Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Microbiol ; 22(8): 3248-3265, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32410282

RESUMEN

The bacterium Streptomyces davaonensis synthesizes the antibiotic roseoflavin in the stationary phase of growth. The starting point for roseoflavin biosynthesis is riboflavin (vitamin B2 ) and four enzymes (RibCF, RosB, RosA and RosC) are necessary to convert a vitamin (riboflavin) into a potent, broad-spectrum antibiotic (roseoflavin). In S. davaonensis, seven enzymatic functions are required to synthesize the roseoflavin precursor riboflavin from the central building blocks GTP and ribulose 5-phosphate. When compared with other bacterial and in particular Streptomyces genomes the S. davaonensis genome contains an unusual high number (21) of putative riboflavin biosynthetic genes (rib genes), including a rib gene encoding an additional riboflavin synthase originating from an Archaeon. We show by complementation analyses and enzyme assays that 17 out of these 21 putative rib genes indeed encode for riboflavin biosynthetic enzymes. Biochemical analyses of selected enzymes support this finding. Transcriptome analyses show that all of the rib genes are expressed either in the exponential or in the stationary phase of growth and thus do not represent silent genes. We conclude that the Rib enzymes produced in the stationary phase represent a physiological adaptation to support roseoflavin biosynthesis.


Asunto(s)
Riboflavina/análogos & derivados , Riboflavina/biosíntesis , Streptomyces/genética , Streptomyces/metabolismo , Complejo Vitamínico B/biosíntesis , Adaptación Fisiológica , Catálisis , Prueba de Complementación Genética , Streptomyces/enzimología
2.
Biotechnol Lett ; 41(8-9): 1033-1041, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31270649

RESUMEN

OBJECTIVES: To improve the bioproductivity of secondary metabolites of marine derived Nocardiopsis flavescens CGMCC 4.5723 by enhancing its riboflavin supplement. RESULTS: The NfRibA, type II guanosine triphosphate (GTP) cyclohydrolase (GCH II) of Nocardiopsis flavescens CGMCC 4.5723, was biochemically identified and showed that NfRibA could efficiently catalyze the first step of riboflavin biosynthesis to hydrolyze GTP into 2, 5-diamino-6-ribosylamino-4(3H)-pyrimidinedione 5'-phosphate (DARPP) with Km value of 160.11 ± 26.81 µM in vitro. The overexpression of NfribA could obviously increase riboflavin bioproduction to the titers of 0.41 ± 0.19 mg/l by comparing with the wild type counterpart. Consequently, this rise of riboflavin bioproduction did not disturb the expression of genes involved in marinacarboline A biosynthesis, but could significantly enhance its bioproduction with the titer of 5.5 ± 0.17 mg/l through comparing with wild type control. CONCLUSIONS: Optimization of riboflavin supplement could be a new promising strategy in actinomycetic marinacarboline A exploitation.


Asunto(s)
Actinobacteria/metabolismo , Organismos Acuáticos/metabolismo , Productos Biológicos/metabolismo , Ingeniería Metabólica/métodos , Riboflavina/biosíntesis , Complejo Vitamínico B/biosíntesis , Actinobacteria/genética , Organismos Acuáticos/genética , Vías Biosintéticas/genética
3.
Biochemistry ; 57(36): 5282-5288, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30125480

RESUMEN

RosB catalyzes the formation of 8-aminoriboflavin 5'-phosphate (AFP), the key intermediate in roseoflavin biosynthesis, from the metabolic precursors riboflavin 5'-phosphate (RP, also known as FMN) and glutamate. The conversion of the aromatic methyl group at position 8 in RP into the aromatic amine in AFP occurs via two intermediates, namely, the aldehyde 8-formyl-RP and the acid 8-carboxy-RP. To gain insights into the mechanism for this chemically challenging transformation, we utilized a structure-based approach to identify active site variants of RosB that stall the reaction at various points along the reaction coordinate. Crystal structures of individual variants in complex with different reaction intermediates, identified via mass spectroscopic analysis, illuminate conformational changes that occur at the active site during multistep conversion. These studies provide a plausible route for the progression of the reaction and a molecular rationale for the mechanism of this unusual biocatalyst.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Mononucleótido de Flavina/biosíntesis , Streptomyces/enzimología , Transaminasas/química , Transaminasas/metabolismo , Complejo Vitamínico B/biosíntesis , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica
4.
Environ Microbiol ; 20(8): 2809-2823, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29659156

RESUMEN

Aquatic environments contain large communities of microorganisms whose synergistic interactions mediate the cycling of major and trace nutrients, including vitamins. B-vitamins are essential coenzymes that many organisms cannot synthesize. Thus, their exchange among de novo synthesizers and auxotrophs is expected to play an important role in the microbial consortia and explain some of the temporal and spatial changes observed in diversity. In this study, we analyzed metatranscriptomes of a natural marine microbial community, diel sampled quarterly over one year to try to identify the potential major B-vitamin synthesizers and consumers. Transcriptomic data showed that the best-represented taxa dominated the expression of synthesis genes for some B-vitamins but lacked transcripts for others. For instance, Rhodobacterales dominated the expression of vitamin-B12 synthesis, but not of vitamin-B7 , whose synthesis transcripts were mainly represented by Flavobacteria. In contrast, bacterial groups that constituted less than 4% of the community (e.g., Verrucomicrobia) accounted for most of the vitamin-B1 synthesis transcripts. Furthermore, ambient vitamin-B1 concentrations were higher in samples collected during the day, and were positively correlated with chlorophyll-a concentrations. Our analysis supports the hypothesis that the mosaic of metabolic interdependencies through B-vitamin synthesis and exchange are key processes that contribute to shaping microbial communities in nature.


Asunto(s)
Bacterias/metabolismo , Consorcios Microbianos , Complejo Vitamínico B/metabolismo , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Bacterias/genética , Coenzimas/biosíntesis , Coenzimas/metabolismo , Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Transcriptoma , Complejo Vitamínico B/biosíntesis
5.
Proc Biol Sci ; 284(1857)2017 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-28659447

RESUMEN

Insects with restricted diets rely on obligate microbes to fulfil nutritional requirements essential for biological function. Tsetse flies, vectors of African trypanosome parasites, feed exclusively on vertebrate blood and harbour the obligate endosymbiont Wigglesworthia glossinidia. Without Wigglesworthia, tsetse are unable to reproduce. These symbionts are sheltered within specialized cells (bacteriocytes) that form the midgut-associated bacteriome organ. To decipher the core functions of this symbiosis essential for tsetse's survival, we performed dual-RNA-seq analysis of the bacteriome, coupled with metabolomic analysis of bacteriome and haemolymph collected from normal and symbiont-cured (sterile) females. Bacteriocytes produce immune regulatory peptidoglycan recognition protein (pgrp-lb) that protects Wigglesworthia, and a multivitamin transporter (smvt) that can aid in nutrient dissemination. Wigglesworthia overexpress a molecular chaperone (GroEL) to augment their translational/transport machinery and biosynthesize an abundance of B vitamins (specifically B1-, B2-, B3- and B6-associated metabolites) to supplement the host's nutritionally deficient diet. The absence of Wigglesworthia's contributions disrupts multiple metabolic pathways impacting carbohydrate and amino acid metabolism. These disruptions affect the dependent downstream processes of nucleotide biosynthesis and metabolism and biosynthesis of S-adenosyl methionine (SAM), an essential cofactor. This holistic fundamental knowledge of the symbiotic dialogue highlights new biological targets for the development of innovative vector control methods.


Asunto(s)
Metaboloma , Simbiosis , Transcriptoma , Moscas Tse-Tse/microbiología , Wigglesworthia/metabolismo , Aminoácidos/metabolismo , Animales , Metabolismo de los Hidratos de Carbono , Chaperonina 60/metabolismo , Femenino , Análisis de Secuencia de ARN , Moscas Tse-Tse/metabolismo , Complejo Vitamínico B/biosíntesis
6.
Proc Natl Acad Sci U S A ; 111(28): 10257-62, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24982177

RESUMEN

Obligate insect-bacterium nutritional mutualism is among the most sophisticated forms of symbiosis, wherein the host and the symbiont are integrated into a coherent biological entity and unable to survive without the partnership. Originally, however, such obligate symbiotic bacteria must have been derived from free-living bacteria. How highly specialized obligate mutualisms have arisen from less specialized associations is of interest. Here we address this evolutionary issue by focusing on an exceptional insect-Wolbachia nutritional mutualism. Although Wolbachia endosymbionts are ubiquitously found in diverse insects and generally regarded as facultative/parasitic associates for their insect hosts, a Wolbachia strain associated with the bedbug Cimex lectularius, designated as wCle, was shown to be essential for host's growth and reproduction via provisioning of B vitamins. We determined the 1,250,060-bp genome of wCle, which was generally similar to the genomes of insect-associated facultative Wolbachia strains, except for the presence of an operon encoding the complete biotin synthetic pathway that was acquired via lateral gene transfer presumably from a coinfecting endosymbiont Cardinium or Rickettsia. Nutritional and physiological experiments, in which wCle-infected and wCle-cured bedbugs of the same genetic background were fed on B-vitamin-manipulated blood meals via an artificial feeding system, demonstrated that wCle certainly synthesizes biotin, and the wCle-provisioned biotin significantly contributes to the host fitness. These findings strongly suggest that acquisition of a single gene cluster consisting of biotin synthesis genes underlies the bedbug-Wolbachia nutritional mutualism, uncovering an evolutionary transition from facultative symbiosis to obligate mutualism facilitated by lateral gene transfer in an endosymbiont lineage.


Asunto(s)
Chinches , Conducta Alimentaria/fisiología , Genes Bacterianos/fisiología , Genoma Bacteriano/fisiología , Simbiosis/fisiología , Wolbachia , Animales , Secuencia de Bases , Chinches/metabolismo , Chinches/microbiología , Biotina/biosíntesis , Biotina/genética , Datos de Secuencia Molecular , Complejo Vitamínico B/biosíntesis , Complejo Vitamínico B/genética , Wolbachia/genética , Wolbachia/metabolismo
7.
J Dairy Sci ; 100(10): 8165-8169, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28780095

RESUMEN

The effect of fat supplements (FS) providing different proportions of saturated (SFA) and unsaturated (UFA) fatty acids on supply, apparent ruminal synthesis (ARS), and duodenal flow (DF) of some B vitamins (thiamine, riboflavin, niacin, vitamin B6, folates, and vitamin B12) were evaluated in an experiment using 8 ruminally and duodenally cannulated lactating Holstein cows. The experiment was a replicated 4 × 4 Latin square design with 21-d treatment periods. The 4 treatments were a control diet without fatty acid supplement and 3 diets with 2.5% additional fatty acids from supplements containing (1) SFA, (2) an intermediate mixture of SFA and UFA, or (3) UFA. All diets were served as a total mixed ration once daily at 115% of the expected intake. B-vitamin concentrations were analyzed in feed and duodenal digesta. Apparent ruminal synthesis of each B vitamin was calculated as the DF minus the intake. B-vitamin concentrations were similar among the 4 treatments; consequently, daily intake of the vitamins followed the same pattern as dry matter intake. Adding FS decreased B-vitamin intakes (except vitamin B12), as did increasing the proportion of UFA. Riboflavin and niacin DF and ARS, expressed as total daily amount or per unit of dry matter intake, were not affected by FS, but increasing the proportion of UFA decreased riboflavin and niacin DF and ARS. Fat supplements decreased DF of vitamin B6, expressed either as total daily amount or per unit of dry matter intake. No treatment effects were observed on total daily folate DF and ARS. However, when expressed per unit of dry matter intake, folate DF and ARS were greater when cows were fed FS and they increased linearly with the proportion of UFA in the supplement. Inclusion of fat supplements into the dairy cow diet had a limited effect on the fate of most B vitamins in the rumen although increasing the proportion of UFA in the FS linearly decreased apparent synthesis of riboflavin and niacin in the rumen and the amounts of these vitamins reaching the small intestine.


Asunto(s)
Suplementos Dietéticos , Ácidos Grasos/administración & dosificación , Lactancia , Rumen/metabolismo , Complejo Vitamínico B/biosíntesis , Animales , Bovinos , Dieta/veterinaria , Femenino
8.
J Dairy Sci ; 100(10): 8161-8164, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28803010

RESUMEN

Apparent ruminal synthesis and duodenal flow of thiamin, riboflavin, niacin, vitamin B6, folates, and vitamin B12 were evaluated in an experiment using 15 ruminally and duodenally cannulated lactating Holstein cows fed a basal diet, according to a crossover design, supplemented or not with 56 g/d of Saccharomyces cerevisiae fermentation product. Duration of the treatment period was 28 d. The basal ration had 28% neutral detergent fber, 30% starch and 16.5% crude protein; forages were corn silage (67% of forage dry matter) and alfalfa silage (33% of forage dry matter). Concentrations of B vitamins were analyzed in feed and duodenal digesta. Apparent ruminal synthesis of each B vitamin was calculated as the duodenal flow minus the intake. Under the present experimental conditions, a dietary supplement of Saccharomyces cerevisiae fermentation product had no effect apparent synthesis of B vitamins in the rumen or on the amounts of these vitamins reaching the duodenum and available for absorption by the dairy cow.


Asunto(s)
Duodeno/metabolismo , Fermentación , Lactancia , Rumen/metabolismo , Saccharomyces cerevisiae , Complejo Vitamínico B/biosíntesis , Animales , Bovinos , Dieta/veterinaria , Femenino , Ensilaje
9.
J Dairy Sci ; 99(4): 2730-2739, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26851844

RESUMEN

Effects of nitrogen level and carbohydrate source on apparent ruminal synthesis (ARS) of thiamin, riboflavin, niacin, vitamin B6, folates, and vitamin B12 were evaluated using 4 lactating Holstein cows distributed in a 4 × 4 Latin square design with treatments following a 2 × 2 factorial arrangement. Cows were fitted with cannulas in the rumen and proximal duodenum. The treatments were 2 N levels and 2 carbohydrate sources. The diet with the high N level provided 14% crude protein, calculated to meet 110% of the protein requirements and an adequate supply in rumen-degradable protein, whereas the diet with the low N level contained 11% crude protein, calculated to meet 80% of the protein requirements with a shortage in rumen-degradable protein. Carbohydrate source treatments differed by their nature (i.e., high in starch from barley, corn, and wheat, or high in fiber from soybean hulls and dehydrated beet pulp). All 4 diets were isoenergetic, based on corn silage, and had the same forage-to-concentrate ratio (60:40, dry matter basis). Duodenal flow was determined using YbCl3 as a marker. Each B-vitamin ARS was calculated as duodenal flow minus daily intake. The intake of several B vitamins varied among treatments, but because the animals consumed a similar amount of feed every day (average of 20 kg of dry matter/d) the difference was mostly due to vitamin content of each ingredient and their relative proportion in the diets. Decreasing N concentration in the diet reduced vitamin B6 duodenal flow and increased its apparent ruminal degradation. It also decreased duodenal flow and ARS of folates. The high-starch diets increased duodenal flow and ruminal balance of riboflavin, vitamin B6, and folates, whereas the high-fiber diets increased vitamin B12 ARS and duodenal flow. These effects on apparent synthesis are possibly due to changes in ruminal fermentation.


Asunto(s)
Dieta/veterinaria , Carbohidratos de la Dieta/metabolismo , Nitrógeno/metabolismo , Rumen/metabolismo , Complejo Vitamínico B/biosíntesis , Animales , Bovinos , Fibras de la Dieta/metabolismo , Femenino , Fermentación , Hordeum/metabolismo , Lactancia , Ensilaje/normas , Almidón/metabolismo , Triticum/metabolismo , Vitamina B 12/farmacología , Zea mays/metabolismo
10.
J Dairy Sci ; 99(8): 6229-6236, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27236755

RESUMEN

Effects of particle length of silages on apparent ruminal synthesis (ARS) and postruminal supply of B vitamins were evaluated in 2 feeding trials. Diets containing alfalfa (trial 1) or orchardgrass (trial 2) silages, chopped to either 19mm (long cut, LC) or 10mm (short cut, SC) theoretical particle length, as the sole forage were offered to ruminally and duodenally cannulated lactating Holstein cows in crossover design experiments. Forages chopped to a theoretical particle length of 19 and 10mm had mean particles sizes of 14.1 and 8.1mm, respectively, in trial 1, and 15.3 and 11.3mm, respectively, in trial 2. Trial 1 was conducted with 13 multiparous cows in two 19-d treatment periods; both diets contained approximately 20% forage neutral detergent fiber (NDF), 25% total NDF, and forage-to-concentrate ratios were approximately 47:53. Trial 2 was conducted with 15 cows in two 18-d treatment periods; both diets contained approximately 23% forage NDF, 28% total NDF, and had a forage-to-concentrate ratio of 50:50. Thiamine, riboflavin, niacin, vitamin B6, folates, and vitamin B12 were measured in feed and duodenal content. Daily ARS was calculated as the duodenal flow minus the intake. In trial 1, daily intake of individual B vitamins was increased with the LC diet, but ARS of thiamine, riboflavin, vitamin B6, and folates was reduced. In trial 2, except for folates, intakes of the other B vitamins were decreased with the LC diets, whereas ARS of riboflavin, niacin, and vitamin B6 was increased. Daily ARS of thiamine, riboflavin, niacin, and vitamin B6 were correlated negatively with their intake, suggesting that ruminal bacteria reduced their synthesis when dietary supply increased. Microbial activity could have also reduced degradation of thiamine, riboflavin, and niacin, which is supported by (1) the negative correlation between ARS of these vitamins and ruminal pH or microbial N duodenal flow; and (2) the positive correlation between ARS and ruminal concentrations of volatile fatty acids. Folate ARS followed the opposite correlation pattern. Nevertheless, in spite of differences in intake and ARS, with both forages, decreasing particle length of silages had limited effects on the amounts of B vitamins reaching the sites of absorption in the small intestine of dairy cows.


Asunto(s)
Dieta/veterinaria , Rumen/metabolismo , Ensilaje/análisis , Complejo Vitamínico B/biosíntesis , Animales , Bovinos , Estudios Cruzados , Dactylis , Fibras de la Dieta/administración & dosificación , Fibras de la Dieta/análisis , Duodeno/metabolismo , Duodeno/microbiología , Ácidos Grasos Volátiles/análisis , Femenino , Ácido Fólico/administración & dosificación , Ácido Fólico/análisis , Microbioma Gastrointestinal , Concentración de Iones de Hidrógeno , Lactancia , Medicago sativa/química , Niacina/administración & dosificación , Niacina/análisis , Riboflavina/administración & dosificación , Riboflavina/análisis , Tiamina/administración & dosificación , Tiamina/análisis , Vitamina B 12/administración & dosificación , Vitamina B 12/análisis , Vitamina B 6/administración & dosificación , Vitamina B 6/análisis
11.
Proc Biol Sci ; 281(1796): 20141838, 2014 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-25339726

RESUMEN

Despite the demonstrated functional importance of gut microbes, our understanding of how animals regulate their metabolism in response to nutritionally beneficial symbionts remains limited. Here, we elucidate the functional importance of the African cotton stainer's (Dysdercus fasciatus) association with two actinobacterial gut symbionts and subsequently examine the insect's transcriptional response following symbiont elimination. In line with bioassays demonstrating the symbionts' contribution towards host fitness through the supplementation of B vitamins, comparative transcriptomic analyses of genes involved in import and processing of B vitamins revealed an upregulation of gene expression in aposymbiotic (symbiont-free) compared with symbiotic individuals; an expression pattern that is indicative of B vitamin deficiency in animals. Normal expression levels of these genes, however, can be restored by either artificial supplementation of B vitamins into the insect's diet or reinfection with the actinobacterial symbionts. Furthermore, the functional characterization of the differentially expressed thiamine transporter 2 through heterologous expression in Xenopus laevis oocytes confirms its role in cellular uptake of vitamin B1. These findings demonstrate that despite an extracellular localization, beneficial gut microbes can be integral to the host's metabolic homeostasis, reminiscent of bacteriome-localized intracellular mutualists.


Asunto(s)
Actinobacteria/fisiología , Heterópteros/microbiología , Simbiosis , Vitaminas/metabolismo , Actinobacteria/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Transporte Biológico , Heterópteros/genética , Heterópteros/metabolismo , Homeostasis , Redes y Vías Metabólicas , Transcriptoma , Complejo Vitamínico B/biosíntesis , Xenopus laevis
12.
Plant Foods Hum Nutr ; 69(4): 379-85, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25432789

RESUMEN

Folate (vitamin B9) deficiency is a global health problem especially in developing countries where the major staple foods such as rice contain extremely low folates. Biofortification of rice could be an alternative complement way to fight folate deficiency. In this study, we evaluated the availability of the genes in each step of folate biosynthesis pathway for rice folate enhancement in the japonica variety kitaake genetic background. The first enzymes GTP cyclohydrolase I (GTPCHI) and aminodeoxychorismate synthase (ADCS) in the pterin and para-aminobenzoate branches resulted in significant increase in seed folate content, respectively (P < 0.01). Overexpression of two closely related enzymes dihydrofolate synthase (DHFS) and folypolyglutamate synthase (FPGS), which perform the first and further additions of glutamates, produced slightly increase in seed folate content separately. The GTPCHI transgene was combined with each of the other transgenes except ADCS to investigate the effects of gene stacking on seed folate accumulation. Seed folate contents in the gene-stacked plants were higher than the individual low-folate transgenic parents, but lower than the high-folate GTPCHI transgenic lines, pointing to an inadequate supply of para-aminobenzoic acid (PABA) precursor initiated by ADCS in constraining folate overproduction in gene-stacked plants.


Asunto(s)
Ácido Fólico/genética , Alimentos Fortificados , Alimentos Modificados Genéticamente , Genes de Plantas , Oryza/genética , Plantas Modificadas Genéticamente , Semillas/metabolismo , Dieta , Ácido Fólico/biosíntesis , Deficiencia de Ácido Fólico/dietoterapia , Humanos , Oryza/enzimología , Oryza/metabolismo , Transaminasas/genética , Transgenes , Complejo Vitamínico B/biosíntesis , Complejo Vitamínico B/genética
13.
J Exp Bot ; 63(15): 5379-95, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22915736

RESUMEN

The B vitamins and the cofactors derived from them are essential for life. B vitamin synthesis in plants is consequently as crucial to plants themselves as it is to humans and animals, whose B vitamin nutrition depends largely on plants. The synthesis and salvage pathways for the seven plant B vitamins are now broadly known, but certain enzymes and many transporters have yet to be identified, and the subcellular locations of various reactions are unclear. Although very substantial, what is not known about plant B vitamin pathways is regrettably difficult to discern from the literature or from biochemical pathway databases. Nor do databases accurately represent all that is known about B vitamin pathways-above all their compartmentation-because the facts are scattered throughout the literature, and thus hard to piece together. These problems (i) deter discoveries because newcomers to B vitamins cannot see which mysteries still need solving; and (ii) impede metabolic reconstruction and modelling of B vitamin pathways because genes for reactions or transport steps are missing. This review therefore takes a fresh approach to capture current knowledge of B vitamin pathways in plants. The synthesis pathways, key salvage routes, and their subcellular compartmentation are surveyed in depth, and encoded in the SEED database (http://pubseed.theseed.org/seedviewer.cgi?page=PlantGateway) for Arabidopsis and maize. The review itself and the encoded pathways specifically identify enigmatic or missing reactions, enzymes, and transporters. The SEED-encoded B vitamin pathway collection is a publicly available, expertly curated, one-stop resource for metabolic reconstruction and modeling.


Asunto(s)
Bases de Datos Factuales , Plantas/metabolismo , Complejo Vitamínico B/biosíntesis , Redes y Vías Metabólicas , Proteínas de Plantas/metabolismo , Plantas/enzimología
14.
Appl Microbiol Biotechnol ; 96(6): 1383-94, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23093174

RESUMEN

Wheat contains various essential nutrients including the B group of vitamins. However, B group vitamins, normally present in cereals-derived products, are easily removed or destroyed during milling, food processing or cooking. Lactic acid bacteria (LAB) are widely used as starter cultures for the fermentation of a large variety of foods and can improve the safety, shelf life, nutritional value, flavor and overall quality of the fermented products. In this regard, the identification and application of strains delivering health-promoting compounds is a fascinating field. Besides their key role in food fermentations, several LAB found in the gastrointestinal tract of humans and animals are commercially used as probiotics and possess generally recognized as safe status. LAB are usually auxotrophic for several vitamins although certain strains of LAB have the capability to synthesize water-soluble vitamins such as those included in the B group. In recent years, a number of biotechnological processes have been explored to perform a more economical and sustainable vitamin production than that obtained via chemical synthesis. This review article will briefly report the current knowledge on lactic acid bacteria synthesis of vitamins B2, B11 and B12 and the potential strategies to increase B-group vitamin content in cereals-based products, where vitamins-producing LAB have been leading to the elaboration of novel fermented functional foods. In addition, the use of genetic strategies to increase vitamin production or to create novel vitamin-producing strains will be also discussed.


Asunto(s)
Bacterias/metabolismo , Grano Comestible/microbiología , Alimentos Funcionales/microbiología , Ácido Láctico/metabolismo , Complejo Vitamínico B/biosíntesis , Manipulación de Alimentos
15.
J Appl Microbiol ; 111(6): 1297-309, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21933312

RESUMEN

Although most vitamins are present in a variety of foods, human vitamin deficiencies still occur in many countries, mainly because of malnutrition not only as a result of insufficient food intake but also because of unbalanced diets. Even though most lactic acid bacteria (LAB) are auxotrophic for several vitamins, it is now known that certain strains have the capability to synthesize water-soluble vitamins such as those included in the B-group (folates, riboflavin and vitamin B(12) amongst others). This review article will show the current knowledge of vitamin biosynthesis by LAB and show how the proper selection of starter cultures and probiotic strains could be useful in preventing clinical and subclinical vitamin deficiencies. Here, several examples will be presented where vitamin-producing LAB led to the elaboration of novel fermented foods with increased and bioavailable vitamins. In addition, the use of genetic engineering strategies to increase vitamin production or to create novel vitamin-producing strains will also be discussed. This review will show that the use of vitamin-producing LAB could be a cost-effective alternative to current vitamin fortification programmes and be useful in the elaboration of novel vitamin-enriched products.


Asunto(s)
Lactobacillaceae/metabolismo , Complejo Vitamínico B/biosíntesis , Avitaminosis/prevención & control , Suplementos Dietéticos , Ácido Fólico/biosíntesis , Alimentos Fortificados , Humanos , Probióticos , Riboflavina/biosíntesis , Vitamina B 12/biosíntesis
16.
Elife ; 102021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34951405

RESUMEN

Many animals are dependent on microbial partners that provide essential nutrients lacking from their diet. Ticks, whose diet consists exclusively on vertebrate blood, rely on maternally inherited bacterial symbionts to supply B vitamins. While previously studied tick species consistently harbor a single lineage of those nutritional symbionts, we evidence here that the invasive tick Hyalomma marginatum harbors a unique dual-partner nutritional system between an ancestral symbiont, Francisella, and a more recently acquired symbiont, Midichloria. Using metagenomics, we show that Francisella exhibits extensive genome erosion that endangers the nutritional symbiotic interactions. Its genome includes folate and riboflavin biosynthesis pathways but deprived functional biotin biosynthesis on account of massive pseudogenization. Co-symbiosis compensates this deficiency since the Midichloria genome encompasses an intact biotin operon, which was primarily acquired via lateral gene transfer from unrelated intracellular bacteria commonly infecting arthropods. Thus, in H. marginatum, a mosaic of co-evolved symbionts incorporating gene combinations of distant phylogenetic origins emerged to prevent the collapse of an ancestral nutritional symbiosis. Such dual endosymbiosis was never reported in other blood feeders but was recently documented in agricultural pests feeding on plant sap, suggesting that it may be a key mechanism for advanced adaptation of arthropods to specialized diets.


Asunto(s)
Francisella/metabolismo , Ixodidae/microbiología , Rickettsiales/metabolismo , Animales , Francisella/genética , Transferencia de Gen Horizontal , Ixodidae/fisiología , Rickettsiales/genética , Simbiosis/fisiología , Complejo Vitamínico B/biosíntesis
17.
Int J Food Sci Nutr ; 61(1): 87-107, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19961357

RESUMEN

Ten strains of Lactobacillus were evaluated for their viability in soymilk. Lactobacillus acidophilus ATCC 314, L. acidophilus FTDC 8833, L. acidophilus FTDC 8633 and L. gasseri FTDC 8131 displayed higher viability in soymilk and were thus selected to be evaluated for viability and growth characteristics in soymilk supplemented with B-vitamins. Pour plate analyses showed that the supplementation of all B-vitamins studied promoted the growth of lactobacilli to a viable count exceeding 7 log CFU/ml. alpha-Galactosidase specific activity of lactobacilli as determined spectrophotometrically showed an increase upon supplementation of B-vitamins. High-performance liquid chromatography analyses revealed that this led to increased hydrolysis of soy oligosaccharides and subsequently higher utilization of simple sugars. Production of organic acids as determined via high-performance liquid chromatography also showed an increase, accompanied by a decrease in pH of soymilk. Additionally, the supplementation of B-vitamins also promoted the synthesis of riboflavin and folic acid by lactobacilli in soymilk. Our results indicated that B-vitamin-supplemented soymilk is a good proliferation medium for strains of lactobacilli.


Asunto(s)
Microbiología de Alimentos , Glycine max , Lactobacillus acidophilus/crecimiento & desarrollo , Lactobacillus/crecimiento & desarrollo , Probióticos , Leche de Soja/metabolismo , Complejo Vitamínico B/metabolismo , Cromatografía Líquida de Alta Presión , Recuento de Colonia Microbiana , Suplementos Dietéticos , Concentración de Iones de Hidrógeno , Hidrólisis , Viabilidad Microbiana , Oligosacáridos/metabolismo , Leche de Soja/química , Complejo Vitamínico B/biosíntesis , alfa-Galactosidasa/metabolismo
18.
Microb Genom ; 6(7)2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32589566

RESUMEN

Roseburia species are important denizens of the human gut microbiome that ferment complex polysaccharides to butyrate as a terminal fermentation product, which influences human physiology and serves as an energy source for colonocytes. Previous comparative genomics analyses of the genus Roseburia have examined polysaccharide degradation genes. Here, we characterize the core and pangenomes of the genus Roseburia with respect to central carbon and energy metabolism, as well as biosynthesis of amino acids and B vitamins using orthology-based methods, uncovering significant differences among species in their biosynthetic capacities. Variation in gene content among Roseburia species and strains was most significant for cofactor biosynthesis. Unlike all other species of Roseburia that we analysed, Roseburia inulinivorans strains lacked biosynthetic genes for riboflavin or pantothenate but possessed folate biosynthesis genes. Differences in gene content for B vitamin synthesis were matched with differences in putative salvage and synthesis strategies among species. For example, we observed extended biotin salvage capabilities in R. intestinalis strains, which further suggest that B vitamin acquisition strategies may impact fitness in the gut ecosystem. As differences in the functional potential to synthesize components of biomass (e.g. amino acids, vitamins) can drive interspecies interactions, variation in auxotrophies of the Roseburia spp. genomes may influence in vivo gut ecology. This study serves to advance our understanding of the potential metabolic interactions that influence the ecology of Roseburia spp. and, ultimately, may provide a basis for rational strategies to manipulate the abundances of these species.


Asunto(s)
Vías Biosintéticas , Clostridiales/clasificación , Clostridiales/genética , Genómica/métodos , Aminoácidos/biosíntesis , Proteínas Bacterianas/genética , Clostridiales/metabolismo , Metabolismo Energético , Microbioma Gastrointestinal , Genoma Bacteriano , Humanos , Filogenia , Especificidad de la Especie , Complejo Vitamínico B/biosíntesis
19.
ISME J ; 13(3): 789-804, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30429574

RESUMEN

The vitamin B12 family of cofactors known as cobamides are essential for a variety of microbial metabolisms. We used comparative genomics of 11,000 bacterial species to analyze the extent and distribution of cobamide production and use across bacteria. We find that 86% of bacteria in this data set have at least one of 15 cobamide-dependent enzyme families, but only 37% are predicted to synthesize cobamides de novo. The distribution of cobamide biosynthesis and use vary at the phylum level. While 57% of Actinobacteria are predicted to biosynthesize cobamides, only 0.6% of Bacteroidetes have the complete pathway, yet 96% of species in this phylum have cobamide-dependent enzymes. The form of cobamide produced by the bacteria could be predicted for 58% of cobamide-producing species, based on the presence of signature lower ligand biosynthesis and attachment genes. Our predictions also revealed that 17% of bacteria have partial biosynthetic pathways, yet have the potential to salvage cobamide precursors. Bacteria with a partial cobamide biosynthesis pathway include those in a newly defined, experimentally verified category of bacteria lacking the first step in the biosynthesis pathway. These predictions highlight the importance of cobamide and cobamide precursor salvaging as examples of nutritional dependencies in bacteria.


Asunto(s)
Bacterias/genética , Vías Biosintéticas , Cobamidas/biosíntesis , Genómica , Complejo Vitamínico B/biosíntesis , Bacterias/metabolismo , Proteínas Bacterianas/genética
20.
Microb Biotechnol ; 12(2): 346-359, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30549216

RESUMEN

Cobamides (Cbas) are essential cofactors of reductive dehalogenases (RDases) in organohalide-respiring bacteria (OHRB). Changes in the Cba structure can influence RDase function. Here, we report on the cofactor versatility or selectivity of Desulfitobacterium RDases produced either in the native organism or heterologously. The susceptibility of Desulfitobacterium hafniense strain DCB-2 to guided Cba biosynthesis (i.e. incorporation of exogenous Cba lower ligand base precursors) was analysed. Exogenous benzimidazoles, azabenzimidazoles and 4,5-dimethylimidazole were incorporated by the organism into Cbas. When the type of Cba changed, no effect on the turnover rate of the 3-chloro-4-hydroxy-phenylacetate-converting enzyme RdhA6 and the 3,5-dichlorophenol-dehalogenating enzyme RdhA3 was observed. The impact of the amendment of Cba lower ligand precursors on RDase function was also investigated in Shimwellia blattae, the Cba producer used for the heterologous production of Desulfitobacterium RDases. The recombinant tetrachloroethene RDase (PceAY51 ) appeared to be non-selective towards different Cbas. However, the functional production of the 1,2-dichloroethane-dihaloeliminating enzyme (DcaA) of Desulfitobacterium dichloroeliminans was completely prevented in cells producing 5,6-dimethylbenzimidazolyl-Cba, but substantially enhanced in cells that incorporated 5-methoxybenzimidazole into the Cba cofactor. The results of the study indicate the utilization of a range of different Cbas by Desulfitobacterium RDases with selected representatives apparently preferring distinct Cbas.


Asunto(s)
Cobamidas/biosíntesis , Coenzimas/biosíntesis , Desulfitobacterium/enzimología , Enterobacteriaceae/enzimología , Hidrolasas/metabolismo , Complejo Vitamínico B/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA