Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.157
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(12): 3192-3204.e16, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33974910

RESUMEN

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by binding of the viral Spike protein to host receptor angiotensin-converting enzyme 2 (ACE2), followed by fusion of viral and host membranes. Although antibodies that block this interaction are in emergency use as early coronavirus disease 2019 (COVID-19) therapies, the precise determinants of neutralization potency remain unknown. We discovered a series of antibodies that potently block ACE2 binding but exhibit divergent neutralization efficacy against the live virus. Strikingly, these neutralizing antibodies can inhibit or enhance Spike-mediated membrane fusion and formation of syncytia, which are associated with chronic tissue damage in individuals with COVID-19. As revealed by cryoelectron microscopy, multiple structures of Spike-antibody complexes have distinct binding modes that not only block ACE2 binding but also alter the Spike protein conformational cycle triggered by ACE2 binding. We show that stabilization of different Spike conformations leads to modulation of Spike-mediated membrane fusion with profound implications for COVID-19 pathology and immunity.


Asunto(s)
Anticuerpos Neutralizantes/química , Células Gigantes/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/metabolismo , Complejo Antígeno-Anticuerpo/química , Complejo Antígeno-Anticuerpo/metabolismo , Sitios de Unión , Células CHO , COVID-19/patología , COVID-19/virología , Cricetinae , Cricetulus , Microscopía por Crioelectrón , Células Gigantes/citología , Humanos , Fusión de Membrana , Biblioteca de Péptidos , Unión Proteica , Dominios Proteicos , Estructura Cuaternaria de Proteína , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo
2.
Cell ; 184(12): 3205-3221.e24, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34015271

RESUMEN

Monoclonal antibodies (mAbs) are a focus in vaccine and therapeutic design to counteract severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants. Here, we combined B cell sorting with single-cell VDJ and RNA sequencing (RNA-seq) and mAb structures to characterize B cell responses against SARS-CoV-2. We show that the SARS-CoV-2-specific B cell repertoire consists of transcriptionally distinct B cell populations with cells producing potently neutralizing antibodies (nAbs) localized in two clusters that resemble memory and activated B cells. Cryo-electron microscopy structures of selected nAbs from these two clusters complexed with SARS-CoV-2 spike trimers show recognition of various receptor-binding domain (RBD) epitopes. One of these mAbs, BG10-19, locks the spike trimer in a closed conformation to potently neutralize SARS-CoV-2, the recently arising mutants B.1.1.7 and B.1.351, and SARS-CoV and cross-reacts with heterologous RBDs. Together, our results characterize transcriptional differences among SARS-CoV-2-specific B cells and uncover cross-neutralizing Ab targets that will inform immunogen and therapeutic design against coronaviruses.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Linfocitos B/metabolismo , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Complejo Antígeno-Anticuerpo/química , Complejo Antígeno-Anticuerpo/metabolismo , Reacciones Antígeno-Anticuerpo , Linfocitos B/citología , Linfocitos B/virología , COVID-19/patología , COVID-19/virología , Microscopía por Crioelectrón , Cristalografía por Rayos X , Perfilación de la Expresión Génica , Humanos , Inmunoglobulina A/inmunología , Región Variable de Inmunoglobulina/química , Región Variable de Inmunoglobulina/genética , Dominios Proteicos/inmunología , Multimerización de Proteína , Estructura Cuaternaria de Proteína , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Análisis de Secuencia de ARN , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
3.
Nat Immunol ; 24(8): 1281-1294, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37443283

RESUMEN

Germinal centers (GCs) require sustained availability of antigens to promote antibody affinity maturation against pathogens and vaccines. A key source of antigens for GC B cells are immune complexes (ICs) displayed on follicular dendritic cells (FDCs). Here we show that FDC spatial organization regulates antigen dynamics in the GC. We identify heterogeneity within the FDC network. While the entire light zone (LZ) FDC network captures ICs initially, only the central cells of the network function as the antigen reservoir, where different antigens arriving from subsequent immunizations colocalize. Mechanistically, central LZ FDCs constitutively express subtly higher CR2 membrane densities than peripheral LZ FDCs, which strongly increases the IC retention half-life. Even though repeated immunizations gradually saturate central FDCs, B cell responses remain efficient because new antigens partially displace old ones. These results reveal the principles shaping antigen display on FDCs during the GC reaction.


Asunto(s)
Células Dendríticas Foliculares , Centro Germinal , Antígenos , Linfocitos B , Complejo Antígeno-Anticuerpo/metabolismo
4.
Nat Immunol ; 17(2): 196-203, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26692173

RESUMEN

Canonically, immunoglobulin E (IgE) mediates allergic immune responses by triggering mast cells and basophils to release histamine and type 2 helper cytokines. Here we found that in human systemic lupus erythematosus (SLE), IgE antibodies specific for double-stranded DNA (dsDNA) activated plasmacytoid dendritic cells (pDCs), a type of cell of the immune system linked to viral defense, which led to the secretion of substantial amounts of interferon-α (IFN-α). The concentration of dsDNA-specific IgE found in patient serum correlated with disease severity and greatly potentiated pDC function by triggering phagocytosis via the high-affinity FcɛRI receptor for IgE, followed by Toll-like receptor 9 (TLR9)-mediated sensing of DNA in phagosomes. Our findings expand the known pathogenic mechanisms of IgE-mediated inflammation beyond those found in allergy and demonstrate that IgE can trigger interferon responses capable of exacerbating self-destructive autoimmune responses.


Asunto(s)
Autoanticuerpos/inmunología , Autoinmunidad , Inmunoglobulina E/inmunología , Interferones/metabolismo , Anticuerpos Antinucleares/inmunología , Complejo Antígeno-Anticuerpo/inmunología , Complejo Antígeno-Anticuerpo/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Citocinas/sangre , Citocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Femenino , Humanos , Inmunoglobulina E/sangre , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Lupus Eritematoso Sistémico/sangre , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/metabolismo , Nefritis Lúpica/inmunología , Nefritis Lúpica/patología , Masculino , Fagocitosis/inmunología , Fagosomas/metabolismo , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Receptor Toll-Like 9/metabolismo
5.
Blood ; 143(1): 64-69, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37883794

RESUMEN

ABSTRACT: Platelet factor 4 (PF4) is an abundant chemokine that is released from platelet α-granules on activation. PF4 is central to the pathophysiology of vaccine-induced immune thrombocytopenia and thrombosis (VITT) in which antibodies to PF4 form immune complexes with PF4, which activate platelets and neutrophils through Fc receptors. In this study, we show that PF4 binds and activates the thrombopoietin receptor, cellular myeloproliferative leukemia protein (c-Mpl), on platelets. This leads to the activation of Janus kinase 2 (JAK2) and phosphorylation of signal transducer and activator of transcription (STAT) 3 and STAT5, leading to platelet aggregation. Inhibition of the c-Mpl-JAK2 pathway inhibits platelet aggregation to PF4, VITT sera, and the combination of PF4 and IgG isolated from VITT patient plasma. The results support a model in which PF4-based immune complexes activate platelets through binding of the Fc domain to FcγRIIA and PF4 to c-Mpl.


Asunto(s)
Janus Quinasa 2 , Trombocitopenia , Humanos , Complejo Antígeno-Anticuerpo/metabolismo , Plaquetas/metabolismo , Heparina/efectos adversos , Factores Inmunológicos/efectos adversos , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Factor Plaquetario 4 , Receptores de Trombopoyetina/metabolismo , Trombocitopenia/inducido químicamente
6.
Nat Immunol ; 14(4): 327-36, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23455675

RESUMEN

During pathogen infection, antibodies can be carried into the infected cell, where they are detected by the ubiquitously expressed cytosolic antibody receptor TRIM21. Here we found that recognition of intracellular antibodies by TRIM21 activated immune signaling. TRIM21 catalyzed the formation of Lys63 (K63)-linked ubiquitin chains and stimulated the transcription factor pathways of NF-κB, AP-1, IRF3, IRF5 and IRF7. Activation resulted in the production of proinflammatory cytokines, modulation of natural killer stress ligands and induction of an antiviral state. Intracellular antibody signaling was abrogated by genetic deletion of TRIM21 and was restored by ectopic expression of TRIM21. The sensing of antibodies by TRIM21 was stimulated after infection by DNA or RNA nonenveloped viruses or intracellular bacteria. Thus, the antibody-TRIM21 detection system provides potent, comprehensive activation of the innate immune system independently of known pattern-recognition receptors.


Asunto(s)
Anticuerpos Antivirales/inmunología , Espacio Intracelular/inmunología , Espacio Intracelular/metabolismo , Receptores Fc/metabolismo , Ribonucleoproteínas/inmunología , Transducción de Señal , Virus/inmunología , Adenoviridae/inmunología , Animales , Anticuerpos Antivirales/química , Anticuerpos Antivirales/metabolismo , Complejo Antígeno-Anticuerpo/inmunología , Complejo Antígeno-Anticuerpo/metabolismo , Bacterias/inmunología , Línea Celular , Reacciones Cruzadas , Citocinas/biosíntesis , Humanos , Mediadores de Inflamación/metabolismo , Factores Reguladores del Interferón/metabolismo , Ratones , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Receptores de Reconocimiento de Patrones/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Factor de Transcripción AP-1/metabolismo
7.
Semin Cell Dev Biol ; 126: 138-149, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34654628

RESUMEN

Antibodies mediate the majority of their effects in the extracellular domain, or in intracellular compartments isolated from the cytosol. Under a growing list of circumstances, however, antibodies are found to gain access to the cytoplasm. Cytosolic immune complexes are bound by the atypical antibody receptor TRIM21, which mediates the rapid degradation of the immune complexes at the proteasome. These discoveries have informed the development of TRIM-Away, a technique to selectively deplete proteins using delivery of antibodies into cells. A range of related approaches that elicit selective protein degradation using intracellular constructs linking antibody fragments to degradative effector functions have also been developed. These methods hold promise for inducing the degradation of proteins as both research tools and as a novel therapeutic approach. Protein aggregates are a pathophysiological feature of neurodegenerative diseases and are considered to have a causal role in pathology. Immunotherapy is emerging as a promising route towards their selective targeting, and a role of antibodies in the cytosol has been demonstrated in cell-based assays. This review will explore the mechanisms by which therapeutic antibodies engage and eliminate intracellularly aggregated proteins. We will discuss how future developments in intracellular antibody technology may enhance the therapeutic potential of such antibody-derived therapies.


Asunto(s)
Enfermedades Neurodegenerativas , Complejo Antígeno-Anticuerpo/metabolismo , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ribonucleoproteínas/metabolismo
8.
Am J Physiol Renal Physiol ; 326(5): F862-F875, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38511222

RESUMEN

IgA nephropathy (IgAN) is characterized by glomerular deposition of immune complexes (ICs) consisting of IgA1 with O-glycans deficient in galactose (Gd-IgA1) and Gd-IgA1-specific IgG autoantibodies. These ICs induce kidney injury, and in the absence of disease-specific therapy, up to 40% of patients with IgAN progress to kidney failure. IgA1 with its clustered O-glycans is unique to humans, which hampered development of small-animal models of IgAN. Here, we used a model wherein engineered ICs (EICs) formed from human Gd-IgA1 and recombinant human IgG autoantibody are injected into nude mice to induce glomerular injury mimicking human IgAN. In this model, we assessed the protective effects of sparsentan, a single-molecule dual endothelin angiotensin receptor antagonist (DEARA) versus vehicle on EIC-induced glomerular proliferation and dysregulation of gene expression in the kidney. Oral administration of sparsentan (60 or 120 mg/kg daily) to mice intravenously injected with EIC attenuated the EIC-induced glomerular hypercellularity. Furthermore, analysis of changes in the whole kidney transcriptome revealed that key inflammatory and proliferative biological genes and pathways that are upregulated in this EIC model of IgAN were markedly reduced by sparsentan, including complement genes, integrin components, members of the mitogen-activated protein kinase family, and Fc receptor elements. Partial overlap between mouse and human differentially expressed genes in IgAN further supported the translational aspect of the immune and inflammatory components from our transcriptional findings. In conclusion, our data indicate that in the mouse model of IgAN, sparsentan targets immune and inflammatory processes leading to protection from mesangial hypercellularity.NEW & NOTEWORTHY The mechanisms by which deposited IgA1 immune complexes cause kidney injury during early phases of IgA nephropathy are poorly understood. We used an animal model we recently developed that involves IgA1-IgG immune complex injections and determined pathways related to the induced mesangioproliferative changes. Treatment with sparsentan, a dual inhibitor of endothelin type A and angiotensin II type 1 receptors, ameliorated the induced mesangioproliferative changes and the associated alterations in the expression of inflammatory genes and networks.


Asunto(s)
Complejo Antígeno-Anticuerpo , Modelos Animales de Enfermedad , Glomerulonefritis por IGA , Inmunoglobulina A , Inmunoglobulina G , Glomérulos Renales , Animales , Glomerulonefritis por IGA/inmunología , Glomerulonefritis por IGA/tratamiento farmacológico , Glomerulonefritis por IGA/genética , Glomerulonefritis por IGA/patología , Glomerulonefritis por IGA/metabolismo , Inmunoglobulina A/metabolismo , Inmunoglobulina A/inmunología , Glomérulos Renales/patología , Glomérulos Renales/metabolismo , Glomérulos Renales/efectos de los fármacos , Glomérulos Renales/inmunología , Complejo Antígeno-Anticuerpo/metabolismo , Redes Reguladoras de Genes , Ratones Desnudos , Humanos , Ratones , Proliferación Celular/efectos de los fármacos
9.
Cytokine ; 173: 156447, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38041875

RESUMEN

Lung macrophages are the first line of defense against invading respiratory pathogens including SARS-CoV-2, yet activation of macrophage in the lungs can lead to hyperinflammatory immune response seen in severe COVID-19. Here we used human M1 and M2 polarized macrophages as a surrogate model of inflammatory and regulatory macrophages and explored whether immune complexes (IC) containing spike-specific IgG can trigger aberrant cytokine responses in macrophages in the lungs and associated lymph nodes. We show that IC of SARS-CoV-2 recombinant S protein coated with spike-specific monoclonal antibody induced production of Prostaglandin E2 (PGE2) in non-polarized (M0) and in M1 and M2-type polarized human macrophages only in the presence of D-dimer (DD), a fibrinogen degradation product, associated with coagulopathy in COVID-19. Importantly, an increase in PGE2 was also observed in macrophages activated with DD and IC of SARS-CoV-2 pseudovirions coated with plasma from hospitalized COVID-19 patients but not from healthy subjects. Overall, the levels of PGE2 in macrophages activated with DD and IC were as follows: M1≫M2>M0 and correlated with the levels of spike binding antibodies and not with neutralizing antibody titers. All three macrophage subsets produced similar levels of IL-6 following activation with DD+IC, however TNFα, IL-1ß, and IL-10 cytokines were produced by M2 macrophages only. Our study suggests that high titers of spike or virion containing IC in the presence of coagulation byproducts (DD) can promote inflammatory response in macrophages in the lungs and associated lymph nodes and contribute to severe COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Complejo Antígeno-Anticuerpo/metabolismo , Mediadores de Inflamación/metabolismo , Dinoprostona/metabolismo , COVID-19/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo
10.
J Exp Bot ; 75(5): 1565-1579, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37976240

RESUMEN

Receptor-like kinases (RLKs) are major regulators of the plant immune response and play important roles in the perception and transmission of immune signals. RECEPTOR LIKE KINASE 902 (RLK902) is at the key node in leucine-rich repeat receptor-like kinase interaction networks and positively regulates resistance to the bacterial pathogen Pseudomonas syringae in Arabidopsis. However, the function of RLK902 in fungal disease resistance remains obscure. In this study, we found that the expression levels of OsRLK902-1 and OsRLK902-2, encoding two orthologues of RLK902 in rice, were induced by Magnaporthe oryzae, chitin, and flg22 treatment. osrlk902-1 and osrlk902-2 knockout mutants displayed enhanced susceptibility to M. oryzae. Interestingly, the osrlk902-1 rlk902-2 double mutant exhibited similar disease susceptibility, hydrogen peroxide production, and callose deposition to the two single mutants. Further investigation showed that OsRLK902-1 interacts with and stabilizes OsRLK902-2. The two OsRLKs form a complex with OsRLCK185, a key regulator in chitin-triggered immunity, and stabilize it. Taken together, our data demonstrate that OsRLK902-1 and OsRLK902-2, as well as OsRLCK185 function together in regulating disease resistance to M. oryzae in rice.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Magnaporthe , Oryza , Resistencia a la Enfermedad/genética , Complejo Antígeno-Anticuerpo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Quitina/metabolismo , Oryza/metabolismo , Enfermedades de las Plantas/microbiología , Magnaporthe/fisiología , Proteínas Quinasas/metabolismo , Proteínas de Arabidopsis/metabolismo
11.
J Immunol ; 209(6): 1048-1058, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35985788

RESUMEN

In IgA vasculitis (IgAV) perivascular deposition of IgA1 immune complexes (IgA-ICs) is traditionally considered the fundamental trigger for polymorphonuclear neutrophil (PMN)-mediated damage. We propose that IgA-IC deposition, although mandatory, is not sufficient alone for IgAV. Serum IgA-IC levels and IgA-IC binding to PMNs were quantified in IgAV patients and controls. Activation of PMNs was evaluated by neutrophil extracellular trap (NET) release, adherence, and cytotoxicity assays and in a flow system to mirror conditions at postcapillary venules. In vitro results were related to findings in biopsies and a mouse vasculitis model. During acute IgAV flares we observed elevated serum levels of IgA-ICs and increased IgA-IC binding to circulating PMNs. This IgA-IC binding primed PMNs with consequent lowering of the threshold for NETosis, demonstrated by significantly higher release of NETs from PMNs activated in vitro and PMNs from IgAV patients with flares compared with surface IgA-negative PMNs after flares. Blocking of FcαRI abolished these effects, and complement was not essential. In the flow system, marked NETosis only occurred after PMNs had adhered to activated endothelial cells. IgA-IC binding enhanced this PMN tethering and consequent NET-mediated endothelial cell injury. Reflecting these in vitro findings, we visualized NETs in close proximity to endothelial cells and IgA-coated PMNs in tissue sections of IgAV patients. Inhibition of NET formation and knockout of myeloperoxidase in a murine model of IC vasculitis significantly reduced vessel damage in vivo. Binding of IgA-ICs during active IgAV primes PMNs and promotes vessel injury through increased adhesion of PMNs to the endothelium and enhanced NETosis.


Asunto(s)
Vasculitis por IgA , Vasculitis , Animales , Complejo Antígeno-Anticuerpo/metabolismo , Células Endoteliales , Inmunoglobulina A , Ratones , Neutrófilos , Peroxidasa/metabolismo
12.
Clin Nephrol ; 102(2): 89-96, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38856027

RESUMEN

INTRODUCTION: IgA nephropathy (IgAN) is a kidney disorder characterized by the deposition of circulating immune complexes of IgG bound to galactose-deficient IgA1 (Gd-IgA1) in the mesangial glomeruli. However, limited research has been conducted on the levels of IgA binding in relation to the various sialylation profiles of IgG in IgAN. MATERIALS AND METHODS: Sialylated IgG (SA-IgG) and desialylated IgG (DSA-IgG) were isolated from IgAN patients. The IgG-IgA immune complex (IgG-IgA-IC) was detected using two customized commercial ELISA kits. Additionally, IgG was enzymatically digested with neuraminidase to produce DSA-IgG. Subsequently, the binding capacities of both intact IgG and the neuraminidase-digested DSA-IgG with Gd-IgA1 were determined using ELISA kits. RESULTS: Our research revealed that SA-IgG levels were negatively correlated with Gd-IgA1 (R = -0.16, p = 0.03) in IgAN patients. The optical density (OD) levels of IgG-IgA complexes in SA-IgG samples were significantly lower (0.58 ± 0.09) compared to those in DSA-IgG samples (0.78 ± 0.12) when using the Gd-IgA1 assay kit. These results were confirmed using an IgG assay kit, which showed that the SA-IgG groups had significantly lower IgA indices (0.31 ± 0.12) compared to the DSA-IgG groups (0.57 ± 0.19). Furthermore, we investigated the binding capacity of IgG with different sialic acid levels to Gd-IgA1. The results revealed that neuraminidase digestion of IgG increased its propensity to bind to Gd-IgA1. Additionally, we examined the binding capacity of both intact IgG and DSA-IgG to Gd-IgA1 at different mix ratios (IgG 1.5 µg and Gd-IgA1 1.5 µg, IgG 1.5 µg and Gd-IgA1 3 µg, IgG 3 µg and Gd-IgA1 1.5 µg). Interestingly, DSA-IgG demonstrated significantly higher binding capacity to Gd-IgA1 compared to intact IgG at all mix ratios tested. CONCLUSION: The preliminary findings from our present study indicate that the binding level of IgA in purified sialylated IgG is lower than that in desialylated IgG.


Asunto(s)
Glomerulonefritis por IGA , Inmunoglobulina A , Inmunoglobulina G , Humanos , Glomerulonefritis por IGA/inmunología , Glomerulonefritis por IGA/metabolismo , Inmunoglobulina A/metabolismo , Inmunoglobulina A/inmunología , Inmunoglobulina G/metabolismo , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Masculino , Femenino , Adulto , Persona de Mediana Edad , Complejo Antígeno-Anticuerpo/metabolismo , Complejo Antígeno-Anticuerpo/inmunología , Adulto Joven , Ensayo de Inmunoadsorción Enzimática , Ácido N-Acetilneuramínico/metabolismo , Neuraminidasa/metabolismo , Neuraminidasa/inmunología
13.
J Allergy Clin Immunol ; 152(6): 1607-1618.e1, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37604310

RESUMEN

BACKGROUND: IgA is the most abundant immunoglobulin at the mucosal surface and although its role in regulating mucosal immunity is not fully understood, its presence is associated with protection from developing allergic disease. OBJECTIVE: We sought to determine the role of IgA immune complexes for therapeutic application to mucosal allergic responses. METHODS: Trinitrophenol (TNP)-specific IgA immune complexes were applied, using TNP-coupled ovalbumin (OVA), to airway and gut mucosal surfaces in systemically sensitized allergic animals to regulate allergen challenge responses. Animals were assessed for both pathologic and immune-mediated responses in the lung and gut, respectively, using established mouse models. RESULTS: The mucosal application of IgA immune complexes in the lung and gut with TNP-OVA regulated TH2-driven allergic response in the lung and gut, reducing TH2 cytokines and mucus (lung) as well as diarrhea and temperature loss (gut), but increasing IL-10 and the number of regulatory T cells. The IgA-OVA immune complex did not alter peanut-induced anaphylaxis, indicating antigen specificity. Using OVA-specific DO.11-green fluorescent protein IL-4 reporter mouse-derived TH2-skewed cells in a transfer model demonstrated that mucosal IgA immune complex treatment reduced TH2-cell expansion and increased the number of regulatory T cells. To address a potential mechanism of action, TGF-ß and IL-10 were induced in bone marrow-derived dendritic cells when they were exposed to IgA immune complex, suggesting a regulatory phenotype induced in dendritic cells that also led to an altered primary T-cell-mediated response in in vitro OVA-specific assays. CONCLUSIONS: These studies highlight one possible mechanism of how allergen-specific IgA may provide a regulatory signal to reduce the development of allergic responses in the lung and gut.


Asunto(s)
Anafilaxia , Interleucina-10 , Animales , Ratones , Interleucina-10/metabolismo , Complejo Antígeno-Anticuerpo/metabolismo , Pulmón , Citocinas/metabolismo , Alérgenos , Anafilaxia/patología , Ovalbúmina , Células Th2 , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad
14.
Eur J Immunol ; 52(10): 1581-1594, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35907260

RESUMEN

Follicular dendritic cells (FDCs) are a specialized type of stromal cells that exclusively reside in B-cell follicles. When inflammation occurs, the FDC network is reorganized to support germinal center (GC) polarization into the light zone (LZ) and dark zone (DZ). Despite the indispensable role of FDCs in supporting humoral responses, the FDC regulatory requirements remain incompletely defined. In this study, we unexpectedly observed an accumulation of CD169+ subcapsular sinus macrophage (SSM)-derived microvesicles (MVs) in the B-cell zone, which were tightly associated with the FDC network. Interestingly, a selective deposition of CD169+ MVs was detected in both GC LZ FDCs in secondary follicles and on predetermined LZ FDCs in primary follicles. The ablation of CD169+ MVs, resulting from SSM depletion, resulted in significantly decreased expression of LZ-related genes in FDCs. In addition, we found that CD169+ MVs could colocalize with fluorescently tagged antigen-containing immune complexes (ICs), supporting a possible role of CD169+ MVs in transporting antigens to the FDC network. Thus, our data reveal intimate crosstalk between FDCs and SSMs located outside B-cell follicles via SSM-released MVs, providing a novel perspective on the mechanisms underlying the regulation of FDC maturation and polarization.


Asunto(s)
Complejo Antígeno-Anticuerpo , Células Dendríticas Foliculares , Complejo Antígeno-Anticuerpo/metabolismo , Antígenos/metabolismo , Linfocitos B , Células Dendríticas , Centro Germinal , Macrófagos
15.
Brief Bioinform ; 22(5)2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-33876197

RESUMEN

The design of therapeutic antibodies has attracted a large amount of attention over the years. Antibodies are widely used to treat many diseases due to their high efficiency and low risk of adverse events. However, the experimental methods of antibody design are time-consuming and expensive. Although computational antibody design techniques have had significant advances in the past years, there are still some challenges that need to be solved, such as the flexibility of antigen structure, the lack of antibody structural data and the absence of standard antibody design protocol. In the present work, we elaborated on an in silico antibody design protocol for users to easily perform computer-aided antibody design. First, the Rosetta web server will be applied to generate the 3D structure of query antibodies if there is no structural information available. Then, two-step docking will be used to identify the binding pose of an antibody-antigen complex when the binding information is unknown. ClusPro is the first method to be used to conduct the global docking, and SnugDock is applied for the local docking. Sequentially, based on the predicted binding poses, in silico alanine scanning will be used to predict the potential hotspots (or key residues). Finally, computational affinity maturation protocol will be used to modify the structure of antibodies to theoretically increase their affinity and stability, which will be further validated by the bioassays in the future. As a proof of concept, we redesigned antibody D44.1 and compared it with previously reported data in order to validate IsAb protocol. To further illustrate our proposed protocol, we used cemiplimab antibody, a PD-1 checkpoint inhibitor, as an example to showcase a step-by-step tutorial.


Asunto(s)
Anticuerpos/química , Complejo Antígeno-Anticuerpo/química , Biología Computacional/métodos , Diseño Asistido por Computadora , Simulación del Acoplamiento Molecular , Dominios Proteicos , Animales , Anticuerpos/metabolismo , Anticuerpos Monoclonales Humanizados/química , Anticuerpos Monoclonales Humanizados/metabolismo , Especificidad de Anticuerpos , Complejo Antígeno-Anticuerpo/metabolismo , Sitios de Unión de Anticuerpos , Simulación por Computador , Cristalografía por Rayos X , Humanos , Receptor de Muerte Celular Programada 1/química , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Unión Proteica
16.
Blood ; 137(24): 3443-3453, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33512486

RESUMEN

Glycoprotein VI (GPVI) is the major signaling receptor for collagen on platelets. We have raised 54 nanobodies (Nb), grouped into 33 structural classes based on their complementary determining region 3 loops, against recombinant GPVI-Fc (dimeric GPVI) and have characterized their ability to bind recombinant GPVI, resting and activated platelets, and to inhibit platelet activation by collagen. Nbs from 6 different binding classes showed the strongest binding to recombinant GPVI-Fc, suggesting that there was not a single dominant class. The most potent 3, Nb2, 21, and 35, inhibited collagen-induced platelet aggregation with nanomolar half maximal inhibitory concentration (IC50) values and inhibited platelet aggregation under flow. The binding KD of the most potent Nb, Nb2, against recombinant monomeric and dimeric GPVI was 0.6 and 0.7 nM, respectively. The crystal structure of monomeric GPVI in complex with Nb2 revealed a binding epitope adjacent to the collagen-related peptide (CRP) binding groove within the D1 domain. In addition, a novel conformation of GPVI involving a domain swap between the D2 domains was observed. The domain swap is facilitated by the outward extension of the C-C' loop, which forms the domain swap hinge. The functional significance of this conformation was tested by truncating the hinge region so that the domain swap cannot occur. Nb2 was still able to displace collagen and CRP binding to the mutant, but signaling was abolished in a cell-based NFAT reporter assay. This demonstrates that the C-C' loop region is important for GPVI signaling but not ligand binding and suggests the domain-swapped structure may represent an active GPVI conformation.


Asunto(s)
Complejo Antígeno-Anticuerpo , Plaquetas , Glicoproteínas de Membrana Plaquetaria , Multimerización de Proteína , Anticuerpos de Dominio Único , Complejo Antígeno-Anticuerpo/química , Complejo Antígeno-Anticuerpo/metabolismo , Plaquetas/química , Plaquetas/metabolismo , Humanos , Activación Plaquetaria/efectos de los fármacos , Activación Plaquetaria/genética , Glicoproteínas de Membrana Plaquetaria/química , Glicoproteínas de Membrana Plaquetaria/genética , Glicoproteínas de Membrana Plaquetaria/metabolismo , Dominios Proteicos , Multimerización de Proteína/efectos de los fármacos , Multimerización de Proteína/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/farmacología
17.
J Immunol ; 206(7): 1436-1442, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33608455

RESUMEN

Follicular dendritic cells (FDCs) retain immune complexes (ICs) for prolonged time periods and are important for germinal center (GC) reactions. ICs undergo periodic cycling in FDCs, a mechanism supporting an extended half-life of Ag. Based on experimental data, we estimated that the average residence time of PE-ICs on FDC surface and interior were 21 and 36 min, respectively. GC simulations show that Ag cycling might impact GC dynamics because of redistribution of Ag on the FDC surface and by protecting Ag from degradation. Ag protection and influence on GC dynamics varied with Ag cycling time and total Ag concentration. Simulations predict that blocking Ag cycling terminates the GC reaction and decreases plasma cell production. Considering that cycling of Ag could be a target for the modulation of GC reactions, our findings highlight the importance of understanding the mechanism and regulation of IC cycling in FDCs.


Asunto(s)
Complejo Antígeno-Anticuerpo/metabolismo , Linfocitos B/inmunología , Células Dendríticas Foliculares/inmunología , Centro Germinal/inmunología , Modelos Teóricos , Células Plasmáticas/inmunología , Animales , Antígenos/metabolismo , Diferenciación Celular , Simulación por Computador , Humanos , Activación de Linfocitos , Ciclo del Sustrato
18.
J Immunol ; 206(8): 1729-1739, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33789980

RESUMEN

Antiribosomal P protein (anti-P) autoantibodies commonly develop in patients with systemic lupus erythematosus. We have previously established hybridoma clones producing anti-P mAbs. In this study, we explored the pathogenesis of behavioral disorders induced by anti-P Abs using these mAbs. New Zealand Black × New Zealand White F1, New Zealand White, C57BL/6, and BALB/c mice were treated with 1 mg of anti-P Abs once every 2 wk. The behavioral disorder was evaluated by the tail suspension test, forced swim test, and open field test. Following administration of anti-P Abs, New Zealand Black × New Zealand White F1 and C57BL/6 mice developed depressive behavior and showed increased anxiety with elevated serum TNF-α and IL-6 levels. Anti-P Abs were not deposited in the affected brain tissue; instead, this mood disorder was associated with lower serum and brain tryptophan concentrations. Tryptophan supplementation recovered serum tryptophan levels and prevented the behavioral disorder. TNF-α and IL-6 were essential for the decreased serum tryptophan and disease development, which were ameliorated by treatment with anti-TNF-α neutralizing Abs or dexamethasone. Peritoneal macrophages from C57BL/6 mice produced TNF-α, IL-6, and IDO-1 via interaction with anti-P Abs through activating FcγRs, which were required for disease development. IVIg, which has an immunosuppressive effect partly through the regulation of FcγR expression, also prevented the decrease in serum tryptophan and disease development. Furthermore, serum tryptophan concentrations were decreased in the sera of systemic lupus erythematosus patients with anti-P Abs, and lower tryptophan levels correlated with disease activity. Our study revealed some of the molecular mechanisms of mood disorder induced by anti-P Abs.


Asunto(s)
Complejo Antígeno-Anticuerpo/metabolismo , Encéfalo/metabolismo , Lupus Eritematoso Sistémico/metabolismo , Macrófagos/inmunología , Trastornos del Humor/prevención & control , Suero/metabolismo , Triptófano/metabolismo , Animales , Anticuerpos Monoclonales/metabolismo , Autoanticuerpos/metabolismo , Suplementos Dietéticos , Humanos , Hibridomas , Lupus Eritematoso Sistémico/complicaciones , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Trastornos del Humor/etiología , Fosfoproteínas/inmunología , Receptores de IgG/metabolismo , Proteínas Ribosómicas/inmunología , Triptófano/administración & dosificación , Factor de Necrosis Tumoral alfa/metabolismo
19.
Mediators Inflamm ; 2023: 3224708, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37885469

RESUMEN

Immune complexes (ICs) skew immune responses toward either a pro- or anti-inflammatory direction based on the type of stimulation. Immunoglobulin E (IgE) is associated with Th2 immune responses and known to activate innate immune cells. However, roles of antigen (Ag)-specific-IgE ICs in regulating human eosinophil responses remain elusive; therefore, this study builts upon the mechanism of which ovalbumin (Ova)-IgE ICs affects eosinophilic responses utilizing human EoL-1 cell line as a model. Eosinophils are granulocytes functioning through pattern recognition receptors (PRRs) and destructive granule contents in allergic inflammation and parasitic infections. One of the PRRs that eosinophils express is NLRC4, a member of the CARD domain containing nucleotide-binding oligomerization (NOD)-like receptor (NLR) family. Upon recognition of its specific ligand flagellin, NLRC4 inflammasome is formed and leads to the release of interleukin-1ß (IL-1ß). We exhibited that Ova-IgE ICs induced the NLRC4-inflammasome components, including NLRC4, caspase-1, intracellular IL-1ß, and secretion of IL-1ß, as well as the granule contents MMP9, TIMP1, and TIMP2 proteins via TLR2 signaling; these responses were suppressed, when NLRC4 inflammasome got actived in the presence of ICs. Furthermore, Ova-IgE ICs induced mRNA expressions of MMP9, TIMP2, and ECP and protein expressions of MMP9 and TIMP2 in EoL-1 through FcɛRII. Interestingly, TLR2 ligand and Ova-IgE ICs costimulation elevated the number of CD63+ cells, a degranulation marker, as compared to the native IgE. Collectively, our findings provide a mechanism for the impacts of Ova-IgE ICs on eosinophilic responses via NLRC4-inflammasome and may help understand eosinophil-associated diseases, including chronic eosinophilic pneumonia, eosinophilic esophagitis, eosinophilic granulomatosis, parasitic infections, allergy, and asthma.


Asunto(s)
Inflamasomas , Enfermedades Parasitarias , Humanos , Inflamasomas/metabolismo , Complejo Antígeno-Anticuerpo/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Inmunoglobulina E/metabolismo , Ligandos , Receptor Toll-Like 2/metabolismo , Inmunidad Innata , Proteínas de Unión al Calcio/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo
20.
Am J Physiol Renal Physiol ; 323(4): F411-F424, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35979968

RESUMEN

While angiotensin-converting enzyme (ACE) regulates blood pressure by producing angiotensin II as part of the renin-angiotensin system, we recently reported that elevated ACE in neutrophils promotes an effective immune response and increases resistance to infection. Here, we investigate if such neutrophils protect against renal injury in immune complex (IC)-mediated crescentic glomerulonephritis (GN) through complement. Nephrotoxic serum nephritis (NTN) was induced in wild-type and NeuACE mice that overexpress ACE in neutrophils. Glomerular injury of NTN in NeuACE mice was attenuated with much less proteinuria, milder histological injury, and reduced IC deposits, but presented with more glomerular neutrophils in the early stage of the disease. There were no significant defects in T and B cell functions in NeuACE mice. NeuACE neutrophils exhibited enhanced IC uptake with elevated surface expression of FcγRII/III and complement receptor CR1/2. IC uptake in neutrophils was enhanced by NeuACE serum containing elevated complement C3b. Given no significant complement activation by ACE, this suggests that neutrophil ACE indirectly preactivates C3 and that the C3b-CR1/2 axis and elevated FcγRII/III play a central role in IC elimination by neutrophils, resulting in reduced glomerular injury. The present study identified a novel renoprotective role of ACE in glomerulonephritis; elevated neutrophilic ACE promotes elimination of locally formed ICs in glomeruli via C3b-CR1/2 and FcγRII/III, ameliorating glomerular injury.NEW & NOTEWORTHY We studied immune complex (IC)-mediated crescentic glomerulonephritis in NeuACE mice that overexpress ACE only in neutrophils. Such mice show no significant defects in humoral immunity but strongly resist nephrotoxic serum nephritis (less proteinuria, milder histological damage, reduced IC deposits, and more glomerular neutrophils). NeuACE neutrophils enhanced IC uptake via increased surface expression of CR1/2 and FcgRII/III, as well as elevated serum complement C3b. These results suggest neutrophil ACE as a novel approach to reducing glomerulonephritis.


Asunto(s)
Glomerulonefritis , Nefritis , Angiotensina II/metabolismo , Animales , Complejo Antígeno-Anticuerpo/metabolismo , Complemento C3b/metabolismo , Glomerulonefritis/metabolismo , Ratones , Nefritis/metabolismo , Neutrófilos/metabolismo , Proteinuria/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA