Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40.348
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Cell Dev Biol ; 39: 145-174, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37843926

RESUMEN

In 1952, Alan Turing published the reaction-diffusion (RD) mathematical framework, laying the foundations of morphogenesis as a self-organized process emerging from physicochemical first principles. Regrettably, this approach has been widely doubted in the field of developmental biology. First, we summarize Turing's line of thoughts to alleviate the misconception that RD is an artificial mathematical construct. Second, we discuss why phenomenological RD models are particularly effective for understanding skin color patterning at the meso/macroscopic scales, without the need to parameterize the profusion of variables at lower scales. More specifically, we discuss how RD models (a) recapitulate the diversity of actual skin patterns, (b) capture the underlying dynamics of cellular interactions, (c) interact with tissue size and shape, (d) can lead to ordered sequential patterning, (e) generate cellular automaton dynamics in lizards and snakes, (f) predict actual patterns beyond their statistical features, and (g) are robust to model variations. Third, we discuss the utility of linear stability analysis and perform numerical simulations to demonstrate how deterministic RD emerges from the underlying chaotic microscopic agents.


Asunto(s)
Modelos Biológicos , Pigmentación de la Piel , Animales , Morfogénesis , Comunicación Celular , Vertebrados , Difusión , Tipificación del Cuerpo
2.
Annu Rev Biochem ; 90: 451-474, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-33556280

RESUMEN

The preparation of extremely thin samples, which are required for high-resolution electron microscopy, poses extreme risk of damaging biological macromolecules due to interactions with the air-water interface. Although the rapid increase in the number of published structures initially gave little indication that this was a problem, the search for methods that substantially mitigate this hazard is now intensifying. The two main approaches under investigation are (a) immobilizing particles onto structure-friendly support films and (b) reducing the length of time during which such interactions may occur. While there is little possibility of outrunning diffusion to the interface, intentional passivation of the interface may slow the process of adsorption and denaturation. In addition, growing attention is being given to gaining more effective control of the thickness of the sample prior to vitrification.


Asunto(s)
Microscopía por Crioelectrón/instrumentación , Microscopía por Crioelectrón/métodos , Complejos Multiproteicos/química , Aire , Carbono/química , Difusión , Grafito/química , Lípidos/química , Complejos Multiproteicos/aislamiento & purificación , Desnaturalización Proteica , Manejo de Especímenes/métodos , Estreptavidina/química , Agua
3.
Cell ; 184(16): 4115-4136, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34358468

RESUMEN

Emerging tissue transformation technologies provide an unprecedented opportunity to investigate system-level molecular and anatomical features in situ. Hydrogel-based methods engineer physicochemical tissue properties to render intact organs optically transparent and size and shape adjustable while preserving biomolecules at their physiological locations. When combined with advanced molecular tools, labeling, and imaging techniques, tissue transformation enables three-dimensional (3D) mapping of molecules, cells, and their interrelationships at increasing speeds and resolutions. In this review, we discuss the basic engineering principles of tissue transformation and labeling techniques as well as their broad applications, current challenges, and future potential.


Asunto(s)
Hidrogeles/química , Ingeniería de Tejidos , Animales , Difusión , Humanos , Hidrogeles/síntesis química , Cinética , Permeabilidad , Transcriptoma/genética
4.
Cell ; 184(14): 3626-3642.e14, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34186018

RESUMEN

All cells fold their genomes, including bacterial cells, where the chromosome is compacted into a domain-organized meshwork called the nucleoid. How compaction and domain organization arise is not fully understood. Here, we describe a method to estimate the average mesh size of the nucleoid in Escherichia coli. Using nucleoid mesh size and DNA concentration estimates, we find that the cytoplasm behaves as a poor solvent for the chromosome when the cell is considered as a simple semidilute polymer solution. Monte Carlo simulations suggest that a poor solvent leads to chromosome compaction and DNA density heterogeneity (i.e., domain formation) at physiological DNA concentration. Fluorescence microscopy reveals that the heterogeneous DNA density negatively correlates with ribosome density within the nucleoid, consistent with cryoelectron tomography data. Drug experiments, together with past observations, suggest the hypothesis that RNAs contribute to the poor solvent effects, connecting chromosome compaction and domain formation to transcription and intracellular organization.


Asunto(s)
Cromosomas Bacterianos/química , Escherichia coli/metabolismo , Conformación de Ácido Nucleico , Solventes/química , Transcripción Genética , Aminoglicósidos/farmacología , Simulación por Computador , ADN Bacteriano/química , Difusión , Escherichia coli/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Tamaño de la Partícula , ARN Bacteriano/metabolismo , Ribosomas/metabolismo , Ribosomas/ultraestructura , Transcripción Genética/efectos de los fármacos
5.
Cell ; 183(6): 1462-1463, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33306951

RESUMEN

Defining the principles underlying the organization of biomolecules within cells is a key challenge of current cell biology research. Persson et al. now identify a powerful layer of regulation that allows cells to decouple diffusion from temperature by modulating their intracellular viscosity. This so-called viscoadaptation is mediated through trehalose and glycogen activities, which alter diffusion dynamics and self-assembly propensity inside the cell globally.


Asunto(s)
Física , Trehalosa , Difusión , Temperatura , Viscosidad
6.
Cell ; 182(6): 1379-1381, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32946779

RESUMEN

Cyclic-3',5'-adenosine monophosphate (cAMP) is an ancient second messenger but organizing signaling selectivity on the nanoscale is poorly understood. Examining transport of a new fluorescent cAMP probe, Bock and coworkers observe "buffered diffusion" and establish phosphodiesterase activity can organize cAMP nanodomains, while Zhao and coworkers find that protein kinase A regulatory subunits assemble liquid droplets to further localize cAMP signaling.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , AMP Cíclico , Adenosina Monofosfato , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Difusión , Transducción de Señal
7.
Cell ; 183(6): 1572-1585.e16, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33157040

RESUMEN

Cellular functioning requires the orchestration of thousands of molecular interactions in time and space. Yet most molecules in a cell move by diffusion, which is sensitive to external factors like temperature. How cells sustain complex, diffusion-based systems across wide temperature ranges is unknown. Here, we uncover a mechanism by which budding yeast modulate viscosity in response to temperature and energy availability. This "viscoadaptation" uses regulated synthesis of glycogen and trehalose to vary the viscosity of the cytosol. Viscoadaptation functions as a stress response and a homeostatic mechanism, allowing cells to maintain invariant diffusion across a 20°C temperature range. Perturbations to viscoadaptation affect solubility and phase separation, suggesting that viscoadaptation may have implications for multiple biophysical processes in the cell. Conditions that lower ATP trigger viscoadaptation, linking energy availability to rate regulation of diffusion-controlled processes. Viscoadaptation reveals viscosity to be a tunable property for regulating diffusion-controlled processes in a changing environment.


Asunto(s)
Metabolismo Energético , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Temperatura , Adaptación Fisiológica , Adenosina Trifosfato/metabolismo , Difusión , Glucógeno/metabolismo , Homeostasis , Modelos Biológicos , Solubilidad , Trehalosa , Viscosidad
8.
Cell ; 179(5): 1098-1111.e23, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31730852

RESUMEN

We report a 100-million atom-scale model of an entire cell organelle, a photosynthetic chromatophore vesicle from a purple bacterium, that reveals the cascade of energy conversion steps culminating in the generation of ATP from sunlight. Molecular dynamics simulations of this vesicle elucidate how the integral membrane complexes influence local curvature to tune photoexcitation of pigments. Brownian dynamics of small molecules within the chromatophore probe the mechanisms of directional charge transport under various pH and salinity conditions. Reproducing phenotypic properties from atomistic details, a kinetic model evinces that low-light adaptations of the bacterium emerge as a spontaneous outcome of optimizing the balance between the chromatophore's structural integrity and robust energy conversion. Parallels are drawn with the more universal mitochondrial bioenergetic machinery, from whence molecular-scale insights into the mechanism of cellular aging are inferred. Together, our integrative method and spectroscopic experiments pave the way to first-principles modeling of whole living cells.


Asunto(s)
Células/metabolismo , Metabolismo Energético , Adaptación Fisiológica/efectos de la radiación , Adenosina Trifosfato/metabolismo , Benzoquinonas/metabolismo , Membrana Celular/metabolismo , Membrana Celular/efectos de la radiación , Células/efectos de la radiación , Cromatóforos/metabolismo , Citocromos c2/metabolismo , Difusión , Transporte de Electrón/efectos de la radiación , Metabolismo Energético/efectos de la radiación , Ambiente , Enlace de Hidrógeno , Cinética , Luz , Simulación de Dinámica Molecular , Fenotipo , Proteínas/metabolismo , Rhodobacter sphaeroides/fisiología , Rhodobacter sphaeroides/efectos de la radiación , Electricidad Estática , Estrés Fisiológico/efectos de la radiación , Temperatura
9.
Cell ; 174(2): 253-255, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-30007414

RESUMEN

The cytoplasm is a highly crowded and complex environment, and the regulation of its physical properties has only recently begun to be revealed. In this issue of Cell, Delarue et al. demonstrate that the control of ribosome concentration through mTORC1 sets limits on the diffusion of large particles and controls phase separation in eukaryotic cells.


Asunto(s)
Células Eucariotas , Ribosomas , Biofisica , Citoplasma , Difusión , Diana Mecanicista del Complejo 1 de la Rapamicina
10.
Cell ; 174(2): 338-349.e20, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29937223

RESUMEN

Macromolecular crowding has a profound impact on reaction rates and the physical properties of the cell interior, but the mechanisms that regulate crowding are poorly understood. We developed genetically encoded multimeric nanoparticles (GEMs) to dissect these mechanisms. GEMs are homomultimeric scaffolds fused to a fluorescent protein that self-assemble into bright, stable particles of defined size and shape. By combining tracking of GEMs with genetic and pharmacological approaches, we discovered that the mTORC1 pathway can modulate the effective diffusion coefficient of particles ≥20 nm in diameter more than 2-fold by tuning ribosome concentration, without any discernable effect on the motion of molecules ≤5 nm. This change in ribosome concentration affected phase separation both in vitro and in vivo. Together, these results establish a role for mTORC1 in controlling both the mesoscale biophysical properties of the cytoplasm and biomolecular condensation.


Asunto(s)
Citoplasma/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Difusión , Células HEK293 , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Nanopartículas/química , Nanopartículas/metabolismo , Tamaño de la Partícula , Plásmidos/genética , Plásmidos/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Reología , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/antagonistas & inhibidores , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo
11.
Annu Rev Biochem ; 86: 333-356, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28654324

RESUMEN

Many biochemical systems are spatially heterogeneous and exhibit nonlinear behaviors, such as state switching in response to small changes in the local concentration of diffusible molecules. Systems as varied as blood clotting, intracellular calcium signaling, and tissue inflammation are all heavily influenced by the balance of rates of reaction and mass transport phenomena including flow and diffusion. Transport of signaling molecules is also affected by geometry and chemoselective confinement via matrix binding. In this review, we use a phenomenon referred to as patchy switching to illustrate the interplay of nonlinearities, transport phenomena, and spatial effects. Patchy switching describes a change in the state of a network when the local concentration of a diffusible molecule surpasses a critical threshold. Using patchy switching as an example, we describe conceptual tools from nonlinear dynamics and chemical engineering that make testable predictions and provide a unifying description of the myriad possible experimental observations. We describe experimental microfluidic and biochemical tools emerging to test conceptual predictions by controlling transport phenomena and spatial distribution of diffusible signals, and we highlight the unmet need for in vivo tools.


Asunto(s)
Adenocarcinoma/metabolismo , Redes Reguladoras de Genes , Neoplasias Pulmonares/metabolismo , Redes y Vías Metabólicas/genética , Esclerosis Múltiple/metabolismo , Dinámicas no Lineales , Osteoporosis/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Transporte Biológico , Difusión , Humanos , Dispositivos Laboratorio en un Chip , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Microfluídica/instrumentación , Microfluídica/métodos , Esclerosis Múltiple/genética , Esclerosis Múltiple/patología , Osteoporosis/genética , Osteoporosis/patología , Transducción de Señal
12.
Cell ; 165(1): 75-87, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-27015308

RESUMEN

Transcription factor (TF) binding to DNA is fundamental for gene regulation. However, it remains unknown how the dynamics of TF-DNA interactions change during cell-fate determination in vivo. Here, we use photo-activatable FCS to quantify TF-DNA binding in single cells of developing mouse embryos. In blastocysts, the TFs Oct4 and Sox2, which control pluripotency, bind DNA more stably in pluripotent than in extraembryonic cells. By contrast, in the four-cell embryo, Sox2 engages in more long-lived interactions than does Oct4. Sox2 long-lived binding varies between blastomeres and is regulated by H3R26 methylation. Live-cell tracking demonstrates that those blastomeres with more long-lived binding contribute more pluripotent progeny, and reducing H3R26 methylation decreases long-lived binding, Sox2 target expression, and pluripotent cell numbers. Therefore, Sox2-DNA binding predicts mammalian cell fate as early as the four-cell stage. More generally, we reveal the dynamic repartitioning of TFs between DNA sites driven by physiological epigenetic changes. VIDEO ABSTRACT.


Asunto(s)
Factores de Transcripción SOXB1/metabolismo , Animales , Blastocisto/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , ADN/metabolismo , Difusión , Regulación hacia Abajo , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/análisis , Histonas/metabolismo , Cinética , Metilación , Ratones , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Espectrometría de Fluorescencia
13.
Cell ; 166(4): 920-934, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27499022

RESUMEN

Understanding how membrane nanoscale organization controls transmembrane receptors signaling activity remains a challenge. We studied interferon-γ receptor (IFN-γR) signaling in fibroblasts from homozygous patients with a T168N mutation in IFNGR2. By adding a neo-N-glycan on IFN-γR2 subunit, this mutation blocks IFN-γ activity by unknown mechanisms. We show that the lateral diffusion of IFN-γR2 is confined by sphingolipid/cholesterol nanodomains. In contrast, the IFN-γR2 T168N mutant diffusion is confined by distinct actin nanodomains where conformational changes required for Janus-activated tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) activation by IFN-γ could not occur. Removing IFN-γR2 T168N-bound galectins restored lateral diffusion in lipid nanodomains and JAK/STAT signaling in patient cells, whereas adding galectins impaired these processes in control cells. These experiments prove the critical role of dynamic receptor interactions with actin and lipid nanodomains and reveal a new function for receptor glycosylation and galectins. Our study establishes the physiological relevance of membrane nanodomains in the control of transmembrane receptor signaling in vivo. VIDEO ABSTRACT.


Asunto(s)
Fibroblastos/metabolismo , Mutación Missense , Receptores de Interferón/genética , Receptores de Interferón/metabolismo , Transducción de Señal , Actinas/química , Actinas/metabolismo , Animales , Células COS , Membrana Celular/química , Membrana Celular/metabolismo , Chlorocebus aethiops , Difusión , Endocitosis , Activación Enzimática , Glicosilación , Humanos , Interferón gamma/metabolismo , Infecciones por Mycobacterium/genética , Infecciones por Mycobacterium/inmunología , Receptores de Interferón/química
14.
Cell ; 162(1): 96-107, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26140593

RESUMEN

Argonaute proteins play a central role in mediating post-transcriptional gene regulation by microRNAs (miRNAs). Argonautes use the nucleotide sequences in miRNAs as guides for identifying target messenger RNAs for repression. Here, we used single-molecule FRET to directly visualize how human Argonaute-2 (Ago2) searches for and identifies target sites in RNAs complementary to its miRNA guide. Our results suggest that Ago2 initially scans for target sites with complementarity to nucleotides 2-4 of the miRNA. This initial transient interaction propagates into a stable association when target complementarity extends to nucleotides 2-8. This stepwise recognition process is coupled to lateral diffusion of Ago2 along the target RNA, which promotes the target search by enhancing the retention of Ago2 on the RNA. The combined results reveal the mechanisms that Argonaute likely uses to efficiently identify miRNA target sites within the vast and dynamic agglomeration of RNA molecules in the living cell.


Asunto(s)
Proteínas Argonautas/metabolismo , MicroARNs/metabolismo , Animales , Proteínas Argonautas/química , Sitios de Unión , Difusión , Transferencia Resonante de Energía de Fluorescencia , Humanos , Ratones , Modelos Biológicos , Termodinámica
15.
Cell ; 163(4): 907-19, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26544939

RESUMEN

Steroid hormones are a large family of cholesterol derivatives regulating development and physiology in both the animal and plant kingdoms, but little is known concerning mechanisms of their secretion from steroidogenic tissues. Here, we present evidence that in Drosophila, endocrine release of the steroid hormone ecdysone is mediated through a regulated vesicular trafficking mechanism. Inhibition of calcium signaling in the steroidogenic prothoracic gland results in the accumulation of unreleased ecdysone, and the knockdown of calcium-mediated vesicle exocytosis components in the gland caused developmental defects due to deficiency of ecdysone. Accumulation of synaptotagmin-labeled vesicles in the gland is observed when calcium signaling is disrupted, and these vesicles contain an ABC transporter that functions as an ecdysone pump to fill vesicles. We propose that trafficking of steroid hormones out of endocrine cells is not always through a simple diffusion mechanism as presently thought, but instead can involve a regulated vesicle-mediated release process.


Asunto(s)
Drosophila melanogaster/metabolismo , Ecdisona/metabolismo , Vesículas Secretoras/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Difusión , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/crecimiento & desarrollo , Glándulas Endocrinas/metabolismo , Exocitosis , Técnicas de Silenciamiento del Gen , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Larva/citología , Larva/metabolismo , Sinaptotagminas/metabolismo
16.
Nature ; 629(8014): 1062-1068, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720082

RESUMEN

Most chemistry and biology occurs in solution, in which conformational dynamics and complexation underlie behaviour and function. Single-molecule techniques1 are uniquely suited to resolving molecular diversity and new label-free approaches are reshaping the power of single-molecule measurements. A label-free single-molecule method2-16 capable of revealing details of molecular conformation in solution17,18 would allow a new microscopic perspective of unprecedented detail. Here we use the enhanced light-molecule interactions in high-finesse fibre-based Fabry-Pérot microcavities19-21 to detect individual biomolecules as small as 1.2 kDa, a ten-amino-acid peptide, with signal-to-noise ratios (SNRs) >100, even as the molecules are unlabelled and freely diffusing in solution. Our method delivers 2D intensity and temporal profiles, enabling the distinction of subpopulations in mixed samples. Notably, we observe a linear relationship between passage time and molecular radius, unlocking the potential to gather crucial information about diffusion and solution-phase conformation. Furthermore, mixtures of biomolecule isomers of the same molecular weight and composition but different conformation can also be resolved. Detection is based on the creation of a new molecular velocity filter window and a dynamic thermal priming mechanism that make use of the interplay between optical and thermal dynamics22,23 and Pound-Drever-Hall (PDH) cavity locking24 to reveal molecular motion even while suppressing environmental noise. New in vitro ways of revealing molecular conformation, diversity and dynamics can find broad potential for applications in the life and chemical sciences.


Asunto(s)
Péptidos , Imagen Individual de Molécula , Difusión , Isomerismo , Luz , Péptidos/análisis , Péptidos/química , Péptidos/efectos de la radiación , Relación Señal-Ruido , Imagen Individual de Molécula/métodos , Soluciones , Conformación Proteica , Peso Molecular , Movimiento (Física)
17.
Nature ; 626(7998): 435-442, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38109936

RESUMEN

Many peptide hormones form an α-helix on binding their receptors1-4, and sensitive methods for their detection could contribute to better clinical management of disease5. De novo protein design can now generate binders with high affinity and specificity to structured proteins6,7. However, the design of interactions between proteins and short peptides with helical propensity is an unmet challenge. Here we describe parametric generation and deep learning-based methods for designing proteins to address this challenge. We show that by extending RFdiffusion8 to enable binder design to flexible targets, and to refining input structure models by successive noising and denoising (partial diffusion), picomolar-affinity binders can be generated to helical peptide targets by either refining designs generated with other methods, or completely de novo starting from random noise distributions without any subsequent experimental optimization. The RFdiffusion designs enable the enrichment and subsequent detection of parathyroid hormone and glucagon by mass spectrometry, and the construction of bioluminescence-based protein biosensors. The ability to design binders to conformationally variable targets, and to optimize by partial diffusion both natural and designed proteins, should be broadly useful.


Asunto(s)
Diseño Asistido por Computadora , Aprendizaje Profundo , Péptidos , Proteínas , Técnicas Biosensibles , Difusión , Glucagón/química , Glucagón/metabolismo , Mediciones Luminiscentes , Espectrometría de Masas , Hormona Paratiroidea/química , Hormona Paratiroidea/metabolismo , Péptidos/química , Péptidos/metabolismo , Estructura Secundaria de Proteína , Proteínas/química , Proteínas/metabolismo , Especificidad por Sustrato , Modelos Moleculares
18.
Nature ; 626(7997): 169-176, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38267577

RESUMEN

To coordinate cellular physiology, eukaryotic cells rely on the rapid exchange of molecules at specialized organelle-organelle contact sites1,2. Endoplasmic reticulum-mitochondrial contact sites (ERMCSs) are particularly vital communication hubs, playing key roles in the exchange of signalling molecules, lipids and metabolites3,4. ERMCSs are maintained by interactions between complementary tethering molecules on the surface of each organelle5,6. However, due to the extreme sensitivity of these membrane interfaces to experimental perturbation7,8, a clear understanding of their nanoscale organization and regulation is still lacking. Here we combine three-dimensional electron microscopy with high-speed molecular tracking of a model organelle tether, Vesicle-associated membrane protein (VAMP)-associated protein B (VAPB), to map the structure and diffusion landscape of ERMCSs. We uncovered dynamic subdomains within VAPB contact sites that correlate with ER membrane curvature and undergo rapid remodelling. We show that VAPB molecules enter and leave ERMCSs within seconds, despite the contact site itself remaining stable over much longer time scales. This metastability allows ERMCSs to remodel with changes in the physiological environment to accommodate metabolic needs of the cell. An amyotrophic lateral sclerosis-associated mutation in VAPB perturbs these subdomains, likely impairing their remodelling capacity and resulting in impaired interorganelle communication. These results establish high-speed single-molecule imaging as a new tool for mapping the structure of contact site interfaces and reveal that the diffusion landscape of VAPB at contact sites is a crucial component of ERMCS homeostasis.


Asunto(s)
Retículo Endoplásmico , Mitocondrias , Membranas Mitocondriales , Movimiento , Proteínas de Transporte Vesicular , Humanos , Esclerosis Amiotrófica Lateral/genética , Retículo Endoplásmico/química , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Mitocondrias/química , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Transducción de Señal , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/ultraestructura , Microscopía Electrónica , Imagenología Tridimensional , Sitios de Unión , Difusión , Factores de Tiempo , Mutación , Homeostasis
19.
Nature ; 627(8005): 905-914, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448589

RESUMEN

A string of nucleotides confined within a protein capsid contains all the instructions necessary to make a functional virus particle, a virion. Although the structure of the protein capsid is known for many virus species1,2, the three-dimensional organization of viral genomes has mostly eluded experimental probes3,4. Here we report all-atom structural models of an HK97 virion5, including its entire 39,732 base pair genome, obtained through multiresolution simulations. Mimicking the action of a packaging motor6, the genome was gradually loaded into the capsid. The structure of the packaged capsid was then refined through simulations of increasing resolution, which produced a 26 million atom model of the complete virion, including water and ions confined within the capsid. DNA packaging occurs through a loop extrusion mechanism7 that produces globally different configurations of the packaged genome and gives each viral particle individual traits. Multiple microsecond-long all-atom simulations characterized the effect of the packaged genome on capsid structure, internal pressure, electrostatics and diffusion of water, ions and DNA, and revealed the structural imprints of the capsid onto the genome. Our approach can be generalized to obtain complete all-atom structural models of other virus species, thereby potentially revealing new drug targets at the genome-capsid interface.


Asunto(s)
Bacteriófagos , Cápside , ADN Viral , Genoma Viral , Virión , Ensamble de Virus , Bacteriófagos/química , Bacteriófagos/genética , Bacteriófagos/crecimiento & desarrollo , Bacteriófagos/metabolismo , Cápside/química , Cápside/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Difusión , ADN Viral/química , ADN Viral/genética , ADN Viral/metabolismo , Iones/análisis , Iones/química , Iones/metabolismo , Electricidad Estática , Virión/química , Virión/genética , Virión/metabolismo , Ensamble de Virus/genética , Agua/análisis , Agua/química , Agua/metabolismo
20.
Nature ; 626(8000): 836-842, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38267582

RESUMEN

HIV can infect non-dividing cells because the viral capsid can overcome the selective barrier of the nuclear pore complex and deliver the genome directly into the nucleus1,2. Remarkably, the intact HIV capsid is more than 1,000 times larger than the size limit prescribed by the diffusion barrier of the nuclear pore3. This barrier in the central channel of the nuclear pore is composed of intrinsically disordered nucleoporin domains enriched in phenylalanine-glycine (FG) dipeptides. Through multivalent FG interactions, cellular karyopherins and their bound cargoes solubilize in this phase to drive nucleocytoplasmic transport4. By performing an in vitro dissection of the nuclear pore complex, we show that a pocket on the surface of the HIV capsid similarly interacts with FG motifs from multiple nucleoporins and that this interaction licences capsids to penetrate FG-nucleoporin condensates. This karyopherin mimicry model addresses a key conceptual challenge for the role of the HIV capsid in nuclear entry and offers an explanation as to how an exogenous entity much larger than any known cellular cargo may be able to non-destructively breach the nuclear envelope.


Asunto(s)
Proteínas de la Cápside , Glicina , VIH , Carioferinas , Imitación Molecular , Proteínas de Complejo Poro Nuclear , Poro Nuclear , Fenilalanina , Humanos , Transporte Activo de Núcleo Celular , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Difusión , Dipéptidos/química , Dipéptidos/metabolismo , Glicina/metabolismo , VIH/química , VIH/metabolismo , Técnicas In Vitro , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Carioferinas/metabolismo , Poro Nuclear/química , Poro Nuclear/metabolismo , Poro Nuclear/virología , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/metabolismo , Permeabilidad , Fenilalanina/metabolismo , Solubilidad , Internalización del Virus , Cápside/química , Cápside/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA