Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Chem Biol ; 20(6): 689-698, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38167920

RESUMEN

Cleavage of bacteriophage DNA by the Type III restriction-modification enzymes requires long-range interaction between DNA sites. This is facilitated by one-dimensional diffusion ('DNA sliding') initiated by ATP hydrolysis catalyzed by a superfamily 2 helicase-like ATPase. Here we combined ultrafast twist measurements based on plasmonic DNA origami nano-rotors with stopped-flow fluorescence and gel-based assays to examine the role(s) of ATP hydrolysis. Our data show that the helicase-like domain has multiple roles. First, this domain stabilizes initial DNA interactions alongside the methyltransferase subunits. Second, it causes environmental changes in the flipped adenine base following hydrolysis of the first ATP. Finally, it remodels nucleoprotein interactions via constrained translocation of a ∼ 5 to 22-bp double stranded DNA loop. Initiation of DNA sliding requires 8-15 bp of DNA downstream of the motor, corresponding to the site of nuclease domain binding. Our data unify previous contradictory communication models for Type III enzymes.


Asunto(s)
Adenosina Trifosfato , Difusión , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/química , Hidrólisis , ADN/metabolismo , ADN/química , ADN Viral/metabolismo , ADN Viral/química , ADN Viral/genética , Desoxirribonucleasas de Localización Especificada Tipo III/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo III/química
2.
Nucleic Acids Res ; 46(12): 6229-6237, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29846668

RESUMEN

Endonucleolytic cleavage of DNA by Type III restriction-modification (RM) enzymes requires long-range communication between at least two recognition sites in inverted orientation. This results in convergence of two nuclease domains, one each from the enzymes loaded at the recognition sites with one still bound to the site. The nucleases catalyze scission of the single-strands leading to double-strand DNA break. An obscure feature of the Type III RM enzymes EcoP1I and EcoP15I is their ability to cleave DNA having a single recognition site under certain conditions. Here we demonstrate that single-site cleavage is the result of cooperation between an enzyme bound to the recognition site in cis and one in trans. DNA cleavage is catalyzed by converging nucleases that are activated by hydrolysis-competent ATPase in presence of their respective DNA substrates. Furthermore, a single activated nuclease cannot nick a strand on its own, and requires the partner. Based on the commonalities in the features of single-site and two-site cleavage derived from this study, we propose that their mechanism is similar. Furthermore, the products of two-site cleavage can act as substrates and activators of single-site cleavage. The difference in the two modes lies in how the two cooperating enzymes converge, which in case of single-site cleavage appears to be via 3D diffusion.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo III/metabolismo , Adenosina Trifosfato/metabolismo , ADN/química , ADN/metabolismo , División del ADN , Desoxirribonucleasas de Localización Especificada Tipo III/genética , Mutación
3.
Nucleic Acids Res ; 43(22): 10870-81, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26538601

RESUMEN

DNA cleavage by the Type III restriction enzymes requires long-range protein communication between recognition sites facilitated by thermally-driven 1D diffusion. This 'DNA sliding' is initiated by hydrolysis of multiple ATPs catalysed by a helicase-like domain. Two distinct ATPase phases were observed using short oligoduplex substrates; the rapid consumption of ∼10 ATPs coupled to a protein conformation switch followed by a slower phase, the duration of which was dictated by the rate of dissociation from the recognition site. Here, we show that the second ATPase phase is both variable and only observable when DNA ends are proximal to the recognition site. On DNA with sites more distant from the ends, a single ATPase phase coupled to the conformation switch was observed and subsequent site dissociation required little or no further ATP hydrolysis. The overall DNA dissociation kinetics (encompassing site release, DNA sliding and escape via a DNA end) were not influenced by the second phase. Although the data simplifies the ATP hydrolysis scheme for Type III restriction enzymes, questions remain as to why multiple ATPs are hydrolysed to prepare for DNA sliding.


Asunto(s)
Adenosina Trifosfato/metabolismo , ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo III/metabolismo , Adenosina Trifosfatasas/metabolismo , División del ADN , Hidrólisis , Cinética , Resonancia por Plasmón de Superficie
4.
Nucleic Acids Res ; 42(1): 45-55, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23863841

RESUMEN

Restriction endonucleases interact with DNA at specific sites leading to cleavage of DNA. Bacterial DNA is protected from restriction endonuclease cleavage by modifying the DNA using a DNA methyltransferase. Based on their molecular structure, sequence recognition, cleavage position and cofactor requirements, restriction-modification (R-M) systems are classified into four groups. Type III R-M enzymes need to interact with two separate unmethylated DNA sequences in inversely repeated head-to-head orientations for efficient cleavage to occur at a defined location (25-27 bp downstream of one of the recognition sites). Like the Type I R-M enzymes, Type III R-M enzymes possess a sequence-specific ATPase activity for DNA cleavage. ATP hydrolysis is required for the long-distance communication between the sites before cleavage. Different models, based on 1D diffusion and/or 3D-DNA looping, exist to explain how the long-distance interaction between the two recognition sites takes place. Type III R-M systems are found in most sequenced bacteria. Genome sequencing of many pathogenic bacteria also shows the presence of a number of phase-variable Type III R-M systems, which play a role in virulence. A growing number of these enzymes are being subjected to biochemical and genetic studies, which, when combined with ongoing structural analyses, promise to provide details for mechanisms of DNA recognition and catalysis.


Asunto(s)
Desoxirribonucleasas de Localización Especificada Tipo III/metabolismo , Colifagos/enzimología , División del ADN , Metilasas de Modificación del ADN/genética , Desoxirribonucleasas de Localización Especificada Tipo III/química , Desoxirribonucleasas de Localización Especificada Tipo III/genética , Desoxirribonucleasas de Localización Especificada Tipo III/historia , Historia del Siglo XX , Historia del Siglo XXI
5.
Nucleic Acids Res ; 42(8): 5139-50, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24510100

RESUMEN

Fundamental aspects of the biochemistry of Type III restriction endonucleases remain unresolved despite being characterized by numerous research groups in the past decades. One such feature is the subunit stoichiometry of these hetero-oligomeric enzyme complexes, which has important implications for the reaction mechanism. In this study, we present a series of results obtained by native mass spectrometry and size exclusion chromatography with multi-angle light scattering consistent with a 1:2 ratio of Res to Mod subunits in the EcoP15I, EcoPI and PstII complexes as the main holoenzyme species and a 1:1 stoichiometry of specific DNA (sDNA) binding by EcoP15I and EcoPI. Our data are also consistent with a model where ATP hydrolysis activated by recognition site binding leads to release of the enzyme from the site, dissociation from the substrate via a free DNA end and cleavage of the DNA. These results are discussed critically in the light of the published literature, aiming to resolve controversies and discuss consequences in terms of the reaction mechanism.


Asunto(s)
Metilasas de Modificación del ADN/metabolismo , ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo III/química , Desoxirribonucleasas de Localización Especificada Tipo III/metabolismo , Adenosina Trifosfato/metabolismo , Metilasas de Modificación del ADN/química , Holoenzimas/metabolismo , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo
6.
Nucleic Acids Res ; 40(14): 6752-64, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22523084

RESUMEN

DNA cleavage by the Type III Restriction-Modification (RM) enzymes requires the binding of a pair of RM enzymes at two distant, inversely orientated recognition sequences followed by helicase-catalysed ATP hydrolysis and long-range communication. Here we addressed the dissociation from DNA of these enzymes at two stages: during long-range communication and following DNA cleavage. First, we demonstrated that a communicating species can be trapped in a DNA domain without a recognition site, with a non-specific DNA association lifetime of ∼ 200 s. If free DNA ends were present the lifetime became too short to measure, confirming that ends accelerate dissociation. Secondly, we observed that Type III RM enzymes can dissociate upon DNA cleavage and go on to cleave further DNA molecules (they can 'turnover', albeit inefficiently). The relationship between the observed cleavage rate and enzyme concentration indicated independent binding of each site and a requirement for simultaneous interaction of at least two enzymes per DNA to achieve cleavage. In light of various mechanisms for helicase-driven motion on DNA, we suggest these results are most consistent with a thermally driven random 1D search model (i.e. 'DNA sliding').


Asunto(s)
División del ADN , Desoxirribonucleasas de Localización Especificada Tipo III/metabolismo , ADN/metabolismo , ADN Helicasas/metabolismo , Pruebas de Enzimas/métodos , Cinética , Movimiento (Física)
7.
Nucleic Acids Res ; 40(8): 3610-22, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22199260

RESUMEN

For efficient DNA cleavage, the Type III restriction endonuclease EcoP15I communicates with two inversely oriented recognition sites in an ATP-dependent process. EcoP15I consists of methylation (Mod) and restriction (Res) subunits forming a multifunctional enzyme complex able to methylate or to cleave DNA. In this study, we determined by different analytical methods that EcoP15I contains a single Res subunit in a Mod(2)Res stoichiometry. The Res subunit comprises a translocase (Tr) domain carrying functional motifs of superfamily 2 helicases and an endonuclease domain with a PD..D/EXK motif. We show that the isolated Tr domain retains ATP-hydrolyzing activity and binds single- and double-stranded DNA in a sequence-independent manner. To localize the regions of DNA binding, we screened peptide arrays representing the entire Res sequence for their ability to interact with DNA. We discovered four DNA-binding regions in the Tr domain and two DNA-binding regions in the endonuclease domain. Modelling of the Tr domain shows that these multiple DNA-binding regions are located on the surface, free to interact with DNA. Interestingly, the positions of the DNA-binding regions are conserved among other Type III restriction endonucleases.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo III/química , Desoxirribonucleasas de Localización Especificada Tipo III/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfato/metabolismo , Cromatografía en Gel , Clonación Molecular , ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo III/genética , Hidrólisis , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/química , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo
8.
Mikrobiol Z ; 76(2): 59-66, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25000732

RESUMEN

A set of lysogenic strains of phytopathogenic bacteria Erwinia "horticola" and Erwinia amylovora associated with woody plants was obtained using bacteriophage P1 Cmc1ts100. The phenotype conversion from Cm(S) to Cm(R) was shown to be connected with introducing of authentic prophage DNA of 94.8 kb as a single-copy plasmid into the cells. Prophage state is unstable: P1 plasmid is spontaneously lost with high frequency by the cells. In lysogenic cells the prophage genes of type III restriction-modification complex EcoP1I are actively expressed. The system formed by E. "horticola" 450 and 60 as well as their lysogenic derivatives and specific bacteriophages provides an opportunity to divide the latter into three groups according to the level of restriction in the course of their interaction with the enzyme EcoP1I. The difference in phage responses to the endonuclease presence in a lysogenized host presumably correlates with the number of enzyme recognition sequences and the adsorption sites availability. After the prophage plasmid DNA curing the characteristic value of phage sensitivity of cells is changed. The lysogenic strains obtained in this work allow for the exploration of EcoP1I restriction-modification gene complex interaction with polyvalent phages able to grow not only on E. coli, but also on such phytopathogens as E. "horticola" and E. amylovora.


Asunto(s)
Bacteriófago P1/genética , Erwinia amylovora/virología , Erwinia/virología , Genes Virales , Lisogenia/genética , Interacciones Microbianas/genética , ADN Viral , Desoxirribonucleasas de Localización Especificada Tipo III/genética , Desoxirribonucleasas de Localización Especificada Tipo III/metabolismo , Genotipo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Fenotipo , Plantas/microbiología , Plásmidos , Profagos/genética
9.
Nucleic Acids Res ; 39(18): 8042-51, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21724613

RESUMEN

DNA cleavage by the Type III Restriction-Modification enzymes requires communication in 1D between two distant indirectly-repeated recognitions sites, yet results in non-specific dsDNA cleavage close to only one of the two sites. To test a recently proposed ATP-triggered DNA sliding model, we addressed why one site is selected over another during cleavage. We examined the relative cleavage of a pair of identical sites on DNA substrates with different distances to a free or protein blocked end, and on a DNA substrate using different relative concentrations of protein. Under these conditions a bias can be induced in the cleavage of one site over the other. Monte-Carlo simulations based on the sliding model reproduce the experimentally observed behaviour. This suggests that cleavage site selection simply reflects the dynamics of the preceding stochastic enzyme events that are consistent with bidirectional motion in 1D and DNA cleavage following head-on protein collision.


Asunto(s)
División del ADN , Desoxirribonucleasas de Localización Especificada Tipo III/metabolismo , ADN/metabolismo , Modelos Biológicos , Método de Montecarlo , Movimiento (Física)
10.
Nucleic Acids Res ; 39(11): 4525-31, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21310716

RESUMEN

Much insight into the interactions of DNA and enzymes has been obtained using a number of single-molecule techniques. However, recent results generated using two of these techniques-atomic force microscopy (AFM) and magnetic tweezers (MT)-have produced apparently contradictory results when applied to the action of the ATP-dependent type III restriction endonucleases on DNA. The AFM images show extensive looping of the DNA brought about by the existence of multiple DNA binding sites on each enzyme and enzyme dimerisation. The MT experiments show no evidence for looping being a requirement for DNA cleavage, but instead support a diffusive sliding of the enzyme on the DNA until an enzyme-enzyme collision occurs, leading to cleavage. Not only do these two methods appear to disagree, but also the models derived from them have difficulty explaining some ensemble biochemical results on DNA cleavage. In this 'Survey and Summary', we describe several different models put forward for the action of type III restriction enzymes and their inadequacies. We also attempt to reconcile the different models and indicate areas for further experimentation to elucidate the mechanism of these enzymes.


Asunto(s)
ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo III/metabolismo , Modelos Biológicos , ADN/química , Microscopía de Fuerza Atómica , Transporte de Proteínas
11.
Nucleic Acids Res ; 39(14): 5991-6001, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21504983

RESUMEN

The Mrr protein of Escherichia coli is a laterally acquired Type IV restriction endonuclease with specificity for methylated DNA. While Mrr nuclease activity can be elicited by high-pressure stress in E. coli MG1655, its (over)expression per se does not confer any obvious toxicity. In this study, however, we discovered that Mrr of E. coli MG1655 causes distinct genotoxicity when expressed in Salmonella typhimurium LT2. Genetic screening enabled us to contribute this toxicity entirely to the presence of the endogenous Type III restriction modification system (StyLTI) of S. typhimurium LT2. The StyLTI system consists of the Mod DNA methyltransferase and the Res restriction endonuclease, and we revealed that expression of the LT2 mod gene was sufficient to trigger Mrr activity in E. coli MG1655. Moreover, we could demonstrate that horizontal acquisition of the MG1655 mrr locus can drive the loss of endogenous Mod functionality present in S. typhimurium LT2 and E. coli ED1a, and observed a strong anti-correlation between close homologues of MG1655 mrr and LT2 mod in the genome database. This apparent evolutionary antagonism is further discussed in the light of a possible role for Mrr as defense mechanism against the establishment of epigenetic regulation by foreign DNA methyltransferases.


Asunto(s)
Enzimas de Restricción del ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo III/metabolismo , Proteínas de Escherichia coli/metabolismo , Evolución Molecular , Metilasas de Modificación del ADN/metabolismo , Enzimas de Restricción del ADN/genética , Desoxirribonucleasas de Localización Especificada Tipo III/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Salmonella typhimurium/enzimología , Salmonella typhimurium/metabolismo
12.
Proc Natl Acad Sci U S A ; 107(20): 9123-8, 2010 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-20435912

RESUMEN

Cleavage of viral DNA by the bacterial Type III Restriction-Modification enzymes requires the ATP-dependent long-range communication between a distant pair of DNA recognition sequences. The classical view is that Type III endonuclease activity is only activated by a pair of asymmetric sites in a specific head-to-head inverted repeat. Based on this assumption and due to the presence of helicase domains in Type III enzymes, various motor-driven DNA translocation models for communication have been suggested. Using both single-molecule and ensemble assays we demonstrate that Type III enzymes can also cleave DNA with sites in tail-to-tail repeat with high efficiency. The ability to distinguish both inverted repeat substrates from direct repeat substrates in a manner independent of DNA topology or accessory proteins can only be reconciled with an alternative sliding mode of communication.


Asunto(s)
ADN Viral/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo III/metabolismo , Secuencias Invertidas Repetidas , Conformación de Ácido Nucleico , Sitios de Unión/genética , Sitios de Unión/fisiología , Modelos Moleculares , Oligonucleótidos , Especificidad por Sustrato
13.
Proc Natl Acad Sci U S A ; 107(26): 11954-8, 2010 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-20547849

RESUMEN

Staphylococcus aureus is an versatile pathogen that can cause life-threatening infections. Depending on the clinical setting, up to 50% of S. aureus infections are caused by methicillin-resistant strains (MRSA) that in most cases are resistant to many other antibiotics, making treatment difficult. The emergence of community-acquired MRSA drastically changed the picture by increasing the risk of MRSA infections. Horizontal transfer of genes encoding for antibiotic resistance or virulence factors is a major concern of multidrug-resistant S. aureus infections and epidemiology. We identified and characterized a type III-like restriction system present in clinical S. aureus strains that prevents transformation with DNA from other bacterial species. Interestingly, our analysis revealed that some clinical MRSA strains are deficient in this restriction system, and thus are hypersusceptible to the horizontal transfer of DNA from other species, such as Escherichia coli, and could easily acquire a vancomycin-resistance gene from enterococci. Inactivation of this restriction system dramatically increases the transformation efficiency of clinical S. aureus strains, opening the field of molecular genetic manipulation of these strains using DNA of exogenous origin.


Asunto(s)
Desoxirribonucleasas de Localización Especificada Tipo III/metabolismo , Transferencia de Gen Horizontal , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , Secuencia de Aminoácidos , Secuencia de Bases , ADN Bacteriano/genética , Desoxirribonucleasas de Localización Especificada Tipo I/antagonistas & inhibidores , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo III/genética , Enterococcus faecalis/enzimología , Enterococcus faecalis/genética , Escherichia coli/genética , Marcación de Gen , Genes Bacterianos , Humanos , Resistencia a la Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/enzimología , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Datos de Secuencia Molecular , Plásmidos/genética , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Staphylococcus aureus/aislamiento & purificación
14.
J Bacteriol ; 194(1): 49-60, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22037402

RESUMEN

The genomes of two Bacillus cereus strains (ATCC 10987 and ATCC 14579) have been sequenced. Here, we report the specificities of type II/III restriction (R) and modification (M) enzymes. Found in the ATCC 10987 strain, BceSI is a restriction endonuclease (REase) with the recognition and cut site CGAAG 24-25/27-28. BceSII is an isoschizomer of AvaII (G/GWCC). BceSIII cleaves at ACGGC 12/14. The BceSIII C terminus resembles the catalytic domains of AlwI, MlyI, and Nt.BstNBI. BceSIV is composed of two subunits and cleaves on both sides of GCWGC. BceSIV activity is strongly stimulated by the addition of cofactor ATP or GTP. The large subunit (R1) of BceSIV contains conserved motifs of NTPases and DNA helicases. The R1 subunit has no endonuclease activity by itself; it strongly stimulates REase activity when in complex with the R2 subunit. BceSIV was demonstrated to hydrolyze GTP and ATP in vitro. BceSIV is similar to CglI (GCSGC), and homologs of R1 are found in 11 sequenced bacterial genomes, where they are paired with specificity subunits. In addition, homologs of the BceSIV R1-R2 fusion are found in many sequenced microbial genomes. An orphan methylase, M.BceSV, was found to modify GCNGC, GGCC, CCGG, GGNNCC, and GCGC sites. A ParB-methylase fusion protein appears to nick DNA nonspecifically. The ATCC 14579 genome encodes an active enzyme Bce14579I (GCWGC). BceSIV and Bce14579I belong to the phospholipase D (PLD) family of endonucleases that are widely distributed among Bacteria and Archaea. A survey of type II and III restriction-modification (R-M) system genes is presented from sequenced B. cereus, Bacillus anthracis, and Bacillus thuringiensis strains.


Asunto(s)
Bacillus cereus/metabolismo , Proteínas Bacterianas/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo III/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Bacillus cereus/clasificación , Bacillus cereus/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Secuencia de Bases , Clonación Molecular , ADN Bacteriano/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Desoxirribonucleasas de Localización Especificada Tipo III/genética , Regulación Enzimológica de la Expresión Génica , Genoma Bacteriano , Guanosina Trifosfato/metabolismo , Datos de Secuencia Molecular , Subunidades de Proteína
15.
Proc Natl Acad Sci U S A ; 106(6): 1748-53, 2009 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-19181848

RESUMEN

To cleave DNA, Type III restriction enzymes must communicate the relative orientation of two asymmetric recognition sites over hundreds of base pairs. The basis of this long-distance communication, for which ATP hydrolysis by their helicase domains is required, is poorly understood. Several conflicting DNA-looping mechanisms have been proposed, driven either by active DNA translocation or passive 3D diffusion. Using single-molecule DNA stretching in combination with bulk-solution assays, we provide evidence that looping is both highly unlikely and unnecessary, and that communication is strictly confined to a 1D route. Integrating our results with previous data, a simple communication scheme is concluded based on 1D diffusion along DNA.


Asunto(s)
ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo III/metabolismo , Modelos Químicos , Sitios de Unión , ADN/química , Difusión , Hidrólisis , Conformación de Ácido Nucleico , Pinzas Ópticas , Especificidad por Sustrato
16.
Biochem Soc Trans ; 39(2): 589-94, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21428945

RESUMEN

To cleave DNA, the Type III RM (restriction-modification) enzymes must communicate the relative orientation of two recognition sequences, which may be separated by many thousands of base pairs. This long-range interaction requires ATP hydrolysis by a helicase domain, and both active (DNA translocation) and passive (DNA sliding) modes of motion along DNA have been proposed. Potential roles for ATP binding and hydrolysis by the helicase domains are discussed, with a focus on bipartite ATPases that act as molecular switches.


Asunto(s)
Adenosina Trifosfato/farmacología , ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo III/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo III/fisiología , Movimiento/fisiología , Animales , Sitios de Unión/efectos de los fármacos , Sitios de Unión/genética , ADN/química , Humanos , Modelos Biológicos , Conformación de Ácido Nucleico/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Transporte de Proteínas , Especificidad por Sustrato
17.
Nucleic Acids Res ; 37(12): 3934-45, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19401438

RESUMEN

In the absence of the methyl donor S-adenosyl methionine and under certain permissive reaction conditions, EcoPI shows non-specific endonuclease activity. We show here that the cofactor analogue S-adenosyl homocysteine promotes this promiscuous DNA cleavage. Additionally, an extensive exonuclease-like processing of the DNA is also observed that can even result in digestion of non-specific DNA in trans. We suggest a model for how DNA communication events initiating from non-specific sites, and in particular free DNA ends, could produce the observed cleavage patterns.


Asunto(s)
División del ADN , ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo III/metabolismo , Exodesoxirribonucleasas/metabolismo , S-Adenosilhomocisteína/metabolismo , Adenosina Trifosfato/metabolismo , Dominio Catalítico , ADN/química , Desoxirribonucleasas de Localización Especificada Tipo III/química
19.
Biochem Soc Trans ; 38(2): 404-9, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20298192

RESUMEN

Many biological processes rely on the interaction of proteins with multiple DNA sites separated by thousands of base pairs. These long-range communication events can be driven by both the thermal motions of proteins and DNA, and directional protein motions that are rectified by ATP hydrolysis. The present review describes conflicting experiments that have sought to explain how the ATP-dependent Type III restriction-modification enzymes can cut DNA with two sites in an inverted repeat, but not DNA with two sites in direct repeat. We suggest that an ATPase activity may not automatically indicate a DNA translocase, but can alternatively indicate a molecular switch that triggers communication by thermally driven DNA sliding. The generality of this mechanism to other ATP-dependent communication processes such as mismatch repair is also discussed.


Asunto(s)
ADN/química , ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo III/fisiología , Secuencia de Bases/fisiología , Sitios de Unión , ADN Helicasas/química , ADN Helicasas/metabolismo , ADN Helicasas/fisiología , Desoxirribonucleasas de Localización Especificada Tipo III/química , Desoxirribonucleasas de Localización Especificada Tipo III/metabolismo , Humanos , Modelos Biológicos , Movimiento/fisiología , Conformación de Ácido Nucleico , Unión Proteica/fisiología , Estructura Terciaria de Proteína/fisiología , Especificidad por Sustrato
20.
Nucleic Acids Res ; 33(15): 4788-96, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16120968

RESUMEN

We demonstrate that, like other Type III restriction endonuclease, PstII does not turnover such that a DNA substrate is only fully cleaved at a Res2Mod2-to-site ratio of approximately 1:1. However, unlike other Type III enzymes, the cleavage rate profiles varied with protein concentration: using 5 nM DNA and 25 nM PstII, approximately half of the DNA was cut at a fast rate while the remainder was cut 24 times more slowly; in comparison, with 100 nM PstII cleavage occurs at a single fast rate. The inclusion of the methyl donor S-adenosyl methionine does not alter the rates with 100 nM PstII but with 25 nM PstII the reaction stopped after completion of the initial fast cleavage phase owing to methylation. Concentration-dependent rates were also observed in methylation assays: at 100 nM PstII, a single slow rate was measured while at lower PstII concentrations both fast and slow rates were measured. We propose a model in which the intact Res2Mod2 complex favoured at high PstII concentrations is a fast endonuclease/slow methyltransferase while the various subassemblies which coexist at lower concentrations are fast methyltransferases. A potential role for disassembly in control of restriction activity in vivo is discussed.


Asunto(s)
Proteínas Bacterianas/metabolismo , Metilasas de Modificación del ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo III/metabolismo , ADN/metabolismo , Metilación de ADN , Cinética , Octoxinol/farmacología , Subunidades de Proteína/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA