Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Cell ; 147(1): 209-22, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21962517

RESUMEN

The GTPase dynamin catalyzes membrane fission by forming a collar around the necks of clathrin-coated pits, but the specific structural interactions and conformational changes that drive this process remain a mystery. We present the GMPPCP-bound structures of the truncated human dynamin 1 helical polymer at 12.2 Å and a fusion protein, GG, linking human dynamin 1's catalytic G domain to its GTPase effector domain (GED) at 2.2 Å. The structures reveal the position and connectivity of dynamin fragments in the assembled structure, showing that G domain dimers only form between tetramers in sequential rungs of the dynamin helix. Using chemical crosslinking, we demonstrate that dynamin tetramers are made of two dimers, in which the G domain of one molecule interacts in trans with the GED of another. Structural comparison of GG(GMPPCP) to the GG transition-state complex identifies a hydrolysis-dependent powerstroke that may play a role in membrane-remodeling events necessary for fission.


Asunto(s)
Dinamina I/química , Dinamina I/metabolismo , Cristalografía por Rayos X , Humanos , Hidrólisis , Modelos Moleculares , Estructura Terciaria de Proteína
2.
Nature ; 560(7717): 258-262, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30069048

RESUMEN

Membrane fission is a fundamental process in the regulation and remodelling of cell membranes. Dynamin, a large GTPase, mediates membrane fission by assembling around, constricting and cleaving the necks of budding vesicles1. Here we report a 3.75 Å resolution cryo-electron microscopy structure of the membrane-associated helical polymer of human dynamin-1 in the GMPPCP-bound state. The structure defines the helical symmetry of the dynamin polymer and the positions of its oligomeric interfaces, which were validated by cell-based endocytosis assays. Compared to the lipid-free tetramer form2, membrane-associated dynamin binds to the lipid bilayer with its pleckstrin homology domain (PHD) and self-assembles across the helical rungs via its guanine nucleotide-binding (GTPase) domain3. Notably, interaction with the membrane and helical assembly are accommodated by a severely bent bundle signalling element (BSE), which connects the GTPase domain to the rest of the protein. The BSE conformation is asymmetric across the inter-rung GTPase interface, and is unique compared to all known nucleotide-bound states of dynamin. The structure suggests that the BSE bends as a result of forces generated from the GTPase dimer interaction that are transferred across the stalk to the PHD and lipid membrane. Mutations that disrupted the BSE kink impaired endocytosis. We also report a 10.1 Å resolution cryo-electron microscopy map of a super-constricted dynamin polymer showing localized conformational changes at the BSE and GTPase domains, induced by GTP hydrolysis, that drive membrane constriction. Together, our results provide a structural basis for the mechanism of action of dynamin on the lipid membrane.


Asunto(s)
Biopolímeros/química , Biopolímeros/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Microscopía por Crioelectrón , Dinamina I/metabolismo , Dinamina I/ultraestructura , Biopolímeros/genética , Membrana Celular/química , Dinamina I/química , Dinamina I/genética , Endocitosis/genética , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestructura , Mutación , Dominios Proteicos , Multimerización de Proteína
3.
Nature ; 524(7563): 109-113, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26123023

RESUMEN

Fusion and fission drive all vesicular transport. Although topologically opposite, these reactions pass through the same hemi-fusion/fission intermediate, characterized by a 'stalk' in which only the outer membrane monolayers of the two compartments have merged to form a localized non-bilayer connection. Formation of the hemi-fission intermediate requires energy input from proteins catalysing membrane remodelling; however, the relationship between protein conformational rearrangements and hemi-fusion/fission remains obscure. Here we analysed how the GTPase cycle of human dynamin 1, the prototypical membrane fission catalyst, is directly coupled to membrane remodelling. We used intramolecular chemical crosslinking to stabilize dynamin in its GDP·AlF4(-)-bound transition state. In the absence of GTP this conformer produced stable hemi-fission, but failed to progress to complete fission, even in the presence of GTP. Further analysis revealed that the pleckstrin homology domain (PHD) locked in its membrane-inserted state facilitated hemi-fission. A second mode of dynamin activity, fuelled by GTP hydrolysis, couples dynamin disassembly with cooperative diminishing of the PHD wedging, thus destabilizing the hemi-fission intermediate to complete fission. Molecular simulations corroborate the bimodal character of dynamin action and indicate radial and axial forces as dominant, although not independent, drivers of hemi-fission and fission transformations, respectively. Mirrored in the fusion reaction, the force bimodality might constitute a general paradigm for leakage-free membrane remodelling.


Asunto(s)
Membrana Celular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Dinamina I/metabolismo , Biocatálisis , Proteínas Sanguíneas/química , Dinamina I/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Fusión de Membrana , Modelos Moleculares , Fosfoproteínas/química , Conformación Proteica
4.
Nature ; 477(7366): 561-6, 2011 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-21927001

RESUMEN

Dynamin-related proteins (DRPs) are multi-domain GTPases that function via oligomerization and GTP-dependent conformational changes to play central roles in regulating membrane structure across phylogenetic kingdoms. How DRPs harness self-assembly and GTP-dependent conformational changes to remodel membranes is not understood. Here we present the crystal structure of an assembly-deficient mammalian endocytic DRP, dynamin 1, lacking the proline-rich domain, in its nucleotide-free state. The dynamin 1 monomer is an extended structure with the GTPase domain and bundle signalling element positioned on top of a long helical stalk with the pleckstrin homology domain flexibly attached on its opposing end. Dynamin 1 dimer and higher order dimer multimers form via interfaces located in the stalk. Analysis of these interfaces provides insight into DRP family member specificity and regulation and provides a framework for understanding the biogenesis of higher order DRP structures and the mechanism of DRP-mediated membrane scission events.


Asunto(s)
Dinamina I/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Cristalización , Cristalografía por Rayos X , Dinamina I/genética , Dinamina I/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Nucleótidos , Unión Proteica , Conformación Proteica , Multimerización de Proteína/genética , Estructura Terciaria de Proteína/genética , Ratas
5.
Nature ; 477(7366): 556-60, 2011 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-21927000

RESUMEN

Dynamin is a mechanochemical GTPase that oligomerizes around the neck of clathrin-coated pits and catalyses vesicle scission in a GTP-hydrolysis-dependent manner. The molecular details of oligomerization and the mechanism of the mechanochemical coupling are currently unknown. Here we present the crystal structure of human dynamin 1 in the nucleotide-free state with a four-domain architecture comprising the GTPase domain, the bundle signalling element, the stalk and the pleckstrin homology domain. Dynamin 1 oligomerized in the crystals via the stalks, which assemble in a criss-cross fashion. The stalks further interact via conserved surfaces with the pleckstrin homology domain and the bundle signalling element of the neighbouring dynamin molecule. This intricate domain interaction rationalizes a number of disease-related mutations in dynamin 2 and suggests a structural model for the mechanochemical coupling that reconciles previous models of dynamin function.


Asunto(s)
Dinamina I/química , Nucleótidos , Cristalografía por Rayos X , Dinamina I/metabolismo , Dinamina II/genética , Dinamina II/metabolismo , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Hidrólisis , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica , Estructura Terciaria de Proteína , Transducción de Señal , Transferrina/metabolismo
6.
FASEB J ; 29(7): 2872-82, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25808536

RESUMEN

The dynamin family of GTPases has been implicated as novel regulators of the acrosome reaction, a unique exocytotic event that is essential for fertilization. Dynamin activity during the acrosome reaction is accompanied by phosphorylation of key serine residues. We now tested the hypothesis that glycogen synthase kinase 3 (GSK3) is the protein kinase responsible for dynamin phosphorylation at these phosphosites in mouse spermatozoa. Pharmacologic inhibition of GSK3 in mature mouse spermatozoa (CHIR99021: IC50 = 6.7 nM) led to a significant reduction in dynamin phosphorylation (10.3% vs. 27.3%; P < 0.001), acrosomal exocytosis (9.7% vs. 25.7%; P < 0.01), and in vitro fertilization (53% vs. 100%; P < 0.01). GSK3 was shown to be present in developing germ cells where it colocalized with dynamin in the peri-acrosomal domain. However, additional GSK3 was acquired by maturing mouse spermatozoa within the male reproductive tract, via a novel mechanism involving direct interaction of sperm heads with extracellular structures known as epididymal dense bodies. These data reveal a novel mode for the cellular acquisition of a protein kinase and identify a key role for GSK3 in the regulation of sperm maturation and acrosomal exocytosis.


Asunto(s)
Dinamina I/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Espermatozoides/metabolismo , Reacción Acrosómica/efectos de los fármacos , Reacción Acrosómica/fisiología , Animales , Quinasa 5 Dependiente de la Ciclina/metabolismo , Dinamina I/química , Inhibidores Enzimáticos/farmacología , Epidídimo/metabolismo , Epidídimo/ultraestructura , Exocitosis/fisiología , Femenino , Fertilización In Vitro , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Masculino , Ratones , Microscopía Inmunoelectrónica , Fosforilación , Progesterona/farmacología , Cabeza del Espermatozoide/metabolismo , Maduración del Esperma/efectos de los fármacos , Maduración del Esperma/fisiología , Espermatozoides/efectos de los fármacos , Espermatozoides/ultraestructura
7.
Nature ; 465(7297): 435-40, 2010 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-20428113

RESUMEN

Dynamin is an atypical GTPase that catalyses membrane fission during clathrin-mediated endocytosis. The mechanisms of dynamin's basal and assembly-stimulated GTP hydrolysis are unknown, though both are indirectly influenced by the GTPase effector domain (GED). Here we present the 2.0 A resolution crystal structure of a human dynamin 1-derived minimal GTPase-GED fusion protein, which was dimeric in the presence of the transition state mimic GDP.AlF(4)(-).The structure reveals dynamin's catalytic machinery and explains how assembly-stimulated GTP hydrolysis is achieved through G domain dimerization. A sodium ion present in the active site suggests that dynamin uses a cation to compensate for the developing negative charge in the transition state in the absence of an arginine finger. Structural comparison to the rat dynamin G domain reveals key conformational changes that promote G domain dimerization and stimulated hydrolysis. The structure of the GTPase-GED fusion protein dimer provides insight into the mechanisms underlying dynamin-catalysed membrane fission.


Asunto(s)
Dinamina I/química , Dinamina I/metabolismo , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Multimerización de Proteína , Compuestos de Aluminio/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Dominio Catalítico/genética , Secuencia Conservada , Cristalografía por Rayos X , Dinamina I/genética , Activación Enzimática , Fluoruros/metabolismo , GTP Fosfohidrolasas/genética , Guanosina Difosfato/análogos & derivados , Guanosina Difosfato/metabolismo , Humanos , Hidrólisis , Modelos Moleculares , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Sodio/metabolismo
8.
Proc Natl Acad Sci U S A ; 110(15): E1342-51, 2013 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-23530241

RESUMEN

Mitochondrial fission is mediated by the dynamin-related GTPases Dnm1/Drp1 (yeast/mammals), which form spirals around constricted sites on mitochondria. Additional membrane-associated adaptor proteins (Fis1, Mdv1, Mff, and MiDs) are required to recruit these GTPases from the cytoplasm to the mitochondrial surface. Whether these adaptors participate in both GTPase recruitment and membrane scission is not known. Here we use a yeast strain lacking all fission proteins to identify the minimal combinations of GTPases and adaptors sufficient for mitochondrial fission. Although Fis1 is dispensable for fission, membrane-anchored Mdv1, Mff, or MiDs paired individually with their respective GTPases are sufficient to divide mitochondria. In addition to their role in Drp1 membrane recruitment, MiDs coassemble with Drp1 in vitro. The resulting heteropolymer adopts a dramatically different structure with a narrower diameter than Drp1 homopolymers assembled in isolation. This result demonstrates that an adaptor protein alters the architecture of a mitochondrial dynamin GTPase polymer in a manner that could facilitate membrane constriction and severing activity.


Asunto(s)
Dinamina I/química , Dinaminas/química , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Saccharomyces cerevisiae/metabolismo , División Celular , GTP Fosfohidrolasas/química , Proteínas Fluorescentes Verdes/química , Guanosina Trifosfato/química , Humanos , Hidrólisis , Proteínas de la Membrana/química , Proteínas Mitocondriales/química , Mitofagia , Polímeros/química , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas de Saccharomyces cerevisiae/química
9.
Biochim Biophys Acta ; 1833(1): 110-21, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23103755

RESUMEN

Phosphorylation and nitration of protein tyrosine residues are thought to play a role in signaling pathways at the nerve terminal and to affect functional properties of proteins involved in the synaptic vesicle (SV) exo-endocytotic cycle. We previously demonstrated that the tyrosine residues in the C-terminal domain of the SV protein Synaptophysin (SYP) are targets of peroxynitrite (PN). Here, we have characterized the association between SYP and c-src tyrosine kinase demonstrating that phosphorylation of Tyr(273) in the C-terminal domain of SYP is crucial in mediating SYP binding to and activation of c-src. SYP forms a complex with Dynamin I (DynI), a GTPase required for SV endocytosis, which may be regulated by tyrosine phosphorylation of SYP. We here report that, in rat brain synaptosomes treated with PN, the formation of SYP/DynI complex was impaired. Noteworthy, we found that DynI was also modified by PN. DynI tyrosine phosphorylation was down-regulated in a dose-dependent manner, while DynI tyrosine nitration increased. Using mass spectrometry analysis, we identified Tyr(354) as one nitration site in DynI. In addition, we tested DynI self-assembly and GTPase activity, which are enhanced by c-src-dependent tyrosine phosphorylation of DynI, and found that both were inhibited by PN. Our results suggest that the site-specific tyrosine residue modifications may modulate the association properties of SV proteins and serve as a regulator of DynI function via control of self-assembly, thus influencing the physiology of the exo-endocytotic cycle.


Asunto(s)
Dinamina I/metabolismo , Dinamina I/fisiología , Vesículas Sinápticas/metabolismo , Sinaptofisina/metabolismo , Sinaptofisina/fisiología , Secuencia de Aminoácidos , Animales , Dinamina I/química , Dinamina I/genética , Endocitosis/genética , Endocitosis/fisiología , Exocitosis/genética , Exocitosis/fisiología , Técnicas In Vitro , Datos de Secuencia Molecular , Nitratos/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Ratas , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Vesículas Sinápticas/fisiología , Sinaptofisina/química , Sinaptofisina/genética , Tirosina/metabolismo , Tirosina/fisiología
10.
J Cell Sci ; 124(Pt 1): 133-43, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21172823

RESUMEN

Clathrin-mediated vesicle recycling in synapses is maintained by a unique set of endocytic proteins and interactions. We show that endophilin localizes in the vesicle pool at rest and in spirals at the necks of clathrin-coated pits (CCPs) during activity in lamprey synapses. Endophilin and dynamin colocalize at the base of the clathrin coat. Protein spirals composed of these proteins on lipid tubes in vitro have a pitch similar to the one observed at necks of CCPs in living synapses, and lipid tubules are thinner than those formed by dynamin alone. Tubulation efficiency and the amount of dynamin recruited to lipid tubes are dramatically increased in the presence of endophilin. Blocking the interactions of the endophilin SH3 domain in situ reduces dynamin accumulation at the neck and prevents the formation of elongated necks observed in the presence of GTPγS. Therefore, endophilin recruits dynamin to a restricted part of the CCP neck, forming a complex, which promotes budding of new synaptic vesicles.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Vesículas Cubiertas por Clatrina/metabolismo , Dinamina I/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Vesículas Cubiertas por Clatrina/química , Vesículas Cubiertas por Clatrina/genética , Dinamina I/química , Dinamina I/genética , Humanos , Lampreas , Unión Proteica , Estructura Terciaria de Proteína , Sinapsis/química , Sinapsis/genética , Sinapsis/metabolismo , Vesículas Sinápticas/química , Vesículas Sinápticas/genética
11.
Eur J Med Chem ; 247: 115001, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36577213

RESUMEN

Wiskostatin (1-(3,6-dibromo-9H-carbazol-9-yl)-3-(dimethylamino)propan-2-ol) (1) is a carbazole-based compound reported as a specific and relatively potent inhibitor of the N-WASP actin remodelling complex (S-isomer EC50 = 4.35 µM; R-isomer EC50 = 3.44 µM). An NMR solution structure showed that wiskostatin interacts with a cleft in the regulatory GTPase binding domain of N-WASP. However, numerous studies have reported wiskostatin's actions on membrane transport and cytokinesis that are independent of the N-WASP-Arp2/3 complex pathway, but offer limited alternative explanation. The large GTPase, dynamin has established functional roles in these pathways. This study reveals that wiskostatin and its analogues, as well as other carbazole-based compounds, are inhibitors of helical dynamin GTPase activity and endocytosis. We characterise the effects of wiskostatin on in vitro dynamin GTPase activity, in-cell endocytosis, and determine the importance of wiskostatin functional groups on these activities through design and synthesis of libraries of wiskostatin analogues. We also examine whether other carbazole-based scaffolds frequently used in research or the clinic also modulate dynamin and endocytosis. Understanding off-targets for compounds used as research tools is important to be able to confidently interpret their action on biological systems, particularly when the target and off-targets affect overlapping mechanisms (e.g. cytokinesis and endocytosis). Herein we demonstrate that wiskostatin is a dynamin inhibitor (IC50 20.7 ± 1.2 µM) and a potent inhibitor of clathrin mediated endocytosis (IC50 = 6.9 ± 0.3 µM). Synthesis of wiskostatin analogues gave rise to 1-(9H-carbazol-9-yl)-3-((4-methylbenzyl)amino)propan-2-ol (35) and 1-(9H-carbazol-9-yl)-3-((4-chlorobenzyl)amino)propan-2-ol (43) as potent dynamin inhibitors (IC50 = 1.0 ± 0.2 µM), and (S)-1-(3,6-dibromo-9H-carbazol-9-yl)-3-(dimethylamino)propan-2-ol (8a) and (R)-1-(3,6-dibromo-9H-carbazol-9-yl)-3-(dimethylamino)propan-2-ol (8b) that are amongst the most potent inhibitors of clathrin mediated endocytosis yet reported (IC50 = 2.3 ± 3.3 and 2.1 ± 1.7 µM, respectively).


Asunto(s)
Dinamina I , Dinaminas , Dinamina I/química , Dinamina I/metabolismo , Dinaminas/farmacología , Carbazoles/farmacología , GTP Fosfohidrolasas , Actinas , Clatrina/metabolismo , Clatrina/farmacología , Endocitosis
12.
Biochemistry ; 51(34): 6786-96, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22857010

RESUMEN

Dynamin 1 is thought to mediate synaptic transmission through interactions with multiple endocytic accessory proteins in a phosphorylation-dependent manner. Previously, we have shown that DYRK1A, a chromosome 21-encoded kinase implicated in the mental retardation of Down syndrome, phosphorylates primarily serine 857 (S857) in the proline-rich domain, found only in 1xa, one of the alternative C-terminal splicing isoforms of dynamin 1. Dynamin 1xa and 1xb isoforms are able to assemble into heterologous complexes and are coregulated by DYRK1A phosphorylation in binding to amphiphysin in vitro. To help in assessing the physiological significance of S857 phosphorylation, we developed a semiquantitative method for measuring the cellular level of phospho-S857 (pS857). Dynamin 1xa is highly phosphorylated at S857 in resting hippocampal neurons and in a hippocampal cell line, with >60% of all endogenous protein phosphorylated at this residue. In the hippocampus, the level of pS857 is dynamically controlled by synaptic stimulations with the involvement of Ca(2+)/calcineurin and AMPA/kainate receptors. Immunofluorescence staining shows that pS857 is found in the soma and throughout the entire length of apical dendrites in resting pyramidal neurons. Neuronal stimulation in the Schaffer collateral pathway promotes pS857 dephosphorylation in distal areas of apical dendrites, the region forming synapses with the impinging axons of Schaffer collateral. In summary, our results support the conclusion that S857 phosphorylation is a physiological event and its level is modulated by neuronal activity in nerve terminals.


Asunto(s)
Dinamina I/química , Dinamina I/metabolismo , Serina/metabolismo , Secuencias de Aminoácidos , Animales , Dinamina I/genética , Hipocampo/citología , Hipocampo/metabolismo , Ratones , Neuronas/metabolismo , Fosforilación , Serina/genética
13.
J Biol Chem ; 286(35): 30295-30303, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21730063

RESUMEN

Depolarization of nerve terminals stimulates rapid dephosphorylation of two isoforms of dynamin I (dynI), mediated by the calcium-dependent phosphatase calcineurin (CaN). Dephosphorylation at the major phosphorylation sites Ser-774/778 promotes a dynI-syndapin I interaction for a specific mode of synaptic vesicle endocytosis called activity-dependent bulk endocytosis (ADBE). DynI has two main splice variants at its extreme C terminus, long or short (dynIxa and dynIxb) varying only by 20 (xa) or 7 (xb) residues. Recombinant GST fusion proteins of dynIxa and dynIxb proline-rich domains (PRDs) were used to pull down interacting proteins from rat brain nerve terminals. Both bound equally to syndapin, but dynIxb PRD exclusively bound to the catalytic subunit of CaNA, which recruited CaNB. Binding of CaN was increased in the presence of calcium and was accompanied by further recruitment of calmodulin. Point mutations showed that the entire C terminus of dynIxb is a CaN docking site related to a conserved CaN docking motif (PXIXI(T/S)). This sequence is unique to dynIxb among all other dynamin variants or genes. Peptide mimetics of the dynIxb tail blocked CaN binding in vitro and selectively inhibited depolarization-evoked dynI dephosphorylation in nerve terminals but not of other dephosphins. Therefore, docking to dynIxb is required for the regulation of both dynI splice variants, yet it does not regulate the phosphorylation cycle of other dephosphins. The peptide blocked ADBE, but not clathrin-mediated endocytosis of synaptic vesicles. Our results indicate that Ca(2+) influx regulates assembly of a fully active CaN-calmodulin complex selectively on the tail of dynIxb and that the complex is recruited to sites of ADBE in nerve terminals.


Asunto(s)
Empalme Alternativo , Calcineurina/fisiología , Dinamina I/química , Dinamina I/metabolismo , Secuencias de Aminoácidos , Animales , Encéfalo/metabolismo , Calcineurina/metabolismo , Endocitosis , Glutatión Transferasa/metabolismo , Fosforilación , Prolina/química , Unión Proteica , Isoformas de Proteínas , Estructura Terciaria de Proteína , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/química
14.
EMBO J ; 27(1): 27-37, 2008 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-18079695

RESUMEN

The GTPase dynamin is a mechanochemical enzyme involved in membrane fission, but the molecular nature of its membrane interactions and their regulation by guanine nucleotides and protein effectors remain poorly characterized. Using site-directed fluorescence labeling and several independent fluorescence spectroscopic techniques, we have developed robust assays for the detection and real-time monitoring of dynamin-membrane and dynamin-dynamin interactions. We show that dynamin interacts preferentially with highly curved, PIP2-dense membranes and inserts partially into the lipid bilayer. Our kinetic measurements further reveal that cycles of GTP binding and hydrolysis elicit major conformational rearrangements in self-assembled dynamin that favor dynamin-membrane association and dissociation, respectively. Sorting nexin 9, an abundant dynamin partner, transiently stabilizes dynamin on the membrane at the onset of stimulated GTP hydrolysis and may function to couple dynamin's mechanochemical conformational changes to membrane destabilization. Amphiphysin I has the opposite effect. Thus, dynamin's mechanochemical properties on a membrane surface are dynamically regulated by its GTPase cycle and major binding partners.


Asunto(s)
Membrana Celular/enzimología , Dinamina I/metabolismo , Guanosina Trifosfato/fisiología , Animales , Membrana Celular/genética , Células Cultivadas , Dinamina I/química , Dinamina I/genética , Humanos , Insectos/genética , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Liposomas , Mutagénesis Sitio-Dirigida , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Conformación Proteica , Espectrometría de Fluorescencia , Porcinos
15.
Biosci Biotechnol Biochem ; 76(12): 2195-200, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23221691

RESUMEN

Dynamin plays an important role in membrane fission during endocytosis, and its middle domain is involved in the formation of functional oligomers. In this study, we found that replacement of Arg-386 with Gly in the middle domain region of dynamin 1 did not affect the intermolecular interactions of dynamin 1 in the presence of phosphatidylserine-liposomes. But, unexpectedly, this variant showed lower guanosine 5'-triphosphatase activity in the absence of phosphatidylserine-liposomes and enhanced monomer formation from oligomers. Our results indicate that GTPase activity in the absence of lipids is important in the dissociation of oligomer complexes, i.e., reduced basal dynamin 1 GTPase activity is associated with instability of dynamin oligomers.


Asunto(s)
Sustitución de Aminoácidos , Arginina , Dinamina I/química , Dinamina I/metabolismo , Glicina , Multimerización de Proteína/genética , Secuencia de Aminoácidos , Dinamina I/genética , Endocitosis/genética , Estabilidad de Enzimas/genética , Glicina/genética , Glicina/metabolismo , Células HeLa , Humanos , Liposomas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Fosfatidilserinas/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Transferrina/metabolismo
16.
Nat Commun ; 12(1): 5393, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34518553

RESUMEN

Dynamin belongs to the large GTPase superfamily, and mediates the fission of vesicles during endocytosis. Dynamin molecules are recruited to the neck of budding vesicles to assemble into a helical collar and to constrict the underlying membrane. Two helical forms were observed: the one-start helix in the constricted state and the two-start helix in the super-constricted state. Here we report the cryoEM structure of a super-constricted two-start dynamin 1 filament at 3.74 Å resolution. The two strands are joined by the conserved GTPase dimeric interface. In comparison with the one-start structure, a rotation around Hinge 1 is observed, essential for communicating the chemical power of the GTPase domain and the mechanical force of the Stalk and PH domain onto the underlying membrane. The Stalk interfaces are well conserved and serve as fulcrums for adapting to changing curvatures. Relative to one-start, small rotations per interface accumulate to bring a drastic change in the helical pitch. Elasticity theory rationalizes the diversity of dynamin helical symmetries and suggests corresponding functional significance.


Asunto(s)
Microscopía por Crioelectrón/métodos , Dinamina I/química , Dinamina I/ultraestructura , Simulación de Dinámica Molecular , Dominios Homólogos a Pleckstrina , Conformación Proteica , Multimerización de Proteína , Algoritmos , Dinamina I/genética , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Mutación , Termodinámica
17.
Mol Biol Cell ; 32(14): 1306-1319, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33979205

RESUMEN

The neuronal dynamin1 functions in the release of synaptic vesicles by orchestrating the process of GTPase-dependent membrane fission. Dynamin1 associates with the plasma membrane-localized phosphatidylinositol-4,5-bisphosphate (PIP2) through the centrally located pleckstrin homology domain (PHD). The PHD is dispensable as fission (in model membranes) can be managed, even when the PHD-PIP2 interaction is replaced by a generic polyhistidine- or polylysine-lipid interaction. However, the absence of the PHD renders a dramatic dampening of the rate of fission. These observations suggest that the PHD-PIP2-containing membrane interaction could have evolved to expedite fission to fulfill the requirement of rapid kinetics of synaptic vesicle recycling. Here, we use a suite of multiscale modeling approaches to explore PHD-membrane interactions. Our results reveal that 1) the binding of PHD to PIP2-containing membranes modulates the lipids toward fission-favoring conformations and softens the membrane, and 2) PHD associates with membrane in multiple orientations using variable loops as pivots. We identify a new loop (VL4), which acts as an auxiliary pivot and modulates the orientation flexibility of PHD on the membrane-a mechanism that we believe may be important for high-fidelity dynamin collar assembly. Together, these insights provide a molecular-level understanding of the catalytic role of PHD in dynamin-mediated membrane fission.


Asunto(s)
Dinamina I/metabolismo , Dominios Homólogos a Pleckstrina/fisiología , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/fisiología , Catálisis , Membrana Celular/metabolismo , Biología Computacional/métodos , Dinamina I/química , Dinamina I/fisiología , Dinaminas/metabolismo , Endocitosis/fisiología , GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Membranas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositoles/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/fisiología , Multimerización de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Vesículas Sinápticas/fisiología
18.
J Neurosci ; 29(24): 7706-17, 2009 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-19535582

RESUMEN

Synaptic vesicles (SVs) are retrieved by more than one mode in central nerve terminals. During mild stimulation, the dominant SV retrieval pathway is classical clathrin-mediated endocytosis (CME). During elevated neuronal activity, activity-dependent bulk endocytosis (ADBE) predominates, which requires activation of the calcium-dependent protein phosphatase calcineurin. We now report that calcineurin dephosphorylates dynamin I in nerve terminals only above the same activity threshold that triggers ADBE. ADBE was arrested when the two major phospho-sites on dynamin I were perturbed, suggesting that dynamin I dephosphorylation is a key step in its activation. Dynamin I dephosphorylation stimulates a specific dynamin I-syndapin I interaction. Inhibition of this interaction by competitive peptides or by site-directed mutagenesis exclusively inhibited ADBE but did not affect CME. The results reveal that the phospho-dependent dynamin-syndapin interaction recruits ADBE to massively increase SV endocytosis under conditions of elevated neuronal activity.


Asunto(s)
Proteínas Portadoras/metabolismo , Dinamina I/metabolismo , Endocitosis/fisiología , Neuronas/citología , Vesículas Sinápticas/fisiología , Potenciales de Acción/fisiología , Análisis de Varianza , Animales , Animales Recién Nacidos , Calcineurina/metabolismo , Calcio/metabolismo , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/química , Proteínas Portadoras/genética , Células Cultivadas , Cerebelo/citología , Proteínas del Citoesqueleto , Dextranos/metabolismo , Dinamina I/química , Dinamina I/genética , Estimulación Eléctrica/métodos , Endocitosis/efectos de los fármacos , GTP Fosfohidrolasas/metabolismo , Peroxidasa de Rábano Silvestre/metabolismo , Hidrazonas/farmacología , Microscopía Inmunoelectrónica/métodos , Mutagénesis Sitio-Dirigida/métodos , Inhibición Neural/fisiología , Neuronas/efectos de los fármacos , Oligonucleótidos/farmacología , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Cloruro de Potasio/farmacología , Ratas , Ratas Sprague-Dawley , Serina/metabolismo , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/ultraestructura , Sinaptofisina/metabolismo , Factores de Tiempo , Transfección/métodos
19.
Biochemistry ; 49(50): 10592-4, 2010 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-21082776

RESUMEN

Dynamins induce membrane vesiculation during endocytosis and Golgi budding in a process that requires assembly-dependent GTPase activation. Brain-specific dynamin 1 has a weaker propensity to self-assemble and self-activate than ubiquitously expressed dynamin 2. Here we show that dynamin 3, which has important functions in neuronal synapses, shares the self-assembly and GTPase activation characteristics of dynamin 2. Analysis of dynamin hybrids and of dynamin 1-dynamin 2 and dynamin 1-dynamin 3 heteropolymers reveals that concentration-dependent GTPase activation is suppressed by the C-terminal proline/arginine-rich domain of dynamin 1. Dynamin proline/arginine-rich domains also mediate interactions with SH3 domain-containing proteins and thus regulate both self-association and heteroassociation of dynamins.


Asunto(s)
Arginina/química , Dinaminas/química , Dinaminas/metabolismo , Prolina/química , Animales , Línea Celular , Dinamina I/química , Dinamina I/genética , Dinamina I/metabolismo , Dinamina II/química , Dinamina II/genética , Dinamina II/metabolismo , Dinamina III/química , Dinamina III/genética , Dinamina III/metabolismo , Dinaminas/genética , Humanos , Dominios Proteicos Ricos en Prolina/genética , Dominios Proteicos Ricos en Prolina/fisiología , Estructura Terciaria de Proteína , Spodoptera
20.
Mol Biol Cell ; 16(4): 2058-67, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15703209

RESUMEN

Dynamin, a central player in clathrin-mediated endocytosis, interacts with several functionally diverse SH3 domain-containing proteins. However, the role of these interactions with regard to dynamin function is poorly defined. We have investigated a recently identified protein partner of dynamin, SNX9, sorting nexin 9. SNX9 binds directly to both dynamin-1 and dynamin-2. Moreover by stimulating dynamin assembly, SNX9 stimulates dynamin's basal GTPase activity and potentiates assembly-stimulated GTPase activity on liposomes. In fixed cells, we observe that SNX9 partially localizes to clathrin-coated pits. Using total internal reflection fluorescence microscopy in living cells, we detect a transient burst of EGFP-SNX9 recruitment to clathrin-coated pits that occurs during the late stages of vesicle formation and coincides spatially and temporally with a burst of dynamin-mRFP fluorescence. Transferrin internalization is inhibited in HeLa cells after siRNA-mediated knockdown of SNX9. Thus, our results establish that SNX9 is required for efficient clathrin-mediated endocytosis and suggest that it functions to regulate dynamin activity.


Asunto(s)
Proteínas Portadoras/metabolismo , Clatrina/metabolismo , Dinamina II/metabolismo , Dinamina I/metabolismo , Endocitosis , Proteínas Portadoras/genética , Membrana Celular/metabolismo , Invaginaciones Cubiertas de la Membrana Celular/metabolismo , Dinamina I/química , Dinamina I/genética , Dinamina II/química , Dinamina II/genética , GTP Fosfohidrolasas/metabolismo , Células HeLa , Humanos , Liposomas/metabolismo , Unión Proteica , Receptores de Transferrina/metabolismo , Nexinas de Clasificación , Proteínas de Transporte Vesicular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA