Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.945
Filtrar
Más filtros

Intervalo de año de publicación
1.
Small ; 20(26): e2306943, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38239086

RESUMEN

The growing consumption of drugs of abuse together with the inefficiency of the current wastewater treatment plants toward their presence has resulted in an emergent class of pollutants. Thus, the development of alternative approaches to remediate this environmental threat is urgently needed. Microrobots, combining autonomous motion with great tunability for the development of specific tasks, have turned into promising candidates to take on the challenge. Here, hybrid urchin-like hematite (α-Fe2O3) microparticles carrying magnetite (Fe3O4) nanoparticles and surface functionalization with organic ß-cyclodextrin (CD) molecules are prepared with the aim of on-the-fly encapsulation of illicit drugs into the linked CD cavities of moving microrobots. The resulting mag-CD microrobots are tested against methamphetamine (MA), proving their ability for the removal of this psychoactive substance. A dramatically enhanced capture of MA from water with active magnetically powered microrobots when compared with static passive CD-modified particles is demonstrated. This work shows the advantages of enhanced mass transfer provided by the externally controlled magnetic navigation in microrobots that together with the versatility of their design is an efficient strategy to clean polluted waters.


Asunto(s)
Ciclodextrinas , Metanfetamina , Contaminantes Químicos del Agua , Metanfetamina/química , Ciclodextrinas/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Magnetismo , Robótica , Purificación del Agua/métodos , Compuestos Férricos/química
2.
Small ; 20(29): e2310217, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38361221

RESUMEN

In this work, multi-layer Ti3C2 - carbon nanotubes - gold nanoparticles (Ti3C2-CNTs-Au) and cyclodextrin metal-organic framework - carbon nanotubes (CD-MOF-CNTs) have been prepared by in situ growth method and used to construct the ultra-sensitive rutin electrochemical sensor for the first time. Among them, the large number of metal active sites of Ti3C2, the high electron transfer efficiency of CNTS, and the good catalytic properties of AuNPs significantly enhance the electrochemical properties of the composite carbon nanomaterials. Interestingly, CD-MOF has a unique host-guest recognition and a large number of cavities, molecular gaps, and surface reactive groups, which gives the composite outstanding accumulation properties and selectivity for rutin. Under the optimized conditions, the constructed novel sensor has satisfactory detection performance for rutin in the range of 2 × 10-9 to 8 × 10-7 M with a limit of detection of 6.5 × 10-10 M. In addition, the sensor exhibits amazing anti-interference performance against rutin in some flavonoid compounds and can be used to test natural plant samples (buckwheat, Cymbopogon distans, and flos sophorae immaturus). This work has promising applications in the field of environmental and food analysis, and exploring new directions for the application of Mxene-based composites.


Asunto(s)
Ciclodextrinas , Oro , Nanotubos de Carbono , Rutina , Titanio , Rutina/química , Rutina/análisis , Oro/química , Ciclodextrinas/química , Nanotubos de Carbono/química , Titanio/química , Estructuras Metalorgánicas/química , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos
3.
Chembiochem ; 25(19): e202400396, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38775269

RESUMEN

The influence of alpha-cyclodextrin (αCD) on PEG crystallization is examined for a peptide-PEG conjugate, YYKLVFF-PEG3k comprising an amyloid peptide YYKLVFF linked to PEG with molar mass 3 kg mol-1. Remarkably, differential scanning calorimetry (DSC) and simultaneous synchrotron small-angle/wide-angle X-ray scattering (SAXS/WAXS) show that crystallization of PEG is suppressed by αCD, provided that the cyclodextrin content is sufficient. A hexagonal mesophase is formed instead. The αCD threading reduces the conformational flexibility of PEG, and hence suppresses crystallization. These results show that addition of cyclodextrins can be used to tune the crystallization of peptide-polymer conjugates and potentially other polymer/biomolecular hybrids.


Asunto(s)
Cristalización , Péptidos , Polietilenglicoles , Polietilenglicoles/química , Péptidos/química , Rastreo Diferencial de Calorimetría , Ciclodextrinas/química , Difracción de Rayos X , alfa-Ciclodextrinas/química , Dispersión del Ángulo Pequeño
4.
Appl Environ Microbiol ; 90(1): e0152123, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38084944

RESUMEN

Cyclodextrinases are carbohydrate-active enzymes involved in the linearization of circular amylose oligosaccharides. Primarily thought to function as part of starch metabolism, there have been previous reports of bacterial cyclodextrinases also having additional enzymatic activities on linear malto-oligosaccharides. This substrate class also includes environmentally rare α-diglucosides such as kojibiose (α-1,2), nigerose (α-1,3), and isomaltose (α-1,6), all of which have valuable properties as prebiotics or low-glycemic index sweeteners. Previous genome sequencing of three Cellvibrio japonicus strains adapted to utilize these α-diglucosides identified multiple, but uncharacterized, mutations in each strain. One of the mutations identified was in the amy13E gene, which was annotated to encode a neopullulanase. In this report, we functionally characterized this gene and determined that it in fact encodes a cyclodextrinase with additional activities on α-diglucosides. Deletion analysis of amy13E found that this gene was essential for kojibiose and isomaltose metabolism in C. japonicus. Interestingly, a Δamy13E mutant was not deficient for cyclodextrin or pullulan utilization in C. japonicus; however, heterologous expression of the gene in E. coli was sufficient for cyclodextrin-dependent growth. Biochemical analyses found that CjAmy13E cleaved multiple substrates but preferred cyclodextrins and maltose, but had no activity on pullulan. Our characterization of the CjAmy13E cyclodextrinase is useful for refining functional enzyme predictions in related bacteria and for engineering enzymes for biotechnology or biomedical applications.IMPORTANCEUnderstanding the bacterial metabolism of cyclodextrins and rare α-diglucosides is increasingly important, as these sugars are becoming prevalent in the foods, supplements, and medicines humans consume that subsequently feed the human gut microbiome. Our analysis of a cyclomaltodextrinase with an expanded substrate range is significant because it broadens the potential applications of the GH13 family of carbohydrate active enzymes (CAZymes) in biotechnology and biomedicine. Specifically, this study provides a workflow for the discovery and characterization of novel activities in bacteria that possess a high number of CAZymes that otherwise would be missed due to complications with functional redundancy. Furthermore, this study provides a model from which predictions can be made why certain bacteria in crowded niches are able to robustly utilize rare carbon sources, possibly to gain a competitive growth advantage.


Asunto(s)
Cellvibrio , Ciclodextrinas , Humanos , Isomaltosa/metabolismo , Escherichia coli/genética , Glicósido Hidrolasas/metabolismo , Oligosacáridos/metabolismo , Ciclodextrinas/metabolismo
5.
Mol Pharm ; 21(3): 1501-1514, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38363209

RESUMEN

Encapsulation of active pharmaceutical ingredients (APIs) in confined spaces has been extensively explored as it dramatically alters the molecular dynamics and physical properties of the API. Herein, we explored the effect of encapsulation on the molecular dynamics and physical stability of a guest drug, salicylic acid (SA), confined in the intermolecular spaces of γ-cyclodextrin (γ-CD) and poly(ethylene glycol) (PEG)-based polypseudorotaxane (PPRX) structure. The sublimation tendency of SA encapsulated in three polymorphic forms of the γ-CD/PEG-based PPRX complex, monoclinic columnar (MC), hexagonal columnar (HC), and tetragonal columnar (TC), was investigated. The SA sublimation rate was decreased by 3.0-6.6-fold and varied in the order of MC form > HC form > TC form complex. The 13C and 1H magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) spectra and 13C spin-lattice relaxation time (T1) indicated that the encapsulated SA molecules existed as the monomeric form, and its molecular mobility increased in the order of MC form > HC form > TC form complex. In the complexes, a rapid chemical exchange between two dynamic states of SA (free and bound) was suggested, with varying adsorption/desorption rates accounting for its distinct molecular mobility. This adsorption/desorption process was influenced by proton exchange at the interaction site and interaction strength of SA in the complexes, as evidenced by 1H MAS spectra and temperature dependency of the 13C carbonyl chemical shift. A positive correlation between the molecular mobility of SA and its sublimation rate was established. Moreover, the molecular mobility of γ-CD and PEG in the complexes coincided with that of SA, which can be explained by fast guest-driven dynamics. This is the first report on the stability improvement of an API through complexation in polymorphic supramolecular host structures. The relationship between the molecular dynamics and physical properties of encapsulated API will aid in the rational design of drug delivery systems.


Asunto(s)
Ciclodextrinas , Simulación de Dinámica Molecular , Poloxámero , Rotaxanos , Preparaciones Farmacéuticas , Ciclodextrinas/química , Espectroscopía de Resonancia Magnética , Ácido Salicílico/química
6.
Biomacromolecules ; 25(2): 941-954, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38241024

RESUMEN

Supramolecular assembly has attracted significant attention and has been applied to various applications. Herein, a ß-γ-CD dimer was synthesized to complex different guest molecules, including single-strand polyethylene glycol (PEG)-modified C60 (PEG-C60), photothermal conversion reagent (IR780), and dexamethasone (Dexa), according to the complexation constant-dependent specific selectivity. Spherical or cylindrical nanoparticles, monolayer or bilayer vesicles, and bilayer fusion vesicles were discovered in succession if the concentration of PEG-C60 was varied. Moreover, if near-infrared light was employed to irradiate these nanoassemblies, the thermo-induced morphological evolution, subsequent cargo release, photothermal effect, and singlet oxygen (1O2) generation were successfully achieved. The in vitro cell experiments confirmed that these nanoparticles possessed excellent biocompatibility in a normal environment and achieved superior cytotoxicity by light regulation. Such proposed strategies for the construction of multilevel structures with different morphologies can open a new window to obtain various host-guest functional materials and achieve further use for disease treatment.


Asunto(s)
Ciclodextrinas , Nanopartículas , Ciclodextrinas/química , Polímeros/química , Polietilenglicoles/química , Nanopartículas/química , Oxígeno Singlete/química
7.
Biomacromolecules ; 25(5): 3141-3152, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38687279

RESUMEN

Atherosclerosis (AS) is characterized by the accumulation of substantial low-density lipoprotein (LDL) and inflammatory response. Hemoperfusion is commonly employed for the selective removal of LDL from the body. However, conventional hemoperfusion merely focuses on LDL removal and does not address the symptom of plaque associated with AS. Based on the LDL binding properties of acrylated chondroitin sodium sulfate (CSA), acrylated beta-cyclodextrin (CD) and acrylic acid (AA), along with the anti-inflammatory property of rosiglitazone (R), the fabricated AA-CSA-CD-R microspheres could simultaneously release R and facilitate LDL removal for hemoperfusion. The AA and CSA offer electrostatic adsorption sites for LDL, while the CD provides hydrophobic adsorption sites for LDL and weak binding sites for R. According to the Sips model, the maximum static LDL adsorption capacity of AA-CSA-CD-R is determined to be 614.73 mg/g. In dynamic simulated perfusion experiments, AA-CSA-CD-R exhibits an initial cycle LDL adsorption capacity of 150.97 mg/g. The study suggests that the weakened inflammatory response favors plaque stabilization. The anti-inflammatory property of the microspheres is verified through an inflammation model, wherein the microsphere extracts are cocultured with mouse macrophages. Both qualitative analysis of iNOS\TNF-α and quantitative analysis of IL-6\TNF-α collectively demonstrate the remarkable anti-inflammatory effect of the microspheres. Therefore, the current study presents a novel blood purification treatment of eliminating pathogenic factors and introducing therapeutic factors to stabilize AS plaque.


Asunto(s)
Resinas Acrílicas , Aterosclerosis , Sulfatos de Condroitina , Lipoproteínas LDL , Rosiglitazona , Animales , Ratones , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/aislamiento & purificación , Sulfatos de Condroitina/química , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Resinas Acrílicas/química , Rosiglitazona/farmacología , Rosiglitazona/química , Adsorción , Células RAW 264.7 , Microesferas , Ciclodextrinas/química
8.
Microb Cell Fact ; 23(1): 30, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245746

RESUMEN

BACKGROUND: The global prevalence of vitamin D (VitD) deficiency associated with numerous acute and chronic diseases has led to strategies to improve the VitD status through dietary intake of VitD-fortified foods and VitD supplementation. In this context, the circulating form of VitD3 (cholecalciferol) in the human body, 25-hydroxy-VitD3 (calcifediol, 25OHVitD3), has a much higher efficacy in improving the VitD status, which has motivated researchers to develop methods for its effective and sustainable synthesis. Conventional monooxygenase-/peroxygenase-based biocatalytic platforms for the conversion of VitD3 to value-added 25OHVitD3 are generally limited by a low selectivity and yield, costly reliance on cyclodextrins and electron donor systems, or by the use of toxic co-substrates. RESULTS: In this study, we used a whole-cell approach for biocatalytic 25OHVitD3 synthesis, in which a molybdenum-dependent steroid C25 dehydrogenase was produced in the denitrifying bacterium Thauera aromatica under semi-aerobic conditions, where the activity of the enzyme remained stable. This enzyme uses water as a highly selective VitD3 hydroxylating agent and is independent of an electron donor system. High density suspensions of resting cells producing steroid C25 dehydrogenase catalysed the conversion of VitD3 to 25OHVitD3 using either O2 via the endogenous respiratory chain or externally added ferricyanide as low cost electron acceptor. The maximum 25OHVitD3 titer achieved was 1.85 g L-1 within 50 h with a yield of 99%, which is 2.2 times higher than the highest reported value obtained with previous biocatalytic systems. In addition, we developed a simple method for the recycling of the costly VitD3 solubiliser cyclodextrin, which could be reused for 10 reaction cycles without a significant loss of quality or quantity. CONCLUSIONS: The established steroid C25 dehydrogenase-based whole-cell system for the value-adding conversion of VitD3 to 25OHVitD3 offers a number of advantages in comparison to conventional oxygenase-/peroxygenase-based systems including its high selectivity, independence from an electron donor system, and the higher product titer and yield. Together with the established cyclodextrin recycling procedure, the established system provides an attractive platform for large-scale 25OHVitD3 synthesis.


Asunto(s)
Ciclodextrinas , Deficiencia de Vitamina D , Vitamina D/análogos & derivados , Humanos , Calcifediol , Molibdeno , Colecalciferol , Vitaminas , Esteroides
9.
J Chem Inf Model ; 64(14): 5451-5469, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38949069

RESUMEN

This study addresses the challenge of accurately identifying stereoisomers in cheminformatics, which originates from our objective to apply machine learning to predict the association constant between cyclodextrin and a guest. Identifying stereoisomers is indeed crucial for machine learning applications. Current tools offer various molecular descriptors, including their textual representation as Isomeric SMILES that can distinguish stereoisomers. However, such representation is text-based and does not have a fixed size, so a conversion is needed to make it usable to machine learning approaches. Word embedding techniques can be used to solve this problem. Mol2vec, a word embedding approach for molecules, offers such a conversion. Unfortunately, it cannot distinguish between stereoisomers due to its inability to capture the spatial configuration of molecular structures. This study proposes several approaches that use word embedding techniques to handle molecular discrimination using stereochemical information on molecules or considering Isomeric SMILES notation as a text in Natural Language Processing. Our aim is to generate a distinct vector for each unique molecule, correctly identifying stereoisomer information in cheminformatics. The proposed approaches are then compared to our original machine learning task: predicting the association constant between cyclodextrin and a guest molecule.


Asunto(s)
Aprendizaje Automático , Estereoisomerismo , Quimioinformática/métodos , Ciclodextrinas/química , Procesamiento de Lenguaje Natural
10.
Macromol Rapid Commun ; 45(20): e2400441, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39042093

RESUMEN

Synthesis of polyurethane-type poly[3]rotaxanes is achieved by polyaddition between a cyclodextrin (CD)-based [3]rotaxane diol and various diisocyanate species, which provide a more defined structure compared to conventional polyrotaxane syntheses. In this study, hydroxyl groups on CDs of [3]rotaxane diol are initially acetylated, and deprotected after the polyaddition to introduce polyurethane backbone structure into polyrotaxane framework. Despite a relatively complicated chemical structure, [3]rotaxane diol monomer is successfully synthesized in a high yield (overall 67%) without any taxing purification process, which is beneficial for practical applications. The polymerization itself proceeds well under a standard polyaddition reaction condition to afford corresponding polyurethanes around 80% yield with Mn > 30 kDa. The poly[3]rotaxanes show different aggregation behavior or optical properties, whether or not acetyl groups are present, and are analyzed by XRD, SEM, and fluorescence measurements.


Asunto(s)
Ciclodextrinas , Poliuretanos , Rotaxanos , Rotaxanos/química , Rotaxanos/síntesis química , Poliuretanos/química , Poliuretanos/síntesis química , Ciclodextrinas/química , Ciclodextrinas/síntesis química , Estructura Molecular , Isocianatos/química , Polimerizacion , Poloxámero
11.
Phys Chem Chem Phys ; 26(3): 2035-2043, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38126539

RESUMEN

Model systems are widely used in biology and chemistry to gain insight into more complex systems. In the field of computational chemistry, researchers use host-guest systems, relatively simple exemplars of noncovalent binding, to train and test the computational methods used in drug discovery. Indeed, host-guest systems have been developed to support the community-wide blinded SAMPL prediction challenges for over a decade. While seeking new host-guest systems for the recent SAMPL9 binding prediction challenge, which is the focus of the present PCCP Themed Collection, we identified phenothiazine as a privileged scaffold for guests of ß cyclodextrin (ßCD) and its derivatives. Building on this observation, we used calorimetry and NMR spectroscopy to characterize the noncovalent association of native ßCD and three methylated derivatives of ßCD with five phenothiazine drugs. The strongest association observed, that of thioridazine and one of the methyl derivatives, exceeds the well-known high affinity of rimantidine with ßCD. Intriguingly, however, methylation of ßCD at the 3 position abolished detectible binding for all of the drugs studied. The dataset has a clear pattern of entropy-enthalpy compensation. The NMR data show that all of the drugs position at least one aromatic proton at the secondary face of the CD, and most also show evidence of deep penetration of the binding site. The results of this study were used in the SAMPL9 blinded binding affinity-prediction challenge, which are detailed in accompanying papers of the present Themed Collection. These data also open the phenothiazines and, potentially, chemically similar drugs, such as the tricyclic antidepressants, as relatively potent binders of ßCD, setting the stage for future SAMPL challenge datasets and for possible applications as drug reversal agents.


Asunto(s)
Ciclodextrinas , Ciclodextrinas/química , Fenotiazinas , Sitios de Unión , Termodinámica
12.
J Biochem Mol Toxicol ; 38(1): e23597, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38037252

RESUMEN

Effective drug distribution at the intended or particular location is a critical issue that researchers are now dealing. Nanosponges have significantly increased in importance in medication delivery using nanotechnology in recent years. An important step toward solving these problems has been the development of nanosponges. Recently created and proposed for use in drug delivery, nanosponge is a unique type of hyper-crosslinked polymer-based colloidal structures made up of solid nanoparticles with colloidal carriers. Nanosponges are solid porous particles that may hold pharmaceuticals and other actives in their nanocavities. They can be made into dosage forms for oral, parenteral, topical, or inhalation use. The targeted distribution of drugs in a regulated manner is greatly aided by nanosponge. The utilization of nanosponges, their benefits, their production processes, the polymers they are made of, and their characterization have all been covered in this review article.


Asunto(s)
Ciclodextrinas , Nanopartículas , Ciclodextrinas/química , Preparaciones Farmacéuticas/química , Medicamentos a Granel , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Polímeros
13.
BMC Vet Res ; 20(1): 7, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172806

RESUMEN

BACKGROUND: This study was conducted to find the best concentration of cholesterol-loaded cyclodextrin (CLC) which has a positive impact on canine post thaw semen quality. Three different concentrations of CLC (0.83 mg/ml; 1.66 mg/ml; 3.32 mg/ml) and 2-hydroxylpropyl-beta-cyclodextrin (HBCD) (1.66 mg/ml) were used in addition to cryopreservation extender and compared with the control after thawing. Samples were assessed using computer-assisted semen analyzer (CASA), flow cytometry, fluorimeter by measuring the fluorescence anisotropy (ANISO) and determining the generalized membrane polarization (GP). RESULTS: An addition of 0.83 mg/ml CLC significantly increased the percentage of progressive motile (PROG) and rapid spermatozoa (RAP) (P < 0.05). 1.66 mg/ml HBCD decreased progressive motility of spermatozoa and population with rapid movement relative to the control (P < 0.05). Furthermore, the groups with an addition of 1.66 mg/ml and 3.32 mg/ml of CLC, as well as the group with only cyclodextrin, increased percentage of dead spermatozoa without lipid peroxidation and decreased percentage of viable spermatozoa without LPO which was lower in these groups than in the control (P < 0.05). Other sperm parameters assessed on flow cytometer were not significantly different. The addition of CLC at 0.83 mg/ml and 3.32 mg/ml concentrations and 1.66 mg/ml of HBCD caused an increase in ANISO measured at 23 ºC (P < 0.05). CONCLUSIONS: In conclusion, the results suggest that increasing cholesterol in the plasma membrane of canine spermatozoa can improve their freezability. However, only low concentrations of CLC may improve semen quality after thawing without adversely affecting other parameters.


Asunto(s)
Ciclodextrinas , Preservación de Semen , Animales , Perros , Masculino , Ciclodextrinas/farmacología , Semen , Análisis de Semen/veterinaria , Motilidad Espermática , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Espermatozoides , Criopreservación/veterinaria , Criopreservación/métodos , Colesterol
14.
Chirality ; 36(5): e23676, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38736271

RESUMEN

Among different substance classes, New Psychoactive Substances (NPS) comprise chiral amphetamines for stimulant and empathic effects. There is little knowledge in terms of clinical studies about possibly different effects of the two enantiomers of novel amphetamine derivatives. For this reason, there is a big demand for enantioseparation method development of this new substance class. Regarding gas chromatography, cyclodextrins proved to be effective for enantioseparation of NPS. In our attempt, an Astec® Chiraldex™ G-PN column containing 2,6-di-O-pentyl-3-propionyl-γ-cyclodextrin and a Lipodex™ D column containing heptakis-(2,6-di-O-pentyl-O-acetyl)-ß-cyclodextrin as chiral selector served as stationary phases in a Shimadzu GCMS-QP2010 SE system. Because of the special coating, maximum temperature is limited to 200 °C isothermal or 220 °C in programmed mode. To ensure detection, trifluoroacetic anhydride (TFAA) was used to increase sample volatility.1 As a result, 35 amphetamines were tested as their TFAA-derivatives. A screening method with a temperature gradient from 140 °C to 200 °C at a heating ramp of 1 °C per minute and final time of 5 min, showed baseline separation for seven and partial separations for 16 trifluoro acetylated amphetamines using the Chiraldex™ G-PN column. Six baseline and nine partial separations were observed with the Lipodex™ D column, respectively.


Asunto(s)
Anfetaminas , Estereoisomerismo , Anfetaminas/química , Anfetaminas/aislamiento & purificación , Cromatografía de Gases/métodos , Ciclodextrinas/química , Temperatura , Cromatografía de Gases y Espectrometría de Masas/métodos
15.
J Nanobiotechnology ; 22(1): 119, 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38494523

RESUMEN

BACKGROUND: Acute lung injury (ALI) is a fatal respiratory disease caused by overreactive immune reactions (e.g., SARS-CoV-2 infection), with a high mortality rate. Its treatment is often compromised by inefficient drug delivery barriers and insufficient potency of the currently used drugs. Therefore, developing a highly effective lung-targeted drug delivery strategy is a pressing clinical need. RESULTS: In this study, the micro-sized inclusion cocrystal of asiatic acid/γ-cyclodextrin (AA/γCD, with a stoichiometry molar ratio of 2:3 and a mean size of 1.8 µm) was prepared for ALI treatment. The dissolution behavior of the AA/γCD inclusion cocrystals followed a "spring-and-hover" model, which meaned that AA/γCD could dissolve from the cocrystal in an inclusion complex form, thereby promoting a significantly improved water solubility (nine times higher than free AA). This made the cyclodextrin-based inclusion cocrystals an effective solid form for enhanced drug absorption and delivery efficiency. The biodistribution experiments demonstrated AA/γCD accumulated predominantly in the lung (Cmax = 50 µg/g) after systemic administration due to the micron size-mediated passive targeting effect. The AA/γCD group showed an enhanced anti-inflammatory therapeutic effect, as evidenced by reduced levels of pro-inflammatory cytokines in the lung and bronchoalveolar lavage fluids (BALF). Histological examination confirmed that AA/γCD effectively inhibited inflammation reactions. CONCLUSION: The micro-sized inclusion cocrystals AA/γCD were successfully delivered into the lungs by pulmonary administration and had a significant therapeutic effect on ALI.


Asunto(s)
Lesión Pulmonar Aguda , Ciclodextrinas , Triterpenos Pentacíclicos , Humanos , Ciclodextrinas/química , Distribución Tisular , Sistemas de Liberación de Medicamentos , Lesión Pulmonar Aguda/tratamiento farmacológico , Solubilidad
16.
Cryobiology ; 115: 104888, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38508357

RESUMEN

The experiment evaluated the effect of adding cholesterol-loaded cyclodextrin (CLC) to Prochilodus lineatus fish (Curimata) semen on post-thaw sperm quality. Twelve adult fish were used for sperm collection after induced spermiation with carp pituitary gland. The semen was diluted and treated with CLC in concentrations of 0 (control), 0.5, 1.0, 2.0, 3.0, and 4.0 mg for 120 × 106 spermatozoa/ml, loaded in 0.5 ml straws, packaged and placed in dry vapor vessel cylinders for 24 h before being submerged in liquid nitrogen for storage. The samples were thawed in a water bath at 60 °C for 8 s, and the sperm parameters evaluated were motility, activation duration, longevity, plasma membrane integrity, and morphology. Data were tested for normal distribution and ANOVA, followed by Friedman test (P < 0.05). Spermatozoa treated with CLC displayed higher motility than the control (P < 0.05). The duration of sperm activation was longer in sperm treated with 0.5, 1.0, and 2.0 mg of CLC than in control (P < 0.05). The membrane integrity was higher in sperm treated with 0.5, 1.0, 2.0, and 3.0 mg of CLC than in control and four mg-treated samples (P < 0.05). The sperm longevity and morphology alterations did not differ between treatments (P > 0.05). Adding 0.5, 1.0, or 2.0 mg of CLC in Prochilodus lineatus semen before cryopreservation improves sperm motility and membrane integrity.


Asunto(s)
Colesterol , Criopreservación , Crioprotectores , Ciclodextrinas , Preservación de Semen , Motilidad Espermática , Espermatozoides , Animales , Masculino , Criopreservación/métodos , Criopreservación/veterinaria , Preservación de Semen/métodos , Preservación de Semen/veterinaria , Motilidad Espermática/efectos de los fármacos , Ciclodextrinas/farmacología , Ciclodextrinas/química , Espermatozoides/efectos de los fármacos , Colesterol/farmacología , Crioprotectores/farmacología , Membrana Celular/efectos de los fármacos , Characiformes , Análisis de Semen
17.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34475213

RESUMEN

The bacterial mechanosensitive channel of small conductance (MscS) has been extensively studied to understand how mechanical forces are converted into the conformational changes that underlie mechanosensitive (MS) channel gating. We showed that lipid removal by ß-cyclodextrin can mimic membrane tension. Here, we show that all cyclodextrins (CDs) can activate reconstituted Escherichia coli MscS, that MscS activation by CDs depends on CD-mediated lipid removal, and that the CD amount required to gate MscS scales with the channel's sensitivity to membrane tension. Importantly, cholesterol-loaded CDs do not activate MscS. CD-mediated lipid removal ultimately causes MscS desensitization, which we show is affected by the lipid environment. While many MS channels respond to membrane forces, generalized by the "force-from-lipids" principle, their different molecular architectures suggest that they use unique ways to convert mechanical forces into conformational changes. To test whether CDs can also be used to activate other MS channels, we chose to investigate the mechanosensitive channel of large conductance (MscL) and demonstrate that CDs can also activate this structurally unrelated channel. Since CDs can open the least tension-sensitive MS channel, MscL, they should be able to open any MS channel that responds to membrane tension. Thus, CDs emerge as a universal tool for the structural and functional characterization of unrelated MS channels.


Asunto(s)
Ciclodextrinas/metabolismo , Canales Iónicos/metabolismo , Mecanotransducción Celular/fisiología , Membrana Celular/fisiología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Membrana Dobles de Lípidos , Tensión Superficial
18.
Biomed Chromatogr ; 38(7): e5876, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38600635

RESUMEN

The two-step preconcentration technique consisting of large-volume sample stacking (LVSS) and micelle to solvent stacking (MSS) in cyclodextrin-modified electrokinetic chromatography (CDEKC) was developed for the analysis of five cationic alkaloids in complex Chinese herbal prescriptions. Relevant parameters affecting separation and stacking performance were optimized separately. Under the optimal LVSS-MSS-CDEKC conditions, less analysis time and organic solvent were required, and the enhancement factors of analytes ranged from 12 to 15 compared with the normal CDEKC separation mode. Further, all validation results demonstrated good applicability and multiple alkaloids (epiberberine, dehydrocorydaline, jatrorrhizine, coptisine and berberine) in Yangxinshi tablet (YXST) have been simultaneously determined. This approach presents powerful potential for the determination of multiple components in complex preparations of Chinese medicine.


Asunto(s)
Alcaloides , Cromatografía Capilar Electrocinética Micelar , Medicamentos Herbarios Chinos , Comprimidos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Cromatografía Capilar Electrocinética Micelar/métodos , Comprimidos/química , Alcaloides/análisis , Alcaloides/química , Reproducibilidad de los Resultados , Micelas , Modelos Lineales , Ciclodextrinas/química , Límite de Detección
19.
Reprod Domest Anim ; 59(10): e14728, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39350734

RESUMEN

Combining cholesterol-loaded methyl-ß-cyclodextrin (CD-CHL) with vitamin E-loaded methyl-ß-cyclodextrin (CD-Vit E) to combat cold shock and oxidative stress during sperm cryopreservation in soybean lecithin extenders remains unexplored. Thus, the current study aimed to investigate the effect of treating bull sperm with CD-CHL and CD-Vit E prior to cryopreservation in a soybean lecithin extender. Sperm collected from eight fertile bulls were pooled and split into six aliquots. Five aliquots were treated, in a Tris-based extender, with CD-CHL (2 mg/120 × 106 cells/mL) and either 0, 0.5, 1.0, 1.5 or 2 mg CD-Vit E/120 × 106 cells/mL. The control aliquot was diluted in a Tris-based extender without further supplementation. After incubation at 22°C for 15 min and addition of a soybean lecithin extender, all aliquots were equilibrated for 2 h at 4°C and then cryopreserved in liquid nitrogen. Computer-assisted sperm analysis (CASA) was used to explore the different sperm motility parameters, hypo-osmotic swelling test to determine membrane functionality and fluorescein isothiocyanate-conjugated Aeachis hypogaea (peanut) agglutinin (FITC-PNA) to quantify acrosome integrity. The effect of oxidative stress on the sperm membrane was assessed through lipid peroxidation measurement. Compared to control, CD-CHL alone improved significantly (p < 0.05) all CASA motility parameters, membrane functionality and acrosome integrity of thawed sperm. The membrane functionality was more significantly (p < 0.05) improved when 0.5 mg CD-Vit E was combined with CD-CHL. Concerning lipid peroxidation, no significant differences (p > 0.05) in malondialdehyde (MDA) levels were registered between groups. In conclusion, the combination of CD-CHL and CD-Vit E demonstrated a significant positive effect on the cryopreservation of bull sperm in a soybean lecithin extender.


Asunto(s)
Colesterol , Criopreservación , Crioprotectores , Glycine max , Preservación de Semen , Motilidad Espermática , Espermatozoides , Vitamina E , Masculino , Animales , Criopreservación/veterinaria , Criopreservación/métodos , Bovinos , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Vitamina E/farmacología , Crioprotectores/farmacología , Colesterol/farmacología , Espermatozoides/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos , Glycine max/química , Lecitinas/farmacología , beta-Ciclodextrinas/farmacología , Ciclodextrinas/farmacología , Estrés Oxidativo/efectos de los fármacos , Acrosoma/efectos de los fármacos
20.
Int J Mol Sci ; 25(8)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38674132

RESUMEN

Cyclodextrins (CDs) are cyclic oligosaccharides that contain at least six d-(+)-glucopyranose units linked by α-(1, 4) glucosidic bonds [...].


Asunto(s)
Ciclodextrinas , Ciclodextrinas/química , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA