RESUMEN
CART (cocaine- and amphetamine-regulated transcript) peptides are involved in food intake regulation, stress, and other physiological functions. Although CART peptides have been known for over 25 years, their receptor(s) have not yet been characterized. In this short review, we will summarize our previous studies, where we reported specific binding of 125 I-CART(61-102) to PC12 rat pheochromocytoma cells. Competitive binding experiments performed with mono- and di-iodinated peptides and their isoforms with oxidized Met67 resulted in nanomolar binding affinity. Moreover, in our previous study, CART(61-102), as well as di-iodinated CART(61-102), have shown a strong anorexigenic effect in fasted lean mice after intracerebroventricular administration. In conclusion, from our previous studies, iodination of CART(61-102) resulted in mono- and di-iodinated analogs with or without oxidized Met67 . All analogs revealed a high affinity to binding sites at PC12 cells and preserved biological activity.
Asunto(s)
Depresores del Apetito/farmacocinética , Proteínas del Tejido Nervioso/farmacocinética , Radiofármacos/farmacocinética , Animales , Depresores del Apetito/química , Depresores del Apetito/uso terapéutico , Radioisótopos de Yodo/química , Ratones , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/uso terapéutico , Células PC12 , Unión Proteica , Radiofármacos/química , Radiofármacos/uso terapéutico , RatasRESUMEN
AIMS: Liraglutide 3.0 mg, an acylated GLP-1 analogue approved for weight management, lowers body weight through decreased energy intake. We conducted exposure-response analyses to provide important information on individual responses to given drug doses, reflecting inter-individual variations in drug metabolism, absorption and excretion. METHODS: We report efficacy and safety responses across a wide range of exposure levels, using data from one phase II (liraglutide doses 1.2, 1.8, 2.4 and 3.0 mg), and two phase IIIa [SCALE Obesity and Prediabetes (3.0 mg); SCALE Diabetes (1.8; 3.0 mg)] randomized, placebo-controlled trials (n = 4372). RESULTS: There was a clear exposure-weight loss response. Weight loss increased with greater exposure and appeared to level off at the highest exposures associated with liraglutide 3.0 mg in most individuals, but did not fully plateau in men. In individuals with overweight/obesity and comorbid type 2 diabetes, there was a clear exposure-glycated haemoglobin (HbA1c) relationship. HbA1c reduction increased with higher plasma liraglutide concentration (plateauing at â¼21 nM); however, for individuals with baseline HbA1c >8.5%, HbA1c reduction did not fully plateau. No exposure-response relationship was identified for any safety outcome, with the exception of gastrointestinal adverse events (AEs). Individuals with gallbladder AEs, acute pancreatitis or malignant/breast/benign colorectal neoplasms did not have higher liraglutide exposure compared with the overall population. CONCLUSIONS: These analyses support the use of liraglutide 3.0 mg for weight management in all subgroups investigated; weight loss increased with higher drug exposure, with no concomitant deterioration in safety/tolerability besides previously known gastrointestinal side effects.
Asunto(s)
Depresores del Apetito/administración & dosificación , Receptor del Péptido 1 Similar al Glucagón/agonistas , Incretinas/administración & dosificación , Liraglutida/administración & dosificación , Obesidad/tratamiento farmacológico , Sobrepeso/tratamiento farmacológico , Depresores del Apetito/efectos adversos , Depresores del Apetito/farmacocinética , Depresores del Apetito/uso terapéutico , Índice de Masa Corporal , Estudios de Cohortes , Terapia Combinada/efectos adversos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/terapia , Dieta Reductora , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Ejercicio Físico , Femenino , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Humanos , Hipoglucemiantes/uso terapéutico , Incretinas/efectos adversos , Incretinas/farmacocinética , Incretinas/uso terapéutico , Liraglutida/efectos adversos , Liraglutida/farmacocinética , Liraglutida/uso terapéutico , Masculino , Persona de Mediana Edad , Obesidad/sangre , Obesidad/complicaciones , Obesidad/terapia , Sobrepeso/sangre , Sobrepeso/complicaciones , Sobrepeso/terapia , Estado Prediabético/complicaciones , Estado Prediabético/terapia , Caracteres Sexuales , Pérdida de Peso/efectos de los fármacosRESUMEN
Obesity is a public health problem caused by excessive consumption of high caloric diets and/or lack of physical activity. Although treatments for obesity include low caloric diets and exercise programs, these activities frequently are supplemented with appetite suppressants. For the short-term treatment of weight loss, diethylpropion (DEP) is a commonly used appetite suppressant. However, little is known with regard to how to improve its weight loss efficacy. We therefore evaluated, in rats, two administration protocols where the animals received daily injections of DEP. First, when these nocturnal animals were normally active (at night) and when they were normally inactive (daytime), and second, with or without high fat dietary restriction (HFDR). We observed that DEP induced a greater weight-loss administered when the animals were in their active phase than in their inactive phase. Moreover, DEP's administration during the inactive phase (and to a lesser degree in the active phase) promotes the consumption of food during normal sleeping time. In addition, we found that DEP-induced weight loss under ad libitum access to a HF diet, but its efficacy significantly improved under conditions of HFDR. In summary, the efficacy of DEP, and presumably other like appetite suppressants, is enhanced by carefully controlling the time it is administered and under dietary restriction of HF diets.
Asunto(s)
Depresores del Apetito/uso terapéutico , Regulación del Apetito/efectos de los fármacos , Dieta con Restricción de Grasas , Dieta Reductora , Dietilpropión/uso terapéutico , Sobrepeso/tratamiento farmacológico , Pérdida de Peso/efectos de los fármacos , Animales , Depresores del Apetito/administración & dosificación , Depresores del Apetito/efectos adversos , Depresores del Apetito/farmacocinética , Biotransformación , Ritmo Circadiano/efectos de los fármacos , Terapia Combinada/efectos adversos , Dieta Alta en Grasa/efectos adversos , Dietilpropión/administración & dosificación , Dietilpropión/efectos adversos , Dietilpropión/análogos & derivados , Dietilpropión/sangre , Dietilpropión/farmacocinética , Esquema de Medicación , Ingestión de Energía/efectos de los fármacos , Semivida , Inyecciones Intraperitoneales , Masculino , Sobrepeso/sangre , Sobrepeso/dietoterapia , Sobrepeso/etiología , Fenilpropanolamina/análogos & derivados , Fenilpropanolamina/sangre , Ratas Sprague-DawleyRESUMEN
OBJECTIVE: Peptide YY3-36 [PYY(3-36)] has shown efficacy in appetite suppression when dosed by injection modalities (intraperitoneal (IP)/subcutaneous). Transitioning to needle-free delivery, towards inhalation, often utilizes systemic pharmacokinetics as a key endpoint to compare different delivery methods and doses. Systemic pharmacokinetics were evaluated for PYY3-36 when delivered by IP, subcutaneous, and inhalation, the systemic pharmacokinetics were then used to select doses in an appetite suppression pharmacodynamic study. METHODS: Dry-powder formulations were manufactured by spray drying and delivered to mice via nose only inhalation. The systemic plasma, lung tissue, and bronchoalveolar lavage fluid pharmacokinetics of different inhalation doses of PYY(3-36) were compared to IP and subcutaneous efficacious doses. Based on these pharmacokinetic data, inhalation doses of 70:30 PYY(3-36):Dextran T10 were evaluated in a mouse model of appetite suppression and compared to IP and subcutaneous data. RESULTS: Inhalation pharmacokinetic studies showed that plasma exposure was similar for a 2 × higher inhalation dose when compared to subcutaneous and IP delivery. Inhalation doses of 0.22 and 0.65 mg/kg were for efficacy studies. The results showed a dose-dependent (not dose proportional) decrease in food consumption over 4 h, which is similar to IP and subcutaneous delivery routes. CONCLUSIONS: The pharmacokinetic and pharmacodynamics results substantiate the ability of pharmacokinetic data to inform pharmacodynamics dose selection for inhalation delivery of the peptide PYY(3-36). Additionally, engineered PYY(3-36):Dextran T10 particles delivered to the respiratory tract show promise as a non-invasive therapeutic for appetite suppression.
Asunto(s)
Depresores del Apetito/farmacología , Apetito/efectos de los fármacos , Composición de Medicamentos/métodos , Fragmentos de Péptidos/farmacología , Péptido YY/farmacología , Administración por Inhalación , Aerosoles , Animales , Depresores del Apetito/administración & dosificación , Depresores del Apetito/farmacocinética , Depresores del Apetito/uso terapéutico , Disponibilidad Biológica , Desecación , Dextranos/química , Portadores de Fármacos/química , Cálculo de Dosificación de Drogas , Inhaladores de Polvo Seco , Inyecciones Intraperitoneales , Inyecciones Subcutáneas , Ratones , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/farmacocinética , Fragmentos de Péptidos/uso terapéutico , Péptido YY/administración & dosificación , Péptido YY/farmacocinética , Péptido YY/uso terapéutico , PolvosRESUMEN
The worldwide obesity pandemic requires the use of anti-obesity drugs. Sibutramine is an anti-obesity drug that has been used worldwide but is indiscriminately consumed in Brazil. Several studies have demonstrated that sibutramine promotes weight loss and weight maintenance, but several side effects have been associated with its systematic consumption. For this reason, sibutramine was withdrawn from the European and American markets, but still remains legal for use in Brazil. Studies have shown that a 5-10% reduction in body weight results in outstanding health benefits for obese patients. However, in order to promote significant weight loss, it is necessary to use sibutramine for at least 2 years. This long-term exposure has carcinogenic potential, as sibutramine causes DNA damage. Thus, this study evaluated the in vivo mutagenic potential of sibutramine alone (5, 7, 10, 15, and 20 mg/kg) and in association with Spirulina maxima (150 and 300 mg/kg), a cyanobacterium with antioxidant potential, using the polychromatic erythrocyte micronucleus test. Our results reinforced the mutagenic potential of sibutramine alone, which showed a time-dependent action. Combinatory treatments with S. maxima were not able to reduce the genotoxicity of sibutramine. These results were confirmed in vitro with the cytokinesis-blocked micronucleus test. In conclusion, our data showed that new alternative anti-obesity treatments are needed since the consumption of sibutramine can increase the risk of cancer in overweight patients.
Asunto(s)
Depresores del Apetito/farmacocinética , Ciclobutanos/farmacología , Mutágenos/farmacología , Spirulina/fisiología , Adolescente , Adulto , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/toxicidad , Depresores del Apetito/administración & dosificación , Depresores del Apetito/toxicidad , Brasil , Ciclobutanos/administración & dosificación , Ciclobutanos/toxicidad , Femenino , Humanos , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Masculino , Micronúcleos con Defecto Cromosómico/efectos de los fármacos , Pruebas de Micronúcleos , Mutágenos/administración & dosificación , Mutágenos/toxicidad , Reticulocitos/efectos de los fármacos , Reticulocitos/metabolismo , Adulto JovenRESUMEN
Camfetamine (N-methyl-3-phenyl-norbornan-2-amine; CFA) belongs as amphetamine-type stimulant to the so-called new psychoactive substances. CFA is an analogue of fencamfamine, an appetite suppressant developed in the 1960s. The described effects of CFA are slight stimulation and increased vigilance and the side effects are tachycardia, paranoia, and sleeplessness. The aims of the presented work were to study the metabolic fate and the detectability of CFA in urine and to elucidate which cytochrome-P450 (CYP) isoenzymes are involved in the main metabolic steps. For metabolism studies, rat urine samples were isolated by solid-phase extraction without and after enzymatic cleavage of conjugates. The phase I metabolites were separated and identified after/without acetylation by gas chromatography-mass spectrometry (GC-MS) and/or liquid chromatography-high resolution-linear ion trap mass spectrometry (LC-HR-MS(n)), respectively, and the phase II metabolites by LC-HR-MS(n). From the identified metabolites, the following main metabolic pathways were deduced: N-demethylation, aromatic mono or bis-hydroxylation followed by methylation of one hydroxy group, hydroxylation of the norbornane ring, combination of these steps, and glucuronidation and/or sulfation of the hydroxy metabolites. The N-demethylation was catalyzed by CYP2B6, CYP2C19, CYP2D6, and CYP3A4, the aromatic hydroxylation by CYP2C19 and CYP2D6, and the aliphatic hydroxylation was catalyzed by CYP1A2, CYP2B6, CYP2C19, and CYP3A4. Finally, the intake of a common user's dose of CFA could be confirmed in rat urine using the authors' GC-MS and the LC-MS(n) standard urine screening approaches via CFA and several metabolites, with the hydroxy-aryl CFA and the corresponding glucuronide being the most abundant.
Asunto(s)
Depresores del Apetito/análisis , Norbornanos/farmacocinética , Norbornanos/orina , Animales , Depresores del Apetito/química , Depresores del Apetito/farmacocinética , Cromatografía Liquida , Sistema Enzimático del Citocromo P-450/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Humanos , Masculino , Espectrometría de Masas , Estructura Molecular , Norbornanos/química , Norbornanos/metabolismo , Ratas , Ratas WistarRESUMEN
Peptide agonists of the glucagon-like peptide 1 (GLP-1) receptor (GLP1R) are rapidly gaining favor as antidiabetic agents, since in addition to increasing glucose-dependent insulin secretion, they also cause weight loss. Oxyntomodulin (OXM), a natural peptide with sequence homology to both glucagon and GLP-1, has glucose-lowering activity in rodents and anorectic activity in rodents and humans, but its clinical utility is limited by a short circulatory half-life due to rapid renal clearance and degradation by dipeptidyl peptidase IV (DPP-IV). Here, we describe the development of a novel DPP-IV-resistant, long-acting GLP1R agonist, based on derivatization of a suitably chosen OXM analog with high molecular weight polyethylene glycol (PEG) ('PEGylation'). PEG-OXM exerts an anti-hyperglycemic effect in diet-induced obese (DIO) mice in a glucose-dependent manner, with a maximally efficacious dose of 0.1mg/kg, and reduces food intake and body weight with a minimally efficacious dose of 1mg/kg. If this pharmacology is recapitulated in patients with type 2 diabetes, these results indicate PEG-OXM as a potential novel once-weekly GLP-1 mimetic with both glucose-lowering activity and weight loss efficacy.
Asunto(s)
Depresores del Apetito/química , Hipoglucemiantes/química , Oxintomodulina/química , Polietilenglicoles/química , Receptores de Glucagón/agonistas , Animales , Depresores del Apetito/síntesis química , Depresores del Apetito/farmacocinética , Peso Corporal/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Receptor del Péptido 1 Similar al Glucagón , Prueba de Tolerancia a la Glucosa , Semivida , Hipoglucemiantes/síntesis química , Hipoglucemiantes/farmacocinética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Primates , Receptores de Glucagón/metabolismoRESUMEN
Plasma concentrations of sibutramine and its two active metabolites after single oral dose of sibutramine were determined in Korean healthy male subjects with different CYP2B6 genotypes (CYP2B6*1/*1, *1/*6 and *6/*6), either alone or after four-day pretreatment with clopidogrel or clarithromycin. The pretreatment with clopidogrel and clarithromycin raised the mean area under the concentration-time curve (AUC) of sibutramine by 163% and 255%, respectively. Co-administration of clarithromycin, combined with CYP2B6*6/*6 genotype, led to highest concentration of sibutramine. The molar sum AUC (M1 + M2) was raised by 35% in the clopidogrel phase but not significantly affected by clarithromycin or CYP2B6 genotype. The CYP2B6*6/*6 subjects in the clopidogrel phase showed the highest molar AUC (M1 + M2) among three genotype groups throughout the three phases. The exposure of sibutramine and its metabolites seemed to be associated with the CYP2B6 genotype. The treatment of clopidogrel significantly altered the disposition of active metabolites as well as sibutramine, but clarithromycin only affects the disposition of sibutramine. These results suggest that the perturbation of CYP2B6 activity may contribute to the inter-individual variation of sibutramine drug responses although the clinical relevance is remained to be established.
Asunto(s)
Depresores del Apetito/metabolismo , Hidrocarburo de Aril Hidroxilasas/genética , Claritromicina/farmacología , Ciclobutanos/metabolismo , Oxidorreductasas N-Desmetilantes/genética , Ticlopidina/análogos & derivados , Antibacterianos/farmacología , Depresores del Apetito/farmacocinética , Hidrocarburo de Aril Hidroxilasas/antagonistas & inhibidores , Hidrocarburo de Aril Hidroxilasas/metabolismo , Pueblo Asiatico , Clopidogrel , Ciclobutanos/farmacocinética , Citocromo P-450 CYP2B6 , Humanos , Masculino , Oxidorreductasas N-Desmetilantes/antagonistas & inhibidores , Oxidorreductasas N-Desmetilantes/metabolismo , Inhibidores de Agregación Plaquetaria/farmacología , Polimorfismo Genético , República de Corea , Ticlopidina/farmacologíaRESUMEN
AIMS: The objectives of this phase 1 study were to confirm the tolerability of single ascending subcutaneous doses of PP 1420 in healthy subjects, to assess its adverse effects and to investigate the drug's pharmacokinetics and dose proportionality. METHODS: This was a double-blind, placebo-controlled, randomized study. There were three dosing periods. Each subject (n= 12) was randomized to receive one dose of placebo and two ascending doses of PP 1420, given as a subcutaneous injection. Blood samples were taken over 24 h to assess pharmacokinetics. Standard safety and laboratory data were collected. The primary endpoint was the tolerability of PP 1420. The secondary endpoint was exposure to PP 1420 as assessed by C(max) and AUC(0,∞). RESULTS: PP 1420 was well tolerated by all subjects with no serious adverse effects. Following single subcutaneous doses of PP 1420 at 2, 4 and 8 mg to male subjects, C(max) was reached at a median t(max) of approximately 1 h post dose (range 0.32-2.00 h). Thereafter, plasma concentrations of PP 1420 declined with geometric mean apparent terminal elimination t(1/2) ranging from 2.42-2.61 h (range 1.64-3.95 h) across all dose levels. CONCLUSIONS: Subcutaneous PP 1420 was well tolerated in healthy human subjects at single doses between 2-8 mg, with no tolerability issues arising. Where observed, adverse events were not serious, and there was no evidence of a dose-relationship to frequency of adverse events. The results therefore support the conduct of clinical trials to investigate efficacy, tolerability and pharmacokinetics during repeated dosing.
Asunto(s)
Depresores del Apetito/farmacocinética , Apetito/efectos de los fármacos , Obesidad/prevención & control , Polipéptido Pancreático/análogos & derivados , Receptores de Neuropéptido Y/agonistas , Adolescente , Adulto , Depresores del Apetito/efectos adversos , Área Bajo la Curva , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Humanos , Inyecciones Subcutáneas , Masculino , Persona de Mediana Edad , Polipéptido Pancreático/efectos adversos , Polipéptido Pancreático/farmacocinética , Reino Unido , Adulto JovenRESUMEN
BACKGROUND: Cannabinoid 1 (CB1) receptor antagonists exhibit pharmacological properties favorable for the treatment of obesity and other related metabolic disorders. CE-178253 (1-[7-(2-Chlorophenyl)-8-(4-chlorophenyl)-2-methylpyrazolo[1,5-a]-[1,3,5]triazin-4-yl]-3-ethylaminoazetidine-3-carboxylic acid hydrochloride) is a recently discovered selective centrally-acting CB1 receptor antagonist. Despite a large body of knowledge on cannabinoid receptor antagonists little data exist on the quantitative pharmacology of this therapeutic class of drugs. The purpose of the current studies was to evaluate the quantitative pharmacology and concentration/effect relationships of CE-178253 based on unbound plasma concentration and in vitro pharmacology data in different in vivo preclinical models of FI and energy expenditure. RESULTS: In vitro, CE-178253 exhibits sub-nanomolar potency at human CB1 receptors in both binding (Ki = 0.33 nM) and functional assays (Ki = 0.07 nM). CE-178253 has low affinity (Ki > 10,000 nM) for human CB2 receptors. In vivo, CE-178253 exhibits concentration-dependent anorectic activity in both fast-induced re-feeding and spontaneous nocturnal feeding FI models. As measured by indirect calorimetry, CE-178253 acutely stimulates energy expenditure by greater than 30% in rats and shifts substrate oxidation from carbohydrate to fat as indicated by a decrease the respiratory quotient from 0.85 to 0.75. Determination of the concentration-effect relationships and ex vivo receptor occupancy in efficacy models of energy intake and expenditure suggest that a greater than a 2-fold coverage of the Ki (50-75% receptor occupancy) is required for maximum efficacy. Finally, in two preclinical models of obesity, CE-178253 dose-dependently promotes weight loss in diet-induced obese rats and mice. CONCLUSIONS: We have combined quantitative pharmacology and ex vivo CB1 receptor occupancy data to assess concentration/effect relationships in food intake, energy expenditure and weight loss studies. Quantitative pharmacology studies provide a strong a foundation for establishing and improving confidence in mechanism as well as aiding in the progression of compounds from preclinical pharmacology to clinical development.
Asunto(s)
Depresores del Apetito/farmacología , Depresores del Apetito/uso terapéutico , Azetidinas/farmacología , Azetidinas/uso terapéutico , Obesidad/tratamiento farmacológico , Receptor Cannabinoide CB1/antagonistas & inhibidores , Triazinas/farmacología , Triazinas/uso terapéutico , Pérdida de Peso/efectos de los fármacos , Animales , Depresores del Apetito/metabolismo , Depresores del Apetito/farmacocinética , Azetidinas/metabolismo , Azetidinas/farmacocinética , Unión Competitiva , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Línea Celular , Relación Dosis-Respuesta a Droga , Ingestión de Alimentos/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/sangre , Obesidad/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/antagonistas & inhibidores , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB2/metabolismo , Triazinas/metabolismo , Triazinas/farmacocinéticaRESUMEN
P57AS3 (P57), an oxypregnane steroidal glycoside, is known to be responsible for the appetite suppressing activity of HOODIA GORDONII, a dietary supplement used for weight loss. In this study, bioavailability, pharmacokinetics, and tissue distribution of P57 were determined in CD1 female mice after administration of a single dose of enriched methanolic extract of HOODIA GORDONII (equivalent to a dose of 25 mg of P57/kg) by oral gavage or a single dose of purified P57 (25 mg/kg) intravenously. The level of P57 in plasma and tissues (brain, liver, kidney, and intestine) was determined by UPLC-MS. After oral administration of HOODIA extract, the peak plasma level of P57 was achieved in 0.6 h. Upon intravenous administration, the plasma clearance rate of P57 was 1.09 L/h/kg. P57 was rapidly distributed and eliminated from the tissues within 4 hours. The level of tissue distribution was highest in the kidney followed by liver and brain. Upon oral administration, P57 was not detected in the brain and a very low concentration was seen in the intestine, kidney, and liver. Tissue/plasma ratio was 0.33 for brain, 0.57 for liver, and 0.75 for kidney with IV route and 0.11 for intestine, 0.02 for liver, and 0.04 for kidney with oral route. The half-life of the elimination phase was similar with both routes. The oral bioavailability was 47.5â% and the half-life of the absorption phase was 0.13 h. In conclusion, P57 showed moderate bioavailability and was eliminated rapidly.
Asunto(s)
Apocynaceae/química , Depresores del Apetito/farmacocinética , Extractos Vegetales/farmacocinética , Administración Oral , Animales , Depresores del Apetito/administración & dosificación , Depresores del Apetito/química , Depresores del Apetito/aislamiento & purificación , Disponibilidad Biológica , Encéfalo/metabolismo , Femenino , Semivida , Inyecciones Intravenosas , Riñón/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos ICR , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Distribución TisularRESUMEN
The effects of oxytocin on food intake and body weight reduction have been demonstrated in both animal models and human clinical studies. Despite being efficacious, oxytocin is enzymatically unstable and thus considered to be unsuitable for long-term use in patients with obesity. Herein, a series of oxytocin derivatives were engineered through conjugation with fatty acid moieties that are known to exhibit high binding affinities to serum albumin. One analog (OT-12) in particular was shown to be a potent full agonist at the oxytocin receptor (OTR) in vitro with good selectivity and long half-life (24 h) in mice. Furthermore, OT-12 is peripherally restricted, with very limited brain exposure (1/190 of the plasma level). In a diet-induced obesity mouse model, daily subcutaneous administration of OT-12 exhibited more potent anorexigenic and body weight reducing effects than carbetocin. Thus, our results suggest that the long-acting, peripherally restricted OTR agonist may offer potential therapeutic benefits for obesity.
Asunto(s)
Fármacos Antiobesidad/uso terapéutico , Depresores del Apetito/uso terapéutico , Lipopéptidos/uso terapéutico , Oxitocina/análogos & derivados , Oxitocina/uso terapéutico , Receptores de Oxitocina/agonistas , Animales , Fármacos Antiobesidad/síntesis química , Fármacos Antiobesidad/farmacocinética , Depresores del Apetito/síntesis química , Depresores del Apetito/farmacocinética , Peso Corporal/efectos de los fármacos , Humanos , Lipopéptidos/síntesis química , Lipopéptidos/farmacocinética , Masculino , Ratones Endogámicos BALB C , Obesidad/tratamiento farmacológico , Oxitocina/farmacocinética , Ingeniería de Proteínas , Pérdida de Peso/efectos de los fármacosRESUMEN
This study was conducted in order to compare the bioavailability of two capsule formulations containing 15 mg of sibutramine, N-{1-[1-(4-chlorophenyl)cyclobutyl]-3-methylbutyl}-N,N-dimethylamine hydrochloride monohydrate, 84485-00-7 CAS registry number. 62 healthy subjects were enrolled in a single-center, randomized, single-dose, open-label, 2-way crossover study, with a minimum washout period of 14 days. Plasma samples were collected up to 72.0 hours post-dosing. R-sibutramine, S-sibutramine, N-mono-desmethyl-sibutramine (M1) and N-di-desmethyl-sibutramine (M2) levels were determined by reverse liquid chromatography and detected by tandem mass spectrometry detection, LC/MS/MS method. Pharmacokinetic parameters used for bioequivalence assessment were the area under the concentration-time curve from time zero to time of last non-zero concentration (AUC0-t) and the maximum observed concentration (Cmax). These parameters were determined from sibutramine enantiomers as well from M1 and M2 concentration data using non-compartmental analysis. The 90% confidence intervals obtained by analysis of variance were 89.25 - 122.88% for Cmax, 90.37 - 123.18% for AUC0-t and 91.20 - 122.38% for AUCinf for R-sibutramine and 88.27 - 124.08% for Cmax, 86.15 - 121.78% for AUC0-t and 88.02 - 120.96% for AUCinf for S-sibutramine. These results were all within the range of 80.00 - 125.00% established by regulatory requirements. Bioequivalence between formulations was concluded both in terms of rate and extent of absorption.
Asunto(s)
Depresores del Apetito/farmacocinética , Ciclobutanos/farmacocinética , Adulto , Depresores del Apetito/administración & dosificación , Depresores del Apetito/efectos adversos , Área Bajo la Curva , Disponibilidad Biológica , Cápsulas , Cromatografía Liquida/métodos , Estudios Cruzados , Ciclobutanos/administración & dosificación , Ciclobutanos/efectos adversos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Espectrometría de Masas en Tándem/métodos , Equivalencia Terapéutica , Adulto JovenRESUMEN
Amfepramone (AFP) is an appetite-suppressant drug used in the treatment of obesity. Nonetheless, studies on interindividual pharmacokinetic variability and its association with genetic variants are limited. We employed a pharmacokinetic and pharmacogenetic approach to determine possible metabolic phenotypes of AFP and identify genetic markers that could affect the pharmacokinetic variability in a Mexican population. A controlled, randomized, crossover, single-blind, two-treatment, two-period, and two sequence clinical study of AFP (a single 75 mg dose) was conducted in 36 healthy Mexican volunteers who fulfilled the study requirements. Amfepramone plasma levels were measured using high-performance liquid chromatography mass spectrometry. Genotyping was performed using real-time PCR with TaqMan probes. Four AFP metabolizer phenotypes were found in our population: slow, normal, intermediate, and fast. Additionally, two gene polymorphisms, ABCB1-rs1045642 and CYP3A4-rs2242480, had a significant effect on AFP pharmacokinetics (P < 0.05) and were the predictor factors in a log-linear regression model. The ABCB1 and CYP3A4 gene polymorphisms were associated with a fast metabolizer phenotype. These results suggest that metabolism of AFP in the Mexican population is variable. In addition, the genetic variants ABCB1-rs1045642 and CYP3A4-rs2242480 may partially explain the AFP pharmacokinetic variability.
Asunto(s)
Depresores del Apetito/farmacocinética , Citocromo P-450 CYP3A/genética , Dietilpropión/farmacocinética , Variantes Farmacogenómicas , Polimorfismo de Nucleótido Simple , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Adulto , Depresores del Apetito/administración & dosificación , Depresores del Apetito/sangre , Dietilpropión/administración & dosificación , Dietilpropión/sangre , Femenino , Humanos , Masculino , Tasa de Depuración Metabólica/genética , Persona de Mediana EdadRESUMEN
Phenmetrazine, a selective dopamine and norepinephrine releaser, previously available as an oral anorectic, is prone to be abused. This study aimed to assess the feasibility of delivering phenmetrazine via the transdermal route for a new indication, while also minimizing its abuse potential. The passive permeation of phenmetrazine through dermatomed human cadaver skin was evaluated using static Franz diffusion cells at 10 mg/mL for the fumarate salt, and at 20, 40, and 80 mg/mL for the free base in propylene glycol for 24 h. Further, oleic acid (5% w/w), oleyl alcohol (5% and 10% w/w), and lauric acid (10% w/w) were investigated as chemical permeation enhancers to enhance the delivery. Skin irritation potential was assessed using EpiDerm™ in vitro reconstructed human epidermal model. The free base showed superior 24-h delivery (8.13 ± 4.07%, 10.6 ± 2.5%, and 10.4 ± 1.4% for groups with 20, 40, and 80 mg/mL of the free base, respectively) to phenmetrazine fumarate salt (undetectable). The successful screening of effective chemical enhancers, oleyl alcohol (5% and 10% w/w), oleic acid (5% w/w), and lauric acid (10% w/w) resulted in significant enhancement of delivery. The calculated therapeutic relevant flux for the potential indication, attention deficit hyperactivity disorder, 20 µg/cm2/h was met, where a 24-mg daily dose from a 50-cm2 patch was projected to be delivered to a 60-kg individual. Irritation study results suggest that formulations with therapeutically relevant delivery are likely to be non-irritant. In conclusion, it is feasible to deliver therapeutically relevant amounts of phenmetrazine via the transdermal route.
Asunto(s)
Depresores del Apetito/farmacocinética , Dermatitis Irritante/etiología , Fenmetrazina/farmacocinética , Piel/metabolismo , Administración Cutánea , Depresores del Apetito/administración & dosificación , Depresores del Apetito/toxicidad , Dermatitis Irritante/metabolismo , Composición de Medicamentos , Reposicionamiento de Medicamentos , Estudios de Factibilidad , Humanos , Técnicas In Vitro , Fenmetrazina/administración & dosificación , Fenmetrazina/toxicidad , Piel/efectos de los fármacos , Absorción Cutánea , Pruebas de Irritación de la PielRESUMEN
We identified cytochrome P450 (P450) isozymes that are involved in the formation of two active sibutramine (N-{1-[1-(4-chlorophenyl)-cyclobutyl]-3-methylbutyl}-N,N-dimethylamine) metabolites, M1 (N-{1-[1-(4-chlorophenyl)cyclobutyl]-3-methylbutyl}-N-methylamine) and M2 (1-[1-(4-chlorophenyl)cyclobutyl]-3-methylbutylamine), in humans using a combination chemical inhibition, correlation analyses in human liver microsomes (HLMs), and activity assays using recombinant P450s. Mechanism-based CYP2B6 inhibitors (i.e., clopidogrel, ticlopidine, and triethylenethiophoramide) significantly inhibited the formation of M1 from sibutramine and M2 from M1, respectively; in contrast, no effect was observed when using potent inhibitors of eight P450 isozymes (CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A). In addition, the formations of M1 from sibutramine (r = 0.694, p = 0.0029) and M2 from M1 (r = 0.834, p < 0.0001) were strongly correlated with CYP2B6-catalyzed bupropion hydroxylation in 16 different HLM panels. Furthermore, recombinant CYP2B6 catalyzed M1 and/or M2 formation at the highest rate among 10 P450s. Although recombinant CYP2C19, 3A4, and 3A5 also catalyzed, to a less extent, M1 formation at high substrate concentrations (>5 microM), those contributions might be minor considering usual concentrations of sibutramine and M1 in the clinical setting. The kinetics of M1 and/or M2 formation from sibutramine in HLMs were fitted by a two-enzyme model, and the mean apparent K(m) value (4.79 microM) for high-affinity component was similar to that observed in recombinant CYP2B6 (8.02 microM). In conclusion, CYP2B6 is the primary catalyst for the formation of sibutramine two active metabolites, which may suggest that pharmacogenetics and drug interactions of sibutramine in relation to CYP2B6 activity should be considered in the pharmacotherapy of sibutramine.
Asunto(s)
Depresores del Apetito/farmacocinética , Hidrocarburo de Aril Hidroxilasas/metabolismo , Ciclobutanos/farmacocinética , Microsomas Hepáticos/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Hidrocarburo de Aril Hidroxilasas/genética , Catálisis , Clopidogrel , Citocromo P-450 CYP2B6 , ADN Complementario , Humanos , Microsomas Hepáticos/enzimología , Oxidorreductasas N-Desmetilantes/genética , Ticlopidina/análogos & derivados , Ticlopidina/farmacologíaRESUMEN
A number of analogues of diaryl dihydropyrazole-3-carboxamides have been synthesized. Their activities were evaluated for appetite suppression and body weight reduction in animal models. Depending on the chemical modification of the selected dihydropyrazole scaffold, the lead compounds--the bisulfate salt of (+/-)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid morpholin-4-ylamide 26 and the bisulfate salt of (-)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid morpholin-4-ylamide 30--showed significant body weight reduction in vivo, which is attributed to their CB1 antagonistic activity and exhibited a favorable pharmacokinetic profile. The molecular modeling studies also showed interactions of two isomers of (+/-)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid morpholin-4-ylamide 9 with CB1 receptor in the homology model similar to those of N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole-carboxamide (rimonabant) 1 and 4S-(-)-3-(4-chlorophenyl)-N-methyl-N'-[(4-chlorophenyl)-sulfonyl]-4-phenyl-4,5-dihydro-1H-pyrazole-1-carboxamidine (SLV-319) 2.
Asunto(s)
Amidas/síntesis química , Fármacos Antiobesidad/síntesis química , Pirazoles/síntesis química , Amidas/farmacocinética , Amidas/farmacología , Animales , Fármacos Antiobesidad/farmacocinética , Fármacos Antiobesidad/farmacología , Depresores del Apetito/síntesis química , Depresores del Apetito/farmacocinética , Depresores del Apetito/farmacología , Peso Corporal/efectos de los fármacos , Femenino , Modelos Moleculares , Morfolinas/síntesis química , Morfolinas/farmacocinética , Morfolinas/farmacología , Piperidinas/química , Pirazoles/química , Pirazoles/farmacocinética , Pirazoles/farmacología , Ratas , Ratas Zucker , Receptor Cannabinoide CB1/antagonistas & inhibidores , Rimonabant , Estereoisomerismo , Relación Estructura-Actividad , Sulfonamidas/químicaRESUMEN
BACKGROUND AND PURPOSE: Acute intraperitoneal (i.p.) administration of cholecystokinin (CCK) is known to induce a significant, but short-lasting, reduction in food intake, followed by recovery within hours. Therefore, we had covalently coupled CCK to a 10 kDa polyethylene glycol and showed that this conjugate, PEG-CCK(9), produced a significantly longer anorectic effect than unmodified CCK(9). The present study assessed the dose-dependency of this response and the effect of two selective CCK(1) receptor antagonists, with different abilities to cross the blood-brain barrier (BBB), on PEG-CCK(9)-induced anorexia. EXPERIMENTAL APPROACH: Food intake was measured, for up to 23 h, after i.p. administration of different doses (2, 4, 8, 16 and 32 microg kg(-1)) of CCK(9) or PEG-CCK(9) in male Wistar rats. Devazepide (100 microg kg(-1)), which penetrates the BBB or 2-NAP (3 mg kg(-1)), which does not cross the BBB, were coadministered i.p. with PEG-CCK(9) (6 microg kg(-1)) and food intake was monitored. KEY RESULTS: In PEG-CCK(9)-treated rats, a clear dose-dependency was seen for both the duration and initial intensity of the anorexia whereas, for CCK(9), only the initial intensity was dose-dependent. Intraperitoneal administration of devazepide or 2-NAP, injected immediately prior to PEG-CCK(9), completely abolished the anorectic effect of PEG-CCK(9). CONCLUSIONS AND IMPLICATIONS: The duration of the anorexia for PEG-CCK(9) was dose-dependent, suggesting that PEGylation of CCK(9) increases its circulation time. Both devazepide and 2-NAP completely abolished the anorectic effect of i.p. PEG-CCK(9) indicating that its anorectic effect was solely due to stimulation of peripheral CCK(1) receptors.
Asunto(s)
Anorexia/inducido químicamente , Colecistoquinina/farmacología , Ingestión de Alimentos/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Receptor de Colecistoquinina A/efectos de los fármacos , Saciedad/efectos de los fármacos , Animales , Depresores del Apetito/administración & dosificación , Depresores del Apetito/química , Depresores del Apetito/farmacocinética , Depresores del Apetito/farmacología , Ácido Aspártico/análogos & derivados , Ácido Aspártico/farmacología , Barrera Hematoencefálica , Colecistoquinina/administración & dosificación , Colecistoquinina/química , Colecistoquinina/farmacocinética , Preparaciones de Acción Retardada , Devazepida/farmacología , Relación Dosis-Respuesta a Droga , Inyecciones Intraperitoneales , Masculino , Naftalenosulfonatos/farmacología , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacocinética , Polietilenglicoles/química , Ratas , Ratas Wistar , Receptor de Colecistoquinina A/metabolismoRESUMEN
Melanin-concentrating hormone receptor antagonists containing thieno- and a benzopyridazinone cores were designed and tested as potential anorectic agents. These ligands showed high affinity for the receptor, potent functional activity in vitro, and good oral bioavailabilty in rats. The thiophene analogue exhibited low iv clearance, long half-life, and high brain penetration. In obese rats, the thienopyridazinone demonstrated a dose-dependent reduction in feeding and body weight with doses between 1 and 10 mg kg-1.
Asunto(s)
Depresores del Apetito/síntesis química , Piridazinas/síntesis química , Receptores de Somatostatina/antagonistas & inhibidores , Tiofenos/síntesis química , Animales , Depresores del Apetito/farmacocinética , Depresores del Apetito/farmacología , Disponibilidad Biológica , Peso Corporal/efectos de los fármacos , Encéfalo/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Semivida , Masculino , Obesidad/tratamiento farmacológico , Permeabilidad , Piridazinas/química , Piridazinas/farmacología , Ratas , Ratas Sprague-Dawley , Estereoisomerismo , Relación Estructura-Actividad , Tiofenos/farmacocinética , Tiofenos/farmacologíaRESUMEN
In order to explore the relationship between the anorectic effect of 3-carboxy-4-octyl-2-methylenebutyrolactone (C75) and its pharmacokinetic properties, studies of in vivo and in vitro pharmacological characterization of C75 were performed in Fischer rats. In a quantitative measurement of food intake, we determined that appetite suppression by C75 takes place within 4 h. The C(max) for C75 of 2.6+/-1.5 microM was reached within 1-4 h after intraperitoneal administration at 30 mg/kg, a drug level that causes complete blockade of food intake. However, this concentration is substantially lower than the effective concentration used to inhibit rat fatty acid synthase enzyme activity in vitro (IC50: approximately 200 microM) and hypothalamic enzyme activity was found not to be inhibited by intraperitoneal administration of C75 at 30 mg/kg. Instead, a dramatic induction of c-Fos expression was found in area postrema. Collectively, these data indicate that the anorectic effect of C75 is independent of its inhibition of fatty acid synthase in the hypothalamus.