furthermore, expression of CrLPAAT1 in plastids led to a > 20% increase in oil content under nitrogen-deficient conditions. Taken together, these results demonstrate that CrLPAAT1 is an authentic plastid-targeted LPAAT in C. reinhardtii, and that it may be used as a molecular tool to genetically increase oil content in microalgae.


Asunto(s)
Aciltransferasas/genética , Chlamydomonas/enzimología , Microalgas/química , Microalgas/genética , Plastidios/enzimología , Microalgas/metabolismo , Aceites de Plantas/metabolismo
17.
J Exp Bot ; 67(8): 2339-51, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26917556

RESUMEN

Proteolytic processing of secretory proteins to yield an active form generally involves specific proteolytic cleavage of a pre-protein. Multiple specific proteases have been identified that target specific pre-protein processing sites in animals. However, characterization of site-specific proteolysis of plant pre-proteins is still evolving. In this study, we characterized proteolytic processing of Chlamydomonas periplasmic carbonic anhydrase 1 (CAH1) in Arabidopsis. CAH1 pre-protein undergoes extensive post-translational modification in the endomembrane system, including glycosylation, disulfide bond formation and proteolytic removal of a peptide 'spacer' region, resulting in a mature, heterotetrameric enzyme with two large and two small subunits. We generated a series of small-scale and large-scale modifications to the spacer and flanking regions to identify potential protease target motifs. Surprisingly, we found that the endoproteolytic removal of the spacer from the CAH1 pre-protein proceeded via an opportunistic process apparently followed by further maturation via amino and carboxy peptidases. We also discovered that the spacer itself is not required for processing, which appears to be dependent only on the number of amino acids separating two key disulfide-bond-forming cysteines. Our data suggest a novel, opportunistic route for pre-protein processing of CAH1.


Asunto(s)
Arabidopsis/metabolismo , Anhidrasas Carbónicas/metabolismo , Chlamydomonas/enzimología , Proteínas de Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Arabidopsis/genética , Anhidrasas Carbónicas/química , Disulfuros/metabolismo , Péptidos/química , Proteínas de Plantas/química , Plantas Modificadas Genéticamente , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Eliminación de Secuencia
18.
J Plant Res ; 128(1): 177-85, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25413007

RESUMEN

We cultured Chlamydomonas reinhardtii cells in a minimal culture medium supplemented with various concentrations of acetate, fatty acids, ethanol, fatty alcohols, or sucrose. The presence of acetate (0.5 or 1.0%, w/v) was advantageous for cell growth. To determine whether peroxisomes are involved in fatty acid and fatty alcohol metabolism, we investigated the dynamics of peroxisomes, including changes in their number and size, in the presence of acetate, ethanol, and sucrose. The total volume of peroxisomes increased when cells were grown with acetate, but did not change when cells were grown with ethanol or sucrose. We analyzed cell growth on minimal culture medium supplemented with various fatty acids (carbon chain length ranging from one to ten) to investigate which fatty acids are metabolized by C. reinhardtii. Among them, acetate caused the greatest increase in growth when added to minimal culture media. We analyzed the transcript levels of genes encoding putative glyoxysomal enzymes. The transcript levels of genes encoding malate synthase, malate dehydrogenase, isocitrate lyase, and citrate synthase increased when Chlamydomonas cells were grown on minimal culture medium supplemented with acetate. Our results suggest that Chlamydomonas peroxisomes are involved in acetate metabolism via the glyoxylate cycle.


Asunto(s)
Acetatos/farmacología , Chlamydomonas/enzimología , Chlamydomonas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glioxisomas/enzimología , Peroxisomas/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Chlamydomonas/citología , Chlamydomonas/ultraestructura , Medios de Cultivo/farmacología , Genes de Plantas , Glioxisomas/efectos de los fármacos , Glioxisomas/genética , Microscopía Fluorescente , Peroxisomas/efectos de los fármacos , Peroxisomas/ultraestructura , ARN Mensajero/genética , ARN Mensajero/metabolismo
19.
Proc Natl Acad Sci U S A ; 109(47): 19474-9, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23112177

RESUMEN

The pyrenoid is a subcellular microcompartment in which algae sequester the primary carboxylase, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The pyrenoid is associated with a CO(2)-concentrating mechanism (CCM), which improves the operating efficiency of carbon assimilation and overcomes diffusive limitations in aquatic photosynthesis. Using the model alga Chlamydomonas reinhardtii, we show that pyrenoid formation, Rubisco aggregation, and CCM activity relate to discrete regions of the Rubisco small subunit (SSU). Specifically, pyrenoid occurrence was shown to be conditioned by the amino acid composition of two surface-exposed α-helices of the SSU: higher plant-like helices knock out the pyrenoid, whereas native algal helices establish a pyrenoid. We have also established that pyrenoid integrity was essential for the operation of an active CCM. With the algal CCM being functionally analogous to the terrestrial C(4) pathway in higher plants, such insights may offer a route toward transforming algal and higher plant productivity for the future.


Asunto(s)
Chlamydomonas/enzimología , Orgánulos/metabolismo , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/metabolismo , Secuencia de Aminoácidos , Procesos Autotróficos/efectos de los fármacos , Carbono/metabolismo , Dióxido de Carbono/farmacología , Chlamydomonas/efectos de los fármacos , Chlamydomonas/crecimiento & desarrollo , Chlamydomonas/ultraestructura , Eliminación de Gen , Cinética , Datos de Secuencia Molecular , Orgánulos/ultraestructura , Oxígeno/metabolismo , Fenotipo , Fotosíntesis/efectos de los fármacos , Estructura Secundaria de Proteína , Spinacia oleracea/efectos de los fármacos , Spinacia oleracea/enzimología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA