Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.971
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Immunol ; 36: 19-42, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29144837

RESUMEN

Adaptive immunity in jawless fishes is based on antigen recognition by three types of variable lymphocyte receptors (VLRs) composed of variable leucine-rich repeats, which are differentially expressed by two T-like lymphocyte lineages and one B-like lymphocyte lineage. The T-like cells express either VLRAs or VLRCs of yet undefined antigen specificity, whereas the VLRB antibodies secreted by B-like cells bind proteinaceous and carbohydrate antigens. The incomplete VLR germline genes are assembled into functional units by a gene conversion-like mechanism that employs flanking variable leucine-rich repeat sequences as templates in association with lineage-specific expression of cytidine deaminases. B-like cells develop in the hematopoietic typhlosole and kidneys, whereas T-like cells develop in the thymoid, a thymus-equivalent region at the gill fold tips. Thus, the dichotomy between T-like and B-like cells and the presence of dedicated lymphopoietic tissues emerge as ancestral vertebrate features, whereas the somatic diversification of structurally distinct antigen receptor genes evolved independently in jawless and jawed vertebrates.


Asunto(s)
Inmunidad Adaptativa , Evolución Biológica , Vertebrados/inmunología , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linaje de la Célula , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Humanos , Inmunidad Innata , Familia de Multigenes , Receptores de Antígenos de Linfocitos B/química , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Relación Estructura-Actividad , Linfocitos T/inmunología , Linfocitos T/metabolismo , Vertebrados/metabolismo
2.
Cell ; 186(15): 3182-3195.e14, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37379837

RESUMEN

The elucidation of protein function and its exploitation in bioengineering have greatly advanced the life sciences. Protein mining efforts generally rely on amino acid sequences rather than protein structures. We describe here the use of AlphaFold2 to predict and subsequently cluster an entire protein family based on predicted structure similarities. We selected deaminase proteins to analyze and identified many previously unknown properties. We were surprised to find that most proteins in the DddA-like clade were not double-stranded DNA deaminases. We engineered the smallest single-strand-specific cytidine deaminase, enabling efficient cytosine base editor (CBE) to be packaged into a single adeno-associated virus (AAV). Importantly, we profiled a deaminase from this clade that edits robustly in soybean plants, which previously was inaccessible to CBEs. These discovered deaminases, based on AI-assisted structural predictions, greatly expand the utility of base editors for therapeutic and agricultural applications.


Asunto(s)
Edición Génica , Proteínas , Proteínas/metabolismo , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , ADN , Sistemas CRISPR-Cas , Citosina/metabolismo
3.
Cell ; 186(10): 2193-2207.e19, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37098343

RESUMEN

Somatic hypermutation (SHM), initiated by activation-induced cytidine deaminase (AID), generates mutations in the antibody-coding sequence to allow affinity maturation. Why these mutations intrinsically focus on the three nonconsecutive complementarity-determining regions (CDRs) remains enigmatic. Here, we found that predisposition mutagenesis depends on the single-strand (ss) DNA substrate flexibility determined by the mesoscale sequence surrounding AID deaminase motifs. Mesoscale DNA sequences containing flexible pyrimidine-pyrimidine bases bind effectively to the positively charged surface patches of AID, resulting in preferential deamination activities. The CDR hypermutability is mimicable in in vitro deaminase assays and is evolutionarily conserved among species using SHM as a major diversification strategy. We demonstrated that mesoscale sequence alterations tune the in vivo mutability and promote mutations in an otherwise cold region in mice. Our results show a non-coding role of antibody-coding sequence in directing hypermutation, paving the way for the synthetic design of humanized animal models for optimal antibody discovery and explaining the AID mutagenesis pattern in lymphoma.


Asunto(s)
Citidina Desaminasa , Hipermutación Somática de Inmunoglobulina , Animales , Ratones , Anticuerpos/genética , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , ADN/genética , ADN de Cadena Simple , Mutación , Evolución Molecular , Regiones Determinantes de Complementariedad/genética , Motivos de Nucleótidos
4.
Immunity ; 55(10): 1843-1855.e6, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36108634

RESUMEN

To optimize immunity to pathogens, B lymphocytes generate plasma cells with functionally diverse antibody isotypes. By lineage tracing single cells within differentiating B cell clones, we identified the heritability of discrete fate controlling mechanisms to inform a general mathematical model of B cell fate regulation. Founder cells highly influenced clonal plasma-cell fate, whereas class switch recombination (CSR) was variegated within clones. In turn, these CSR patterns resulted from independent all-or-none expression of both activation-induced cytidine deaminase (AID) and IgH germline transcription (GLT), with the latter being randomly re-expressed after each cell division. A stochastic model premised on these molecular transition rules accurately predicted antibody switching outcomes under varied conditions in vitro and during an immune response in vivo. Thus, the generation of functionally diverse antibody types follows rules of autonomous cellular programming that can be adapted and modeled for the rational control of antibody classes for potential therapeutic benefit.


Asunto(s)
Cambio de Clase de Inmunoglobulina , Recombinación Genética , Linfocitos B , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Cambio de Clase de Inmunoglobulina/genética , Isotipos de Inmunoglobulinas/genética , Isotipos de Inmunoglobulinas/metabolismo
5.
Cell ; 162(4): 697-8, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26276622

RESUMEN

Nussenzweig and colleagues evaluate genomic instability and germinal center derived lymphomagenesis in mice infected with Plasmodium to recreate some of the hallmark characteristics of Burkitt lymphoma, a form of cancer more common in parts of Africa where malaria is endemic.


Asunto(s)
Citidina Desaminasa/metabolismo , Linfoma de Células B/enzimología , Linfoma de Células B/genética , Translocación Genética , Animales , Humanos
6.
Cell ; 161(4): 762-73, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25957684

RESUMEN

Transcription through immunoglobulin switch (S) regions is essential for class switch recombination (CSR), but no molecular function of the transcripts has been described. Likewise, recruitment of activation-induced cytidine deaminase (AID) to S regions is critical for CSR; however, the underlying mechanism has not been fully elucidated. Here, we demonstrate that intronic switch RNA acts in trans to target AID to S region DNA. AID binds directly to switch RNA through G-quadruplexes formed by the RNA molecules. Disruption of this interaction by mutation of a key residue in the putative RNA-binding domain of AID impairs recruitment of AID to S region DNA, thereby abolishing CSR. Additionally, inhibition of RNA lariat processing leads to loss of AID localization to S regions and compromises CSR; both defects can be rescued by exogenous expression of switch transcripts in a sequence-specific manner. These studies uncover an RNA-mediated mechanism of targeting AID to DNA.


Asunto(s)
Citidina Desaminasa/metabolismo , Cambio de Clase de Inmunoglobulina , ARN Guía de Kinetoplastida/metabolismo , Animales , G-Cuádruplex , Intrones , Proteínas de Unión a Maltosa/metabolismo , Ratones , Procesamiento Postranscripcional del ARN , ARN Guía de Kinetoplastida/genética
7.
Cell ; 162(4): 727-37, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26276629

RESUMEN

Chronic infection with Plasmodium falciparum was epidemiologically associated with endemic Burkitt's lymphoma, a mature B cell cancer characterized by chromosome translocation between the c-myc oncogene and Igh, over 50 years ago. Whether infection promotes B cell lymphoma, and if so by which mechanism, remains unknown. To investigate the relationship between parasitic disease and lymphomagenesis, we used Plasmodium chabaudi (Pc) to produce chronic malaria infection in mice. Pc induces prolonged expansion of germinal centers (GCs), unique compartments in which B cells undergo rapid clonal expansion and express activation-induced cytidine deaminase (AID), a DNA mutator. GC B cells elicited during Pc infection suffer widespread DNA damage, leading to chromosome translocations. Although infection does not change the overall rate, it modifies lymphomagenesis to favor mature B cell lymphomas that are AID dependent and show chromosome translocations. Thus, malaria infection favors mature B cell cancers by eliciting protracted AID expression in GC B cells. PAPERCLIP.


Asunto(s)
Inestabilidad Genómica , Linfoma de Células B/genética , Malaria/complicaciones , Malaria/genética , Plasmodium chabaudi/fisiología , Animales , Linfocitos B/patología , Enfermedad Crónica , Citidina Desaminasa/metabolismo , Replicación del ADN , Genes p53 , Centro Germinal/parasitología , Malaria/parasitología , Malaria/patología , Ratones , Translocación Genética
8.
Nature ; 630(8017): 752-761, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867045

RESUMEN

Mutations accumulate in the genome of every cell of the body throughout life, causing cancer and other diseases1,2. Most mutations begin as nucleotide mismatches or damage in one of the two strands of the DNA before becoming double-strand mutations if unrepaired or misrepaired3,4. However, current DNA-sequencing technologies cannot accurately resolve these initial single-strand events. Here we develop a single-molecule, long-read sequencing method (Hairpin Duplex Enhanced Fidelity sequencing (HiDEF-seq)) that achieves single-molecule fidelity for base substitutions when present in either one or both DNA strands. HiDEF-seq also detects cytosine deamination-a common type of DNA damage-with single-molecule fidelity. We profiled 134 samples from diverse tissues, including from individuals with cancer predisposition syndromes, and derive from them single-strand mismatch and damage signatures. We find correspondences between these single-strand signatures and known double-strand mutational signatures, which resolves the identity of the initiating lesions. Tumours deficient in both mismatch repair and replicative polymerase proofreading show distinct single-strand mismatch patterns compared to samples that are deficient in only polymerase proofreading. We also define a single-strand damage signature for APOBEC3A. In the mitochondrial genome, our findings support a mutagenic mechanism occurring primarily during replication. As double-strand DNA mutations are only the end point of the mutation process, our approach to detect the initiating single-strand events at single-molecule resolution will enable studies of how mutations arise in a variety of contexts, especially in cancer and ageing.


Asunto(s)
Daño del ADN , Reparación de la Incompatibilidad de ADN , Neoplasias , Humanos , Reparación de la Incompatibilidad de ADN/genética , Desaminación , Neoplasias/genética , Mutación , Análisis de Secuencia de ADN , Citidina Desaminasa/metabolismo , Citidina Desaminasa/genética , Disparidad de Par Base/genética , Citosina/metabolismo , Imagen Individual de Molécula/métodos , Desaminasas APOBEC/genética , Desaminasas APOBEC/metabolismo , ADN de Cadena Simple/genética , Replicación del ADN/genética , Proteínas
9.
Genes Dev ; 36(7-8): 433-450, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35450882

RESUMEN

Somatic hypermutation (SHM) produces point mutations in immunoglobulin (Ig) genes in B cells when uracils created by the activation-induced deaminase are processed in a mutagenic manner by enzymes of the base excision repair (BER) and mismatch repair (MMR) pathways. Such uracil processing creates DNA strand breaks and is susceptible to the generation of deleterious deletions. Here, we demonstrate that the DNA repair factor HMCES strongly suppresses deletions without significantly affecting other parameters of SHM in mouse and human B cells, thereby facilitating the production of antigen-specific antibodies. The deletion-prone repair pathway suppressed by HMCES operates downstream from the uracil glycosylase UNG and is mediated by the combined action of BER factor APE2 and MMR factors MSH2, MSH6, and EXO1. HMCES's ability to shield against deletions during SHM requires its capacity to form covalent cross-links with abasic sites, in sharp contrast to its DNA end-joining role in class switch recombination but analogous to its genome-stabilizing role during DNA replication. Our findings lead to a novel model for the protection of Ig gene integrity during SHM in which abasic site cross-linking by HMCES intercedes at a critical juncture during processing of vulnerable gapped DNA intermediates by BER and MMR enzymes.


Asunto(s)
Genes de Inmunoglobulinas , Hipermutación Somática de Inmunoglobulina , Animales , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , ADN/genética , Proteínas de Unión al ADN , Genes de Inmunoglobulinas/genética , Cambio de Clase de Inmunoglobulina/genética , Ratones , Hipermutación Somática de Inmunoglobulina/genética , Uracilo
10.
Immunity ; 53(5): 952-970.e11, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33098766

RESUMEN

Precise targeting of activation-induced cytidine deaminase (AID) to immunoglobulin (Ig) loci promotes antibody class switch recombination (CSR) and somatic hypermutation (SHM), whereas AID targeting of non-Ig loci can generate oncogenic DNA lesions. Here, we examined the contribution of G-quadruplex (G4) nucleic acid structures to AID targeting in vivo. Mice bearing a mutation in Aicda (AIDG133V) that disrupts AID-G4 binding modeled the pathology of hyper-IgM syndrome patients with an orthologous mutation, lacked CSR and SHM, and had broad defects in genome-wide AIDG133V chromatin localization. Genome-wide analyses also revealed that wild-type AID localized to MHCII genes, and AID expression correlated with decreased MHCII expression in germinal center B cells and diffuse large B cell lymphoma. Our findings indicate a crucial role for G4 binding in AID targeting and suggest that AID activity may extend beyond Ig loci to regulate the expression of genes relevant to the physiology and pathology of activated B cells.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , G-Cuádruplex , Síndrome de Inmunodeficiencia con Hiper-IgM/etiología , Síndrome de Inmunodeficiencia con Hiper-IgM/metabolismo , Mutación , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Biología Computacional/métodos , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Activación Enzimática , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Centro Germinal/inmunología , Centro Germinal/metabolismo , Antígenos HLA/genética , Antígenos HLA/inmunología , Humanos , Síndrome de Inmunodeficiencia con Hiper-IgM/diagnóstico , Cambio de Clase de Inmunoglobulina/genética , Cambio de Clase de Inmunoglobulina/inmunología , Inmunofenotipificación , Activación de Linfocitos/genética , Linfoma de Células B Grandes Difuso/etiología , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Ratones , Ratones Transgénicos
11.
Cell ; 159(7): 1538-48, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25483776

RESUMEN

Activation-induced cytidine deaminase (AID) initiates both somatic hypermutation (SHM) for antibody affinity maturation and DNA breakage for antibody class switch recombination (CSR) via transcription-dependent cytidine deamination of single-stranded DNA targets. Though largely specific for immunoglobulin genes, AID also acts on a limited set of off-targets, generating oncogenic translocations and mutations that contribute to B cell lymphoma. How AID is recruited to off-targets has been a long-standing mystery. Based on deep GRO-seq studies of mouse and human B lineage cells activated for CSR or SHM, we report that most robust AID off-target translocations occur within highly focal regions of target genes in which sense and antisense transcription converge. Moreover, we found that such AID-targeting "convergent" transcription arises from antisense transcription that emanates from super-enhancers within sense transcribed gene bodies. Our findings provide an explanation for AID off-targeting to a small subset of mostly lineage-specific genes in activated B cells.


Asunto(s)
Citidina Desaminasa/metabolismo , Elementos de Facilitación Genéticos , Inestabilidad Genómica , Transcripción Genética , Animales , Linfocitos B/metabolismo , Humanos , Cambio de Clase de Inmunoglobulina , Ratones , Sitio de Iniciación de la Transcripción
12.
Nature ; 620(7973): 393-401, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37407818

RESUMEN

Acquired drug resistance to anticancer targeted therapies remains an unsolved clinical problem. Although many drivers of acquired drug resistance have been identified1-4, the underlying molecular mechanisms shaping tumour evolution during treatment are incompletely understood. Genomic profiling of patient tumours has implicated apolipoprotein B messenger RNA editing catalytic polypeptide-like (APOBEC) cytidine deaminases in tumour evolution; however, their role during therapy and the development of acquired drug resistance is undefined. Here we report that lung cancer targeted therapies commonly used in the clinic can induce cytidine deaminase APOBEC3A (A3A), leading to sustained mutagenesis in drug-tolerant cancer cells persisting during therapy. Therapy-induced A3A promotes the formation of double-strand DNA breaks, increasing genomic instability in drug-tolerant persisters. Deletion of A3A reduces APOBEC mutations and structural variations in persister cells and delays the development of drug resistance. APOBEC mutational signatures are enriched in tumours from patients with lung cancer who progressed after extended responses to targeted therapies. This study shows that induction of A3A in response to targeted therapies drives evolution of drug-tolerant persister cells, suggesting that suppression of A3A expression or activity may represent a potential therapeutic strategy in the prevention or delay of acquired resistance to lung cancer targeted therapy.


Asunto(s)
Citidina Desaminasa , Neoplasias Pulmonares , Humanos , Citidina Desaminasa/deficiencia , Citidina Desaminasa/efectos de los fármacos , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Roturas del ADN de Doble Cadena , Inestabilidad Genómica , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Terapia Molecular Dirigida , Mutación , Resistencia a Antineoplásicos
13.
Mol Cell ; 81(19): 3949-3964.e7, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34450044

RESUMEN

Immunoglobulin heavy chain (IgH) locus-associated G-rich long noncoding RNA (SµGLT) is important for physiological and pathological B cell DNA recombination. We demonstrate that the METTL3 enzyme-catalyzed N6-methyladenosine (m6A) RNA modification drives recognition and 3' end processing of SµGLT by the RNA exosome, promoting class switch recombination (CSR) and suppressing chromosomal translocations. The recognition is driven by interaction of the MPP6 adaptor protein with nuclear m6A reader YTHDC1. MPP6 and YTHDC1 promote CSR by recruiting AID and the RNA exosome to actively transcribe SµGLT. Direct suppression of m6A modification of SµGLT or of m6A reader YTHDC1 reduces CSR. Moreover, METTL3, an essential gene for B cell development in the bone marrow and germinal center, suppresses IgH-associated aberrant DNA breaks and prevents genomic instability. Taken together, we propose coordinated and central roles for MPP6, m6A modification, and m6A reader proteins in controlling long noncoding RNA processing, DNA recombination, and development in B cells.


Asunto(s)
Adenosina/análogos & derivados , Linfocitos B/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Cadenas Pesadas de Inmunoglobulina/metabolismo , Procesamiento de Término de ARN 3' , ARN Largo no Codificante/metabolismo , Recombinación Genética , Adenosina/metabolismo , Animales , Linfocitos B/inmunología , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Femenino , Inestabilidad Genómica , Células HEK293 , Humanos , Cambio de Clase de Inmunoglobulina , Cadenas Pesadas de Inmunoglobulina/genética , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones Noqueados , ARN Largo no Codificante/genética , ARN no Traducido/genética , ARN no Traducido/metabolismo
14.
Trends Biochem Sci ; 49(5): 391-400, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490833

RESUMEN

One of the two chromosomal breakage events in recurring translocations in B cell neoplasms is often due to the recombination-activating gene complex (RAG complex) releasing DNA ends before end joining. The other break occurs in a fragile zone of 20-600 bp in a non-antigen receptor gene locus, with a more complex and intriguing set of mechanistic factors underlying such narrow fragile zones. These factors include activation-induced deaminase (AID), which acts only at regions of single-stranded DNA (ssDNA). Recent work leads to a model involving the tethering of AID to the nascent RNA as it emerges from the RNA polymerase. This mechanism may have relevance in class switch recombination (CSR) and somatic hypermutation (SHM), as well as broader relevance for other DNA enzymes.


Asunto(s)
ARN , Translocación Genética , Humanos , ARN/metabolismo , ARN/genética , Citidina Desaminasa/metabolismo , Citidina Desaminasa/genética , Sitios Frágiles del Cromosoma
15.
Nat Rev Genet ; 23(8): 505-518, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35256818

RESUMEN

The AID/APOBEC polynucleotide cytidine deaminases have historically been classified as either DNA mutators or RNA editors based on their first identified nucleic acid substrate preference. DNA mutators can generate functional diversity at antibody genes but also cause genomic instability in cancer. RNA editors can generate informational diversity in the transcriptome of innate immune cells, and of cancer cells. Members of both classes can act as antiviral restriction factors. Recent structural work has illuminated differences and similarities between AID/APOBEC enzymes that can catalyse DNA mutation, RNA editing or both, suggesting that the strict functional classification of members of this family should be reconsidered. As many of these enzymes have been employed for targeted genome (or transcriptome) editing, a more holistic understanding will help improve the design of therapeutically relevant programmable base editors.


Asunto(s)
Citidina Desaminasa , ARN , Citidina Desaminasa/química , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , ADN/genética , ADN/metabolismo , Desaminación , ARN/genética , ARN/metabolismo , Edición de ARN
16.
Nat Immunol ; 16(7): 766-774, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25985233

RESUMEN

Childhood acute lymphoblastic leukemia (ALL) can often be traced to a pre-leukemic clone carrying a prenatal genetic lesion. Postnatally acquired mutations then drive clonal evolution toward overt leukemia. The enzymes RAG1-RAG2 and AID, which diversify immunoglobulin-encoding genes, are strictly segregated in developing cells during B lymphopoiesis and peripheral mature B cells, respectively. Here we identified small pre-BII cells as a natural subset with increased genetic vulnerability owing to concurrent activation of these enzymes. Consistent with epidemiological findings on childhood ALL etiology, susceptibility to genetic lesions during B lymphopoiesis at the transition from the large pre-BII cell stage to the small pre-BII cell stage was exacerbated by abnormal cytokine signaling and repetitive inflammatory stimuli. We demonstrated that AID and RAG1-RAG2 drove leukemic clonal evolution with repeated exposure to inflammatory stimuli, paralleling chronic infections in childhood.


Asunto(s)
Linfocitos B/inmunología , Evolución Clonal/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Células Precursoras de Linfocitos B/inmunología , Adolescente , Animales , Diversidad de Anticuerpos/genética , Diversidad de Anticuerpos/inmunología , Linfocitos B/metabolismo , Niño , Preescolar , Evolución Clonal/genética , Citidina Desaminasa/genética , Citidina Desaminasa/inmunología , Citidina Desaminasa/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Proteínas de Unión al ADN/metabolismo , Femenino , Citometría de Flujo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/inmunología , Proteínas de Homeodominio/metabolismo , Humanos , Immunoblotting , Lactante , Masculino , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Ratones Transgénicos , Microscopía Fluorescente , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Células Precursoras de Linfocitos B/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas
17.
Trends Immunol ; 45(3): 167-176, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38402044

RESUMEN

Antibody-coding genes accumulate somatic mutations to achieve antibody affinity maturation. Genetic dissection using various mouse models has shown that intrinsic hypermutations occur preferentially and are predisposed in the DNA region encoding antigen-contacting residues. The molecular basis of nonrandom/preferential mutations is a long-sought question in the field. Here, we summarize recent findings on how single-strand (ss)DNA flexibility facilitates activation-induced cytidine deaminase (AID) activity and fine-tunes the mutation rates at a mesoscale within the antibody variable domain exon. We propose that antibody coding sequences are selected based on mutability during the evolution of adaptive immunity and that DNA mechanics play a noncoding role in the genome. The mechanics code may also determine other cellular DNA metabolism processes, which awaits future investigation.


Asunto(s)
Genes de Inmunoglobulinas , Hipermutación Somática de Inmunoglobulina , Animales , Ratones , Hipermutación Somática de Inmunoglobulina/genética , Mutación , ADN , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo
18.
Cell ; 149(5): 979-93, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22608084

RESUMEN

All cancers carry somatic mutations. The patterns of mutation in cancer genomes reflect the DNA damage and repair processes to which cancer cells and their precursors have been exposed. To explore these mechanisms further, we generated catalogs of somatic mutation from 21 breast cancers and applied mathematical methods to extract mutational signatures of the underlying processes. Multiple distinct single- and double-nucleotide substitution signatures were discernible. Cancers with BRCA1 or BRCA2 mutations exhibited a characteristic combination of substitution mutation signatures and a distinctive profile of deletions. Complex relationships between somatic mutation prevalence and transcription were detected. A remarkable phenomenon of localized hypermutation, termed "kataegis," was observed. Regions of kataegis differed between cancers but usually colocalized with somatic rearrangements. Base substitutions in these regions were almost exclusively of cytosine at TpC dinucleotides. The mechanisms underlying most of these mutational signatures are unknown. However, a role for the APOBEC family of cytidine deaminases is proposed.


Asunto(s)
Neoplasias de la Mama/genética , Análisis Mutacional de ADN , Estudio de Asociación del Genoma Completo , Mutación , Desaminasas APOBEC-1 , Proteína BRCA2/genética , Citidina Desaminasa/metabolismo , Femenino , Genes BRCA1 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
19.
Mol Cell ; 75(6): 1286-1298.e12, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31473101

RESUMEN

Long interspersed element-1 (LINE-1 or L1) retrotransposition poses a threat to genome integrity, and cells have evolved mechanisms to restrict retrotransposition. However, how cellular proteins facilitate L1 retrotransposition requires elucidation. Here, we demonstrate that single-strand DNA breaks induced by the L1 endonuclease trigger the recruitment of poly(ADP-ribose) polymerase 2 (PARP2) to L1 integration sites and that PARP2 activation leads to the subsequent recruitment of the replication protein A (RPA) complex to facilitate retrotransposition. We further demonstrate that RPA directly binds activated PARP2 through poly(ADP-ribosyl)ation and can protect single-strand L1 integration intermediates from APOBEC3-mediated cytidine deamination in vitro. Paradoxically, we provide evidence that RPA can guide APOBEC3A, and perhaps other APOBEC3 proteins, to sites of L1 integration. Thus, the interplay of L1-encoded and evolutionarily conserved cellular proteins is required for efficient retrotransposition; however, these interactions also may be exploited to restrict L1 retrotransposition in the human genome.


Asunto(s)
Elementos de Nucleótido Esparcido Largo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteína de Replicación A/metabolismo , Desaminasas APOBEC , Animales , Células CHO , Cricetulus , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Células HEK293 , Células HeLa , Humanos , Poli(ADP-Ribosa) Polimerasas/genética , Unión Proteica , Proteína de Replicación A/genética
20.
Proc Natl Acad Sci U S A ; 121(22): e2314619121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38776375

RESUMEN

Humoral immunity depends on the germinal center (GC) reaction where B cells are tightly controlled for class-switch recombination and somatic hypermutation and finally generated into plasma and memory B cells. However, how protein SUMOylation regulates the process of the GC reaction remains largely unknown. Here, we show that the expression of SUMO-specific protease 1 (SENP1) is up-regulated in GC B cells. Selective ablation of SENP1 in GC B cells results in impaired GC dark and light zone organization and reduced IgG1-switched GC B cells, leading to diminished production of class-switched antibodies with high-affinity in response to a TD antigen challenge. Mechanistically, SENP1 directly binds to Paired box protein 5 (PAX5) to mediate PAX5 deSUMOylation, sustaining PAX5 protein stability to promote the transcription of activation-induced cytidine deaminase. In summary, our study uncovers SUMOylation as an important posttranslational mechanism regulating GC B cell response.


Asunto(s)
Linfocitos B , Cisteína Endopeptidasas , Centro Germinal , Factor de Transcripción PAX5 , Sumoilación , Centro Germinal/inmunología , Centro Germinal/metabolismo , Factor de Transcripción PAX5/metabolismo , Factor de Transcripción PAX5/genética , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética , Ratones , Cambio de Clase de Inmunoglobulina , Humanos , Citidina Desaminasa/metabolismo , Citidina Desaminasa/genética , Inmunidad Humoral , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA