Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 876
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 89: 389-415, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32569518

RESUMEN

Folding of polypeptides begins during their synthesis on ribosomes. This process has evolved as a means for the cell to maintain proteostasis, by mitigating the risk of protein misfolding and aggregation. The capacity to now depict this cellular feat at increasingly higher resolution is providing insight into the mechanistic determinants that promote successful folding. Emerging from these studies is the intimate interplay between protein translation and folding, and within this the ribosome particle is the key player. Its unique structural properties provide a specialized scaffold against which nascent polypeptides can begin to form structure in a highly coordinated, co-translational manner. Here, we examine how, as a macromolecular machine, the ribosome modulates the intrinsic dynamic properties of emerging nascent polypeptide chains and guides them toward their biologically active structures.


Asunto(s)
Escherichia coli/genética , Chaperonas Moleculares/genética , Biosíntesis de Proteínas , Proteoma/química , Ribosomas/genética , Microscopía por Crioelectrón , Escherichia coli/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Unión Proteica , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Proteoma/biosíntesis , Proteoma/genética , Proteostasis/genética , Deficiencias en la Proteostasis/genética , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , Ribosomas/metabolismo , Ribosomas/ultraestructura
2.
Annu Rev Biochem ; 89: 529-555, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32097570

RESUMEN

Protein folding in the cell is mediated by an extensive network of >1,000 chaperones, quality control factors, and trafficking mechanisms collectively termed the proteostasis network. While the components and organization of this network are generally well established, our understanding of how protein-folding problems are identified, how the network components integrate to successfully address challenges, and what types of biophysical issues each proteostasis network component is capable of addressing remains immature. We describe a chemical biology-informed framework for studying cellular proteostasis that relies on selection of interesting protein-folding problems and precise researcher control of proteostasis network composition and activities. By combining these methods with multifaceted strategies to monitor protein folding, degradation, trafficking, and aggregation in cells, researchers continue to rapidly generate new insights into cellular proteostasis.


Asunto(s)
Chaperonas Moleculares/genética , Técnicas de Sonda Molecular , Proteoma/genética , Deficiencias en la Proteostasis/genética , Proteostasis/genética , Animales , Sistemas CRISPR-Cas , Regulación de la Expresión Génica , Semivida , Respuesta al Choque Térmico/efectos de los fármacos , Humanos , Chaperonas Moleculares/metabolismo , Agregado de Proteínas , Ingeniería de Proteínas/métodos , Pliegue de Proteína/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteoma/química , Proteoma/metabolismo , Proteostasis/efectos de los fármacos , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , Transducción de Señal , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos
3.
Annu Rev Biochem ; 87: 725-749, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29925261

RESUMEN

Nuclear proteins participate in diverse cellular processes, many of which are essential for cell survival and viability. To maintain optimal nuclear physiology, the cell employs the ubiquitin-proteasome system to eliminate damaged and misfolded proteins in the nucleus that could otherwise harm the cell. In this review, we highlight the current knowledge about the major ubiquitin-protein ligases involved in protein quality control degradation (PQCD) in the nucleus and how they orchestrate their functions to eliminate misfolded proteins in different nuclear subcompartments. Many human disorders are causally linked to protein misfolding in the nucleus, hence we discuss major concepts that still need to be clarified to better understand the basis of the nuclear misfolded proteins' toxic effects. Additionally, we touch upon potential strategies for manipulating nuclear PQCD pathways to ameliorate diseases associated with protein misfolding and aggregation in the nucleus.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteolisis , Envejecimiento/metabolismo , Humanos , Redes y Vías Metabólicas , Modelos Biológicos , Neoplasias/metabolismo , Membrana Nuclear/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregación Patológica de Proteínas/metabolismo , Biosíntesis de Proteínas , Pliegue de Proteína , Deficiencias en la Proteostasis/metabolismo , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/metabolismo
4.
Annu Rev Biochem ; 86: 21-26, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28441058

RESUMEN

The majority of protein molecules must fold into defined three-dimensional structures to acquire functional activity. However, protein chains can adopt a multitude of conformational states, and their biologically active conformation is often only marginally stable. Metastable proteins tend to populate misfolded species that are prone to forming toxic aggregates, including soluble oligomers and fibrillar amyloid deposits, which are linked with neurodegeneration in Alzheimer and Parkinson disease, and many other pathologies. To prevent or regulate protein aggregation, all cells contain an extensive protein homeostasis (or proteostasis) network comprising molecular chaperones and other factors. These defense systems tend to decline during aging, facilitating the manifestation of aggregate deposition diseases. This volume of the Annual Review of Biochemistry contains a set of three articles addressing our current understanding of the structures of pathological protein aggregates and their associated disease mechanisms. These articles also discuss recent insights into the strategies cells have evolved to neutralize toxic aggregates by sequestering them in specific cellular locations.


Asunto(s)
Envejecimiento/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Parkinson/metabolismo , Agregación Patológica de Proteínas/metabolismo , Deficiencias en la Proteostasis/metabolismo , Envejecimiento/genética , Envejecimiento/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Amiloide/química , Amiloide/genética , Amiloide/metabolismo , Regulación de la Expresión Génica , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/patología , Conformación Proteica , Pliegue de Proteína , Deficiencias en la Proteostasis/genética , Deficiencias en la Proteostasis/patología
5.
Annu Rev Biochem ; 86: 97-122, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28489421

RESUMEN

A healthy proteome is essential for cell survival. Protein misfolding is linked to a rapidly expanding list of human diseases, ranging from neurodegenerative diseases to aging and cancer. Many of these diseases are characterized by the accumulation of misfolded proteins in intra- and extracellular inclusions, such as amyloid plaques. The clear link between protein misfolding and disease highlights the need to better understand the elaborate machinery that manages proteome homeostasis, or proteostasis, in the cell. Proteostasis depends on a network of molecular chaperones and clearance pathways involved in the recognition, refolding, and/or clearance of aberrant proteins. Recent studies reveal that an integral part of the cellular management of misfolded proteins is their spatial sequestration into several defined compartments. Here, we review the properties, function, and formation of these compartments. Spatial sequestration plays a central role in protein quality control and cellular fitness and represents a critical link to the pathogenesis of protein aggregation-linked diseases.


Asunto(s)
Envejecimiento/metabolismo , Chaperonas Moleculares/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Agregación Patológica de Proteínas/metabolismo , Deficiencias en la Proteostasis/metabolismo , Envejecimiento/genética , Envejecimiento/patología , Proteínas Amiloidogénicas/química , Proteínas Amiloidogénicas/genética , Proteínas Amiloidogénicas/metabolismo , Compartimento Celular , Regulación de la Expresión Génica , Humanos , Chaperonas Moleculares/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Proteínas Priónicas/química , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/patología , Biosíntesis de Proteínas , Conformación Proteica , Pliegue de Proteína , Replegamiento Proteico , Proteolisis , Deficiencias en la Proteostasis/genética , Deficiencias en la Proteostasis/patología
6.
Annu Rev Biochem ; 86: 27-68, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28498720

RESUMEN

Peptides and proteins have been found to possess an inherent tendency to convert from their native functional states into intractable amyloid aggregates. This phenomenon is associated with a range of increasingly common human disorders, including Alzheimer and Parkinson diseases, type II diabetes, and a number of systemic amyloidoses. In this review, we describe this field of science with particular reference to the advances that have been made over the last decade in our understanding of its fundamental nature and consequences. We list the proteins that are known to be deposited as amyloid or other types of aggregates in human tissues and the disorders with which they are associated, as well as the proteins that exploit the amyloid motif to play specific functional roles in humans. In addition, we summarize the genetic factors that have provided insight into the mechanisms of disease onset. We describe recent advances in our knowledge of the structures of amyloid fibrils and their oligomeric precursors and of the mechanisms by which they are formed and proliferate to generate cellular dysfunction. We show evidence that a complex proteostasis network actively combats protein aggregation and that such an efficient system can fail in some circumstances and give rise to disease. Finally, we anticipate the development of novel therapeutic strategies with which to prevent or treat these highly debilitating and currently incurable conditions.


Asunto(s)
Enfermedad de Alzheimer/historia , Amiloide/química , Amiloidosis/historia , Diabetes Mellitus Tipo 2/historia , Enfermedad de Parkinson/historia , Deficiencias en la Proteostasis/historia , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Amiloide/genética , Amiloide/metabolismo , Amiloidosis/tratamiento farmacológico , Amiloidosis/metabolismo , Amiloidosis/patología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Drogas en Investigación , Regulación de la Expresión Génica , Historia del Siglo XXI , Humanos , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Terapia Molecular Dirigida , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Agregación Patológica de Proteínas/historia , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Agregación Patológica de Proteínas/prevención & control , Conformación Proteica , Pliegue de Proteína , Deficiencias en la Proteostasis/tratamiento farmacológico , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , Deficiencias en la Proteostasis/prevención & control
7.
Annu Rev Biochem ; 85: 35-64, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27294438

RESUMEN

The health of an organism is orchestrated by a multitude of molecular and biochemical networks responsible for ensuring homeostasis within cells and tissues. However, upon aging, a progressive failure in the maintenance of this homeostatic balance occurs in response to a variety of endogenous and environmental stresses, allowing the accumulation of damage, the physiological decline of individual tissues, and susceptibility to diseases. What are the molecular and cellular signaling events that control the aging process and how can this knowledge help design therapeutic strategies to combat age-associated diseases? Here we provide a comprehensive overview of the evolutionarily conserved biological processes that alter the rate of aging and discuss their link to disease prevention and the extension of healthy life span.


Asunto(s)
Daño del ADN , Longevidad/genética , Deficiencias en la Proteostasis/genética , Transducción de Señal , Acortamiento del Telómero , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Restricción Calórica , Epigénesis Genética , Homeostasis/genética , Humanos , Inflamación , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
8.
Annu Rev Biochem ; 85: 1-4, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27050288

RESUMEN

Aging and longevity are controlled by a multiplicity of molecular and cellular signaling events that interface with environmental factors to maintain cellular homeostasis. Modulation of these pathways to extend life span, including insulin-like signaling and the response to dietary restriction, identified the cellular machineries and networks of protein homeostasis (proteostasis) and stress resistance pathways as critical players in the aging process. A decline of proteostasis capacity during aging leads to dysfunction of specific cell types and tissues, rendering the organism susceptible to a range of chronic diseases. This volume of the Annual Review of Biochemistry contains a set of two reviews addressing our current understanding of the molecular mechanisms underlying aging in model organisms and humans.


Asunto(s)
Envejecimiento/genética , Caenorhabditis elegans/genética , Factor 2 Eucariótico de Iniciación/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Serina-Treonina Quinasas/genética , Respuesta de Proteína Desplegada , Envejecimiento/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Restricción Calórica , Factor 2 Eucariótico de Iniciación/metabolismo , Homeostasis/genética , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Estabilidad Proteica , Proteolisis , Deficiencias en la Proteostasis/genética , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Annu Rev Biochem ; 85: 5-34, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27145842

RESUMEN

Dietary restriction (DR), a moderate reduction in food intake, improves health during aging and extends life span across multiple species. Specific nutrients, rather than overall calories, mediate the effects of DR, with protein and specific amino acids (AAs) playing a key role. Modulations of single dietary AAs affect traits including growth, reproduction, physiology, health, and longevity in animals. Epidemiological data in humans also link the quality and quantity of dietary proteins to long-term health. Intricate nutrient-sensing pathways fine tune the metabolic responses to dietary AAs in a highly conserved manner. In turn, these metabolic responses can affect the onset of insulin resistance, obesity, neurodegenerative disease, and other age-related diseases. In this review we discuss how AA requirements are shaped and how ingested AAs regulate a spectrum of homeostatic processes. Finally, we highlight the resulting opportunity to develop nutritional strategies to improve human health during aging.


Asunto(s)
Envejecimiento/genética , Aminoácidos/metabolismo , Dieta con Restricción de Proteínas/métodos , Proteínas en la Dieta/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Serina-Treonina Quinasas/genética , Envejecimiento/metabolismo , Aminoácidos/administración & dosificación , Animales , Restricción Calórica , Proteínas en la Dieta/administración & dosificación , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Homeostasis/genética , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/prevención & control , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Obesidad/prevención & control , Proteínas Serina-Treonina Quinasas/metabolismo , Deficiencias en la Proteostasis/genética , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , Deficiencias en la Proteostasis/prevención & control , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
10.
Cell ; 156(1-2): 170-82, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24439375

RESUMEN

There are no therapies that reverse the proteotoxic misfolding events that underpin fatal neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Hsp104, a conserved hexameric AAA+ protein from yeast, solubilizes disordered aggregates and amyloid but has no metazoan homolog and only limited activity against human neurodegenerative disease proteins. Here, we reprogram Hsp104 to rescue TDP-43, FUS, and α-synuclein proteotoxicity by mutating single residues in helix 1, 2, or 3 of the middle domain or the small domain of nucleotide-binding domain 1. Potentiated Hsp104 variants enhance aggregate dissolution, restore proper protein localization, suppress proteotoxicity, and in a C. elegans PD model attenuate dopaminergic neurodegeneration. Potentiating mutations reconfigure how Hsp104 subunits collaborate, desensitize Hsp104 to inhibition, obviate any requirement for Hsp70, and enhance ATPase, translocation, and unfoldase activity. Our work establishes that disease-associated aggregates and amyloid are tractable targets and that enhanced disaggregases can restore proteostasis and mitigate neurodegeneration.


Asunto(s)
Caenorhabditis elegans , Modelos Animales de Enfermedad , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Unión al ADN/metabolismo , Proteínas de Choque Térmico/química , Humanos , Modelos Moleculares , Mutagénesis , Neuronas/citología , Neuronas/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/terapia , Pliegue de Proteína , Estructura Terciaria de Proteína , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , Deficiencias en la Proteostasis/terapia , Proteína FUS de Unión a ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/química , alfa-Sinucleína/metabolismo
11.
Annu Rev Biochem ; 82: 295-322, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23350744

RESUMEN

There exists a family of currently untreatable, serious human diseases that arise from the inappropriate misfolding and aggregation of extracellular proteins. At present our understanding of mechanisms that operate to maintain proteostasis in extracellular body fluids is limited, but it has significantly advanced with the discovery of a small but growing family of constitutively secreted extracellular chaperones. The available evidence strongly suggests that these chaperones act as both sensors and disposal mediators of misfolded proteins in extracellular fluids, thereby normally protecting us from disease pathologies. It is critically important to further increase our understanding of the mechanisms that operate to effect extracellular proteostasis, as this is essential knowledge upon which to base the development of effective therapies for some of the world's most debilitating, costly, and intractable diseases.


Asunto(s)
Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Proteínas/metabolismo , Deficiencias en la Proteostasis/fisiopatología , Humanos , Proteínas/química
12.
Annu Rev Biochem ; 82: 323-55, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23746257

RESUMEN

The biological functions of proteins are governed by their three-dimensional fold. Protein folding, maintenance of proteome integrity, and protein homeostasis (proteostasis) critically depend on a complex network of molecular chaperones. Disruption of proteostasis is implicated in aging and the pathogenesis of numerous degenerative diseases. In the cytosol, different classes of molecular chaperones cooperate in evolutionarily conserved folding pathways. Nascent polypeptides interact cotranslationally with a first set of chaperones, including trigger factor and the Hsp70 system, which prevent premature (mis)folding. Folding occurs upon controlled release of newly synthesized proteins from these factors or after transfer to downstream chaperones such as the chaperonins. Chaperonins are large, cylindrical complexes that provide a central compartment for a single protein chain to fold unimpaired by aggregation. This review focuses on recent advances in understanding the mechanisms of chaperone action in promoting and regulating protein folding and on the pathological consequences of protein misfolding and aggregation.


Asunto(s)
Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Proteínas/metabolismo , Proteoma/metabolismo , Deficiencias en la Proteostasis/fisiopatología , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/fisiología , Proteínas/química
13.
Nature ; 597(7874): 132-137, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34408321

RESUMEN

Protein quality control systems are crucial for cellular function and organismal health. At present, most known protein quality control systems are multicomponent machineries that operate via ATP-regulated interactions with non-native proteins to prevent aggregation and promote folding1, and few systems that can broadly enable protein folding by a different mechanism have been identified. Moreover, proteins that contain the extensively charged poly-Asp/Glu (polyD/E) region are common in eukaryotic proteomes2, but their biochemical activities remain undefined. Here we show that DAXX, a polyD/E protein that has been implicated in diverse cellular processes3-10, possesses several protein-folding activities. DAXX prevents aggregation, solubilizes pre-existing aggregates and unfolds misfolded species of model substrates and neurodegeneration-associated proteins. Notably, DAXX effectively prevents and reverses aggregation of its in vivo-validated client proteins, the tumour suppressor p53 and its principal antagonist MDM2. DAXX can also restore native conformation and function to tumour-associated, aggregation-prone p53 mutants, reducing their oncogenic properties. These DAXX activities are ATP-independent and instead rely on the polyD/E region. Other polyD/E proteins, including ANP32A and SET, can also function as stand-alone, ATP-independent molecular chaperones, disaggregases and unfoldases. Thus, polyD/E proteins probably constitute a multifunctional protein quality control system that operates via a distinctive mechanism.


Asunto(s)
Proteínas Co-Represoras/metabolismo , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Animales , Línea Celular , Células/metabolismo , Evolución Molecular , Humanos , Modelos Moleculares , Mutación , Agregado de Proteínas , Agregación Patológica de Proteínas/prevención & control , Conformación Proteica , Dominios Proteicos , Desplegamiento Proteico , Deficiencias en la Proteostasis/prevención & control , Proteínas Proto-Oncogénicas c-mdm2/química , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
14.
Mol Cell ; 75(4): 835-848.e8, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31378462

RESUMEN

Mitochondrial dysfunction and proteostasis failure frequently coexist as hallmarks of neurodegenerative disease. How these pathologies are related is not well understood. Here, we describe a phenomenon termed MISTERMINATE (mitochondrial-stress-induced translational termination impairment and protein carboxyl terminal extension), which mechanistically links mitochondrial dysfunction with proteostasis failure. We show that mitochondrial dysfunction impairs translational termination of nuclear-encoded mitochondrial mRNAs, including complex-I 30kD subunit (C-I30) mRNA, occurring on the mitochondrial surface in Drosophila and mammalian cells. Ribosomes stalled at the normal stop codon continue to add to the C terminus of C-I30 certain amino acids non-coded by mRNA template. C-terminally extended C-I30 is toxic when assembled into C-I and forms aggregates in the cytosol. Enhancing co-translational quality control prevents C-I30 C-terminal extension and rescues mitochondrial and neuromuscular degeneration in a Parkinson's disease model. These findings emphasize the importance of efficient translation termination and reveal unexpected link between mitochondrial health and proteome homeostasis mediated by MISTERMINATE.


Asunto(s)
Codón de Terminación , Proteínas de Drosophila/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Deficiencias en la Proteostasis/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Células HeLa , Humanos , Mitocondrias/genética , Mitocondrias/patología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/genética , Deficiencias en la Proteostasis/genética , Deficiencias en la Proteostasis/patología , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo
15.
Crit Rev Biochem Mol Biol ; 58(1): 50-80, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-37158748

RESUMEN

Protein aggregation is implicated in multiple diseases, so-called proteinopathies, ranging from neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease (PD) to type 2 diabetes mellitus and sickle cell disease (SCD). The structure of the protein aggregates and the kinetics and mechanisms of aggregation have been the object of intense research over the years toward the development of therapeutic routes, including the design of aggregation inhibitors. Nonetheless, the rational design of drugs targeting aggregation inhibition remains a challenging endeavor because of multiple, disease-specific factors, including an incomplete understanding of protein function, the multitude of toxic and non-toxic protein aggregates, the lack of specific drug binding targets, discrepant action mechanisms of aggregation inhibitors, or a low selectivity, specificity, and/or drug potency, reflected in the high concentrations required for some inhibitors to be effective. Herein, we provide a perspective of this therapeutic route with emphasis on small molecules and peptide-based drugs in two diverse diseases, PD and SCD, aiming at establishing links among proposed aggregation inhibitors. The small and large length-scale regimes of the hydrophobic effect are discussed in light of the importance of hydrophobic interactions in proteinopathies. Some simulation results are reported on model peptides, illustrating the impact of hydrophobic and hydrophilic groups in water's hydrogen-bond network with an impact on drug binding. The seeming importance of aromatic rings and hydroxyl groups in protein-aggregation-inhibitor-drugs is emphasized along with the challenges associated with some inhibitors, limiting their development into effective therapeutic options, and questioning the potential of this therapeutic route.


Asunto(s)
Enfermedad de Alzheimer , Anemia de Células Falciformes , Diabetes Mellitus Tipo 2 , Enfermedad de Parkinson , Deficiencias en la Proteostasis , Humanos , Agregado de Proteínas , Enfermedad de Parkinson/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Enfermedad de Alzheimer/metabolismo , Anemia de Células Falciformes/tratamiento farmacológico , Anemia de Células Falciformes/complicaciones , Deficiencias en la Proteostasis/complicaciones
16.
Physiol Rev ; 98(2): 697-725, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29442594

RESUMEN

After synthesis, proteins are folded into their native conformations aided by molecular chaperones. Dysfunction in folding caused by genetic mutations in numerous genes causes protein conformational diseases. Membrane proteins are more prone to misfolding due to their more intricate folding than soluble proteins. Misfolded proteins are detected by the cellular quality control systems, especially in the endoplasmic reticulum, and proteins may be retained there for eventual degradation by the ubiquitin-proteasome system or through autophagy. Some misfolded proteins aggregate, leading to pathologies in numerous neurological diseases. In vitro, modulating mutant protein folding by altering molecular chaperone expression can ameliorate some misfolding. Some small molecules known as chemical chaperones also correct mutant protein misfolding in vitro and in vivo. However, due to their lack of specificity, their potential as therapeutics is limited. Another class of compounds, known as pharmacological chaperones (pharmacoperones), binds with high specificity to misfolded proteins, either as enzyme substrates or receptor ligands, leading to decreased folding energy barriers and correction of the misfolding. Because many of the misfolded proteins are misrouted but do not have defects in function per se, pharmacoperones have promising potential in advancing to the clinic as therapeutics, since correcting routing may ameliorate the underlying mechanism of disease. This review will comprehensively summarize this exciting area of research, surveying the literature from in vitro studies in cell lines to transgenic animal models and clinical trials in several protein misfolding diseases.


Asunto(s)
Retículo Endoplásmico/metabolismo , Chaperonas Moleculares/metabolismo , Transporte de Proteínas/fisiología , Deficiencias en la Proteostasis/metabolismo , Animales , Humanos , Chaperonas Moleculares/genética , Conformación Proteica , Pliegue de Proteína , Transporte de Proteínas/genética , Deficiencias en la Proteostasis/terapia
17.
EMBO J ; 40(19): e107260, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34410010

RESUMEN

The cellular protein quality control machinery is important for preventing protein misfolding and aggregation. Declining protein homeostasis (proteostasis) is believed to play a crucial role in age-related neurodegenerative disorders. However, how neuronal proteostasis capacity changes in different diseases is not yet sufficiently understood, and progress in this area has been hampered by the lack of tools to monitor proteostasis in mammalian models. Here, we have developed reporter mice for in vivo analysis of neuronal proteostasis. The mice express EGFP-fused firefly luciferase (Fluc-EGFP), a conformationally unstable protein that requires chaperones for proper folding, and that reacts to proteotoxic stress by formation of intracellular Fluc-EGFP foci and by reduced luciferase activity. Using these mice, we provide evidence for proteostasis decline in the aging brain. Moreover, we find a marked reaction of the Fluc-EGFP sensor in a mouse model of tauopathy, but not in mouse models of Huntington's disease. Mechanistic investigations in primary neuronal cultures demonstrate that different types of protein aggregates have distinct effects on the cellular protein quality control. Thus, Fluc-EGFP reporter mice enable new insights into proteostasis alterations in different diseases.


Asunto(s)
Envejecimiento/metabolismo , Susceptibilidad a Enfermedades , Genes Reporteros , Ratones Transgénicos , Neuronas/metabolismo , Proteostasis , Envejecimiento/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Expresión Génica , Hipocampo/metabolismo , Hipocampo/patología , Enfermedad de Huntington/etiología , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Ratones , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Agregado de Proteínas , Agregación Patológica de Proteínas , Pliegue de Proteína , Deficiencias en la Proteostasis/etiología , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , Tauopatías/etiología , Tauopatías/metabolismo , Tauopatías/patología
18.
J Biol Chem ; 299(2): 102806, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36529289

RESUMEN

Karyopherin-ß2 (Kapß2) is a nuclear-import receptor that recognizes proline-tyrosine nuclear localization signals of diverse cytoplasmic cargo for transport to the nucleus. Kapß2 cargo includes several disease-linked RNA-binding proteins with prion-like domains, such as FUS, TAF15, EWSR1, hnRNPA1, and hnRNPA2. These RNA-binding proteins with prion-like domains are linked via pathology and genetics to debilitating degenerative disorders, including amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy. Remarkably, Kapß2 prevents and reverses aberrant phase transitions of these cargoes, which is cytoprotective. However, the molecular determinants of Kapß2 that enable these activities remain poorly understood, particularly from the standpoint of nuclear-import receptor architecture. Kapß2 is a super-helical protein comprised of 20 HEAT repeats. Here, we design truncated variants of Kapß2 and assess their ability to antagonize FUS aggregation and toxicity in yeast and FUS condensation at the pure protein level and in human cells. We find that HEAT repeats 8 to 20 of Kapß2 recapitulate all salient features of Kapß2 activity. By contrast, Kapß2 truncations lacking even a single cargo-binding HEAT repeat display reduced activity. Thus, we define a minimal Kapß2 construct for delivery in adeno-associated viruses as a potential therapeutic for amyotrophic lateral sclerosis/frontotemporal dementia, multisystem proteinopathy, and related disorders.


Asunto(s)
Chaperonas Moleculares , Fragmentos de Péptidos , Priones , Proteína FUS de Unión a ARN , beta Carioferinas , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/terapia , beta Carioferinas/química , beta Carioferinas/genética , beta Carioferinas/metabolismo , Línea Celular , Dependovirus/metabolismo , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/terapia , Técnicas In Vitro , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Priones/química , Priones/metabolismo , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/terapia , Proteína FUS de Unión a ARN/química , Proteína FUS de Unión a ARN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Unión Proteica
19.
Am J Hum Genet ; 108(7): 1342-1349, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34143952

RESUMEN

EDEM3 encodes a protein that converts Man8GlcNAc2 isomer B to Man7-5GlcNAc2. It is involved in the endoplasmic reticulum-associated degradation pathway, responsible for the recognition of misfolded proteins that will be targeted and translocated to the cytosol and degraded by the proteasome. In this study, through a combination of exome sequencing and gene matching, we have identified seven independent families with 11 individuals with bi-allelic protein-truncating variants and one individual with a compound heterozygous missense variant in EDEM3. The affected individuals present with an inherited congenital disorder of glycosylation (CDG) consisting of neurodevelopmental delay and variable facial dysmorphisms. Experiments in human fibroblast cell lines, human plasma, and mouse plasma and brain tissue demonstrated decreased trimming of Man8GlcNAc2 isomer B to Man7GlcNAc2, consistent with loss of EDEM3 enzymatic activity. In human cells, Man5GlcNAc2 to Man4GlcNAc2 conversion is also diminished with an increase of Glc1Man5GlcNAc2. Furthermore, analysis of the unfolded protein response showed a reduced increase in EIF2AK3 (PERK) expression upon stimulation with tunicamycin as compared to controls, suggesting an impaired unfolded protein response. The aberrant plasma N-glycan profile provides a quick, clinically available test for validating variants of uncertain significance that may be identified by molecular genetic testing. We propose to call this deficiency EDEM3-CDG.


Asunto(s)
Proteínas de Unión al Calcio/genética , Trastornos Congénitos de Glicosilación/genética , Retículo Endoplásmico/genética , alfa-Manosidasa/genética , Adolescente , Alelos , Proteínas de Unión al Calcio/deficiencia , Línea Celular , Niño , Preescolar , Trastornos Congénitos de Glicosilación/sangre , Discapacidades del Desarrollo/genética , Femenino , Glicoproteínas/sangre , Glicosilación , Humanos , Lactante , Discapacidad Intelectual/genética , Masculino , Mutación , Linaje , Polisacáridos/sangre , Deficiencias en la Proteostasis/genética , alfa-Manosidasa/deficiencia
20.
Mol Syst Biol ; 19(12): e11801, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37984409

RESUMEN

The accumulation of misfolded and aggregated proteins is a hallmark of neurodegenerative proteinopathies. Although multiple genetic loci have been associated with specific neurodegenerative diseases (NDs), molecular mechanisms that may have a broader relevance for most or all proteinopathies remain poorly resolved. In this study, we developed a multi-layered network expansion (MLnet) model to predict protein modifiers that are common to a group of diseases and, therefore, may have broader pathophysiological relevance for that group. When applied to the four NDs Alzheimer's disease (AD), Huntington's disease, and spinocerebellar ataxia types 1 and 3, we predicted multiple members of the insulin pathway, including PDK1, Akt1, InR, and sgg (GSK-3ß), as common modifiers. We validated these modifiers with the help of four Drosophila ND models. Further evaluation of Akt1 in human cell-based ND models revealed that activation of Akt1 signaling by the small molecule SC79 increased cell viability in all models. Moreover, treatment of AD model mice with SC79 enhanced their long-term memory and ameliorated dysregulated anxiety levels, which are commonly affected in AD patients. These findings validate MLnet as a valuable tool to uncover molecular pathways and proteins involved in the pathophysiology of entire disease groups and identify potential therapeutic targets that have relevance across disease boundaries. MLnet can be used for any group of diseases and is available as a web tool at http://ssbio.cau.ac.kr/software/mlnet.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Huntington , Deficiencias en la Proteostasis , Animales , Humanos , Ratones , Enfermedad de Alzheimer/genética , Glucógeno Sintasa Quinasa 3 beta , Enfermedad de Huntington/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA